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What is parallel computing?

Parallel Computing:

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
\ 4



What is parallel computing?

Parallel Computing: Using multiple compute resources
to execute a computation

— typically processors and their memories

Why would we do this?

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain



What is parallel computing?

Parallel Computing: Using multiple compute resources
to execute a computation

— typically processors and their memories

Why would we do this?

— To execute a computation more quickly than we could
otherwise

— Or to execute a larger program (in terms of amount of
memory required, e.g.)
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Parallel Computing for My Grandmother

“Let’s say you had some task which was going to take
you 100 hours to finish. Imagine enlisting 100 friends
to help you with the task. You now have some hope of
finishing the task in 1 hour.”

Is this realistic?
* |t depends on the task...
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Parallel Computations Vary in Difficulty

Matrix Addition: Quite straightforwarc
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Parallel Computations Vary in Difficulty

Matrix Multiplication: Far more involved

= =-- - X = -
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Parallel Computing: Two Key Concerns

Parallelism: “What should execute simultaneously?”

— without parallelism, no speed improvement from parallel
computing

Locality: “Where should things execute?”
— attention to locality often necessary for top performance
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Parallel Computing vs. Concurrency

Parallel Computing:

Concurrency:
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Parallel Computing vs. Concurrency

(In a room of experts, definitions of these terms will
vary greatly; these are the ones I prefer)

Parallel Computing:
— Typically done for performance reasons

— When parallelism ignored, program is still be correct
* (just slower)

Concurrency:
— parallelism is intrinsically required (e.g., for correctness)
— simultaneous execution may be actual or virtualized
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Parallel Computing: Related Terms

Parallel Programming: Writing programs that will
execute in parallel

— (this will be a primary focus for this course)

Parallel Programming Models: A blanket term | use to
refer to the languages, libraries, and pragmas used to
express parallel programs

— “parallel programming notations” would be more precise

High-Performance Computing (HPC): Parallel
computing on very large-scale systems

— also referred to as Supercomputing or High-End Computing
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My Employer: CCRRANY"

THE SUPERCOMPUTER COMPANY

!! H e
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Top500: One way to compare supercomputers

* Rates the 500 fastest -

seaitinacont

computers twice a year

Home Lists November 2012

INTERNATIONAL
- SUPERCOMPUTING CONFERENCE
L]
. IVI e a S u r e d | l S I n t h e Rmax and Rpeak values are in TFlops. For more details about other fields, check the TOP500 .
description. Gk / ¢

LINPACK benchmark oo s Twe 1SC’13

THE HPC EVENT
— Solves an LU factorization - -

June 16 - 20, 2013, Leipzig

o DOE/SC/Oak Ridge Titan - Cray XK7 , Opteron 560640 17590.0 271125 8209
National Laboratory 6274 16C 2.200GHz, Cray
M - United States Gemini interconnect, NVIDIA
— Flops dominate runtime
Cray Inc.
o DQBNNSA/LLNL Sequoia - BlueGene/Q, Power 1572864 16324.8 20132.7 7890 TOP10 November 2012
United States BQC 16C 1.60 GHz, Custom
IBM

1 Titan - Cray XK7 , Opteron 6274

L] L]
[ ) @ RIKEN Advanced Institute K computer, SPARC64 Vlllix 705024 10510.0 11280.4 12660 16C 2.200GHz, Cray Gemini
’ I I for Computational 2.0GHz, Tofu interconnect interconnect, NVIDIA K20x

Science (AICS) Fujitsu 2 Sequoia - BlueGene/Q, Power

. . Japan BQC 16C 1.60 GHz, Custom

m O St re a | a I I C a tl 0 n S o DOE/SC/Argonne National Mira - BlueGene/Q, Power 786432 8162.4 10066.3 3945 3 K computer, SPARC64 Vilifx
Laboratory BQC 16C 1.60GHz, Custom 2.0GHz, Tofu interconnect
United States 1BM

4 Mira - BlueGene/Q, Power BQC
Forschungszentrum JUQUEEN - BlueGene/Q, 393216 4141.2  5033.2 1970 16C 1.60GHz, Custom

. (5]
h Juelich (FZJ) Power BQC 16C 1.600GHz,
e ° g ° ’ l I l e l I l O ry a n W I Germanv Custom Interconnact 5 JUQUEEN - BlueGene/Q, Power
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Titan
compute nodes: 18,688
processors: 16-core AMD/node = 299,008 cores
GPUs: 18,688 NVIDIA Tesla K20s
memory: 32 + 6 GB/node = 710 TB total
peak speed: 20+ petaflops
floorspace: 4,352 square feet

v

For more information: http://www.olcf.ornl.gov/titan
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“Glad I’'m not an HPC Programmer!”

A Possible Reaction:

“This is all well and good for HPC users, but I’'m a mainstream
desktop programmer, so this is all academic for me.”

The Unfortunate Reality:

— Performance-minded mainstream programmers will
increasingly deal with parallelism

— And, as chips become more complex, locality too
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o

My Mac’s Processor: an Intel Core i7

Memory Controller

Shared L3 CacHe;_
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Some Hardware Terminology

processor core (or simply “core”): the unit of a
computer that has a PC, executes instructions, etc.

(compute) node: a group of cores and memories that
must go over a network to communicate with any
others

network: the wires and chips that permit nodes to
communicate with one another

network
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More HW Terms: Shared vs. Distributed Memory

shared memory:

distributed memