CSEP 524: Parallel Computation
(week 3)

Brad Chamberlain
Tuesdays 6:30 —9:20
MGH 231




Shameless Plug
* The Chapel team is looking to fill two internship

positions this summer if someone you know is
interested.
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What We’ve Discussed

Why parallelism matters

A bunch of terminology

Ways of measuring parallel performance

How to create/join tasks in C+Pthreads and Chapel
Block and Cyclic work distributions

Hopefully you've seen speedup firsthand by now



What’s Next?

* At a high level:
— Discussion/Diagnosis of behavior in Assignment #1
— Having tasks coordinate with one another
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Discussion of Assighment #1



Assignment #1 Discussion

Q1: What kinds of parallel resources did you find?
— who has highest-core count desktop?
— what larger-scale systems are available to you?
— what parallel programming models did you identify?

We should soon have access to a UW CSE 8x4-core
VM-based platform for the class to share
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Assignment #1 Discussion

Q4: What block distribution strategy did you use?

— e.g., when dividing 10 items by 4 tasks, did you use:
e 3322
« 3232
« 2323
« 3331
e other?
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Assignment #1 Discussion

Q5: What were your predictions?
— random vs. ramp

— negation vs. factorial
— block vs. cyclic

— number of tasks

* What were the biggest surprises?

* Did you see linear speedup?
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Summary of Observations

Block Distribution Cyclic Distribution
negation negation
should be
faster than
factorial
factorial should be factorial
faster than
ramp
because
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Parallel Programming is Hard

(you may or may not agree with this sentiment yet, but it’s true)

Keep track of your war stories this quarter
* for the purposes of classroom discussion
* because misery loves company



Two Performance Gotchas



Performance Gotcha #1: Memory

Issue #1: Competition for Memory Locations

— any time processors have non-shared caches there is the
potential for them to compete for memory locations

Memory Controller

Shared L3 Cacf\e;_ |
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Performance Gotcha #1: Memory

Issue #1: Competition for Memory Locations

— any time processors have non-shared caches there is the
potential for them to compete for memory locations
* read-only accesses should not be an issue
* once a task/core starts writing to a location, competition may ensue
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Example: Competition For Memory

cache line size

1
| 1

!| reg !| reg

array negation Task 1 Task 2

using cyclic — rr:i i rf:; AlO] — :22 i rfj; All]

d. . . : - -
istribution A[O] = write reg A[1] = write reg
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Example: Competition For Memory

cache line size

i
| 1

HW invalidates to preserve cache coherency

reg [Jreg
. Task 1 Task 2
array negation reg = read A[0] ==) reg=read A[1]
using cyc.llc ==) reg=-reg reg = -reg
distribution: == A[0] = write reg A[1] = write reg
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Example: Competition For Memory

cache line size

i
| 1

! reg !| reg

. Task 1 Task 2
array negation reg = read A[0] ==) reg=read A[l]
using cyc.llc reg = -reg reg = -reg
distribution: A[O] = write reg A[1] = write reg

m—)
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Definition: False Sharing

False Sharing: When cache lines must be invalidated

not because two tasks are accessing the same data, but

because they’re accessing data on the same cache line
— in reality, the data is truly independent, hence “false”

— the details of the granularity at which data is stored within
HW is what causes the interdependence (“sharing”)

— NOTE: On cache coherent architectures, this is a
performance issue, not a correctness issue

— (“true sharing” might be considered when two tasks
actually access the same shared variable/data)



False Sharing Implications for Assignment #1

 Writing to an array using a cyclic distribution can
result in performance impacts due to false sharing

— possible fixes:

* have each task O start its cyclic iteration from a skewed position

— e.g., have task t starts from element t + t*n/p

— but, results in more complex loop idioms due to need to wrap around
* use padding/alignment pragmas to spread out array data

— but, results in wasted space
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Performance Gotcha #1: Memory

Issue #2: Memory is a bottleneck
— typically, processors increase in speed faster than memory

— having multiple processors share memory doesn’t help
» there are only so many wires to access memory
» cache coherence protocols also add overhead/complexity
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Performance Gotcha #1: Memory

Issue #2: Memory is a bottleneck

— algorithms with more computational intensity can better
amortize these memory overheads
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Definition: Computational Intensity

Computational Intensity:
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Definition: Computational Intensity

Computational Intensity: How much computation is
performed per memory access

— high computational intensity: lots of OPS per load/store
=> memory performance is less of an issue

— low computational intensity: few OPS per load/store

=> memory performance is more of an issue
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Mem. Performance Implications for Assignment #1

 Computations with greater computational intensity
should result in better speedup

— e.g., factorial should speed up better than negation
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Performance Gotcha #2: Load Balance

Negation + Ramp: Computational Intensity per Element

computational
intensity

. rrrrrrrrr ]

< o
< L

array elements
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Performance Gotcha #2: Load Balance

Negation + Ramp: Computational Intensity per Element
— Block distribution: green and purple have ~the same work

A

computational
intensity

< o
< L

array elements
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Performance Gotcha #2: Load Balance

Factorial + Ramp: Computational Intensity per Element

computational
intensity

< I
< »

array elements
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Performance Gotcha #2: Load Balance

Factorial + Ramp: Computational Intensity per Element
— Block Distribution

computational
intensity

< o
< L

array elements
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Performance Gotcha #2: Load Balance

Factorial + Ramp: Computational Intensity per Element
— Block Distribution: Purple has ~3x as much work as green

A

computational
intensity

< o
< L

array elements
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Performance Gotcha #2: Load Balance

Factorial + Ramp: Computational Intensity per Element
— Cyclic Distribution

computational
intensity

< o
< L

array elements
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Performance Gotcha #2: Load Balance

Factorial + Ramp: Computational Intensity per Element
— Cyclic Distribution: Purple only has numltems/2 more work

A

computational
intensity

< o
< L

array elements
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Performance Gotcha #2: Load Balance

Factorial + Random:

— Block distribution: green has ~1.5x the work of purple

* (for the data set shown)
A

computational
intensity

< o
< L

array elements
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Load Balance Implications for Assignment #1

* Block + factorial + ramp exhibits bad load balance
— some tasks had significantly more work than others
— cyclic/random input sets may result in better load balance

 Keep in mind that many algorithms must be written
without knowing their input sets
— i.e., can’t think “aha, my input will be a ramp so ...”
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Assignment #1 Debrief

* Who saw execution time behaviors similar to what |
just described?
— what kinds of things did you “do right” to get this result?

— what kinds of issues did others do differently to not see it?
— or perhaps, rather, what did you stumble across then fix?

* measuring aggregate performance of all threads, not wallclock time
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Assignment #1 Summary: Distributions

Block & Cyclic:
+ give each task a similar number of work items

+ reasonably easy to compute

Block:

+ results in good spatial locality (touches adjacent elements)
— can expose sensitivities to work distribution
* asin ramp+factorial
Cyclic:
+ less likely to be sensitive to work distribution
— can result in false sharing issues
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Time for a Break/Something
Different?



Alternatives to Block and Cyclic

e Other distributions can help address the drawbacks
of block and cyclic:
— Block-Cyclic distribution
— Dynamic distributions
— Algorithmically-aware distributions
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Distribution #3: Block-Cyclic Distribution

* As the name suggests, a hybrid of Block and Cyclic

— deals blocks of items out cyclically

* parameterized by block size, b
* ideally, b should match or exceed cache line size

» optimal choice of b often depends on algorithm, working set size, ...

— tradeoffs:

+ gives tasks chunks of work (good spatial locality; less false sharing)
+ like cyclic, results in probabilistically-oriented load balancing
— results in slightly more complicated loop nests
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Dynamic Distributions

Concept:
— don’t deal work out according to a fixed, a priori schedule

— instead, deal work out to tasks (or have them grab it) as
they become idle

Goal:
— no task gets stuck with more work than it can handle

Challenge:

— what granularity (granularities?) to deal out work?
* jf too large: tasks may get unlucky and stuck with too much work
* jf too small: too much effort coordinating, not enough computing
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Algorithmically-Aware Distributions

Concept:

— For some algorithms, there may be a way to scan the input

data in order to compute a good distribution
* e.g., dynamically sample the input data set to try and predict trends?
* e.g., examine the placement of zeroes and non-zeroes in a sparse matrix?

* e.g., compute a dependence graph for the computation and distribute it
using a graph partitioning algorithm

Goal:
— use algorithmic-centric knowledge to improve load balance

Challenge:

— Cost:Benefit ratio needs to be taken into account

* since any overhead in computing a distribution is new work that
wouldn’t have been required in a serial version
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Multidimensional Distributions

e So far, we've looked solely at 1D distributions
e Distributions can also be multidimensional

— one option is to apply a 1D distribution per dimension
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2D Block x Block
(distributed to 2x2 tasks)
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2D Block x Block
(distributed to 1x4 tasks)
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2D Block x Block
(distributed to 4x1 tasks)
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2D Block-Cyclic x Block-Cyclic
(distributed to 2x2 tasks)
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...and so on and so forth

e Cyclic x Cyclic

e Block x Cyclic

* Cyclic x Block

* BlocC
* Bloc

* BlocC

* eftc.

K-Cyclic x Block-Cyclic with different block sizes
k-Cyclic x Block

K X Block-Cyclic
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Q: In a Shared-Memory setting, which would you
use from the perspective of memory?
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Multidimensional Distributions

e So far, we’ve primarily looked at 1D distributions
e Distributions can also be multidimensional

— one option is to apply a 1D distribution per dimension
— another is to distribute the items holistically
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Holistic Distribution: Recursive Bisection

Note: Can’t be expressed

as the conflation of two
1D distributions

:—|—s\ CSEP 524: Parallel Computation Winter 2013: Chamberlain 48



Multidimensional Distributions

e So far, we’ve primarily looked at 1D distributions

e Distributions can also be multidimensional
— one option is to apply a 1D distribution per dimension

— another is to distribute the items holistically

* Or, even unstructured (e.g., distribute a graph)

— a topic for another day
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Measuring Load Imbalance

* Inassignment #1, we used the following pattern to
measure the overall execution time of the code:

This essentially measured

start timer max(time time

green)

purple’
create tasks

do work
join tasks

check timer

Ll L]
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Measuring Load Imbalance

* Imagine instead, pushing the timing into the loop:

purple green

start timer

e ek This permits us to measure
gcrea € L4dSKSs time and time distinctly

do work

check timer
< join tasks

]
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Measuring Load Imbalance

* Now, we can compute statistics on a task-by-task
basis:

var totTime, maxTime = 0.0;

var minTime = max(real) ;
coforall tid in O..#numTasks {BRANLEIERGERIERRGIENL(E

start timer

do work
const myTime = check timer
totTime += myTime;
if myTime < minTime then minTime = myTime;
if myTime > maxTime then maxTime = myTime;

}

const avgTime = totTime / numTasks;
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Bug of the week

* The previous slide contains a classic bug
— Code that looks innocuous is actually problematic
— Cause: reading parallel code as though it were sequential

coforall tid in O..#numTasks {

totTime += myTime;

} Task 1 Task 2
reg = read totTime reg = read totTime
reg =reg+ myTime reg = reg + myTime
totTime = write reg totTime = write reg
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule would be fine:

Task 1
reg = read totTime
reg =reg+ myTime
totTime = write reg

time

Task 2
reg = read totTime
reg = reg + myTime
totTime = write reg
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
reg = read totTime
reg = read totTime
time reg = reg + myTime
reg = reg + myTime
totTime = write reg
totTime = write reg

3.7 myTime 2.3 myTime

reg reg

0.0|totTime
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
==) reg =read totTime
reg = read totTime
time reg = reg + myTime
reg = reg + myTime
totTime = write reg

totTime = write reg

3.7 myTime 2.3 myTime

0.0|reg reg

0.0|totTime
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
==) reg =read totTime
==) reg=read totTime
time reg = reg + myTime
reg = reg + myTime
totTime = write reg

totTime = write reg

3.7 myTime 2.3 myTime

0.0|reg 0.0|reg

0.0|totTime
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
reg = read totTime
==) reg=read totTime
time =) reg=reg+ myTime
reg = reg + myTime
totTime = write reg

totTime = write reg

3.7 myTime 2.3 myTime

3.7 |reg 0.0|reg

0.0|totTime
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
reg = read totTime
reg = read totTime
time =) reg=reg+ myTime
==)| reg=reg+ myTime
totTime = write reg

totTime = write reg

3.7 myTime 2.3 myTime

3.7|reg 2.3|reg

0.0|totTime
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
reg = read totTime
reg = read totTime
time reg = reg + myTime
==)| reg=reg+ myTime
m==) totTime = write reg

totTime = write reg

3.7 myTime 2.3 myTime

3.7|reg 2.3|reg

3.7 |totTime
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Bug of the week

 Whether or not this bug exhibits itself depends on
the scheduling of the tasks

— the following schedule is problematic:

Task 1 Task 2
reg = read totTime
reg = read totTime
time reg = reg + myTime
reg = reg + myTime
m==) totTime = write reg

=) totTime = write reg

3.7 myTime 2.3 myTime

3.7|reg 2.3|reg

2.3 |totTime
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Bug of the week: RRWW (Read-Read-Write-Write)

 Due to interleaving, uncoordinated reads and writes
to shared state may cause values to be lost
* The fix is to coordinate such accesses to shared state

— in this case, totTime, minTime, maxTime
— e.g., could protect each/all of them by a lock

coforall tid in O..#numTasks

grab totTime lock
totTime += myTime;

release totTime lock
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Glossary: Synchronization

Synchronization:
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Glossary: Synchronization

Synchronization: Coordination between tasks
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Synchronization Mechanisms in Pthreads

1) mutex: “mutual exclusion” — essentially a lock

— operations:
* init, destroy: create and destroy them
* lock, unlock: grab and release the lock
* trylock: attempt to grab the lock, but don’t block if you can’t
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Synchronization Mechanisms in Pthreads

2) condition variables: a “waiting room” for some
condition to become true

— operations:
* init, destroy: create and destroy them
* wait: wait for a condition to become true
* signal/broadcast: signal to one/multiple thread(s) that it is

— rationale: avoid spinning on some test in user code
* e.g., “wait for this variable to take on some nonzero value”
* such spinning is typically not a wise use of resources
* jnstead: let the thread library manage who should wake up when
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Condition Variables: Fiddly Details

There are some details that complicate condition vars:

— mutex argument: must be managed properly

— spurious wakeups: verifying that the condition is still true
once you’'ve awoken from a wait()

See Ch. 6 of the text and/or this tutorial for details:
— https://computing.linl.gov/tutorials/pthreads/#ConditionVariables
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Using Mutexes to fix RRWW bugs

pthread mutex t totTimeMutex;
pthread mutex init(&totTimeMutex, NULL);

create tasks
pthread mutex lock (&totTimeMutex);
totTime += myTime;
pthread mutex unlock (&totTimeMutex) ;

join tasks

pthread mutex destroy (&totTimeMutex) ;
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Using Mutexes to fix RRWW bugs

The result is that there are only two legal orderings of
the totTime updates:

task 1 grabs the mutex first

task 2 grabs the mutex first

Task 1
mutex lock
reg = read totTime
reg =reg + myTime
totTime = write reg
mutex unlock

—|—s CSEP 524: Parallel Computation

Task 2
mutex lock
(...blocks...)

reg = read totTime

reg = reg + myTime

totTime = write reg
mutex unlock

Task 1
mutex lock
(...blocks...)

reg = read totTime

reg = reg + myTime

totTime = write reg
mutex unlock

Task 2
mutex lock
reg = read totTime
reg =reg+ myTime
totTime = write reg
mutex unlock

Winter 2013: Chamberlain
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Synchronization Mechanisms in Chapel

1) synchronization variables
2) single-assignment variables
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Synchronization Variables

e Syntax

sync—-type: ]

sync type

e Semantics

o Stores full/empty state along with normal value
» Defaults to full if initialized, empty otherwise

e Default read blocks until full, leaves empty

» Default write blocks until empty, leaves full

e Examples: Critical sections and futures

var lock$: sync boolg\\ var future$S: sync real; A
lock$S = true; begin future$ = compute () ;
critical () ; computeSomethingElse () ;

var lockval = lock$S; useComputedResults (futures) ;

i
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CRANY

THE SUPERCOMPUTER COMPANY

Example: Bounded Buffer Producer/Consumer

var buffs: [0..#buffersize] sync real;

cobegin {
producer () ;
consumer () ;

}

proc producer () |
var 1 = 0;
for .. {
1 = (1+1l) % buffersize;
buffs[i] = ..; // blocks until empty, leaves full
}
}
proc consumer () |
var 1 = 0;
while .. {
i= (i1+1) % buffersize;
Rt c [i]..; // blocks until full, leaves empty

}

HAPEL
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THE SUPERCOMPUTER COMPANY

Single-Assignment Variables

e Syntax

single-type:
single type

e Semantics
e Similar to sync variables, but stays full once written

e Example: Multiple Consumers of a future
\

var future$: single real;

begin future$ = compute ()
computeSomethingElse (futures) ;
computeSomethingElse (futures);

—HAPEL

@
E



THE SUPERCOMPUTER COMPANY

Synchronization Type Methods

3

readFE () : t block until full, leave empty, return value
readFF () : t block until full, leave full, return value
readXX () : t return value (non-blocking)

writeEF (v:t) block until empty, set value to v, leave full
writeFF (v:t) waituntil full, set value to v, leave full
writeXF (v:t) setvalueto v, leave full (non-blocking)
reset () reset value, leave empty (non-blocking)
isFull: bool return true if full else false (non-blocking)

Defaults: read: readFE, write: writeEF



=AY
Single Type Methods ¥"""“"“""""

J—

o readllE Ot bloclyagl foll locm ppomte potien ol
e readFF () : t block until full, leave full, return value
e readXX () :t return value (non-blocking)

e writeEF (v:t) block until empty, set value to v, leave full
¢ writePF (vt} —waltunbful setvaluetoleave full

o writeXP vty sctvaluetosteavefgitron-blocking)

o xeget O rocorclio locuo crpapdy loco blockiaol

e isFull: bool return trueif full else false (non-blocking)

e Defaults: read: readFF, write: writeEF




Using Sync vars to fix RRWW bugs

var totTime$: sync real = 0.0; // starts full
coforall tid in 0. .#numTasks {

totTime$ += myTime; // readFE followed by writeEF
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Summary: Pthreads vs. Chapel Synchronization

Pthreads mutex & condition variables:

+ arguably a reasonable backbone for synchronization

* based on the endurance of Pthreads
 use of these concepts in other languages/contexts

— arguably result in complex code for common patterns

Chapel sync/single variables:

+ data-centric synchronization: expressing synchronization in
terms of the data being accessed

— arguably a little artificial/confusing when used as a mutex

* e.g., see unused boolean value in previous critical section example

Both approaches also have some common liabilities (stay tuned)
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Diagnosing Deadlock/Livelock in Chapel

* If you suspect you have a deadlock problem...
— re-execute your program using —b/--blockreport
* adds a certain amount of overhead, but beats deadlocking!

— if deadlock is detected, the program will...
* terminate
* doits best to tell you where the tasks were

* If you suspect you have a livelock problem...

— re-execute your program using —t/--taskreport
e again, adds a certain amount of overhead
— upon hitting Ctrl-C/sending SIGINT, the program will...

* terminate and do its best to tell you where the tasks are
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This week’s assignment

* extend the single-producer/single-consumer
bounded buffer pattern shown in lecture to support
multiple producers and consumers
— in Chapel (to get practice with sync/single variables)

— in Pthreads (to get practice with mutex/condition variables)

* write a dynamic load balancing distribution in Chapel
OR Pthreads

— apply to ramp + factorial case

* some written questions



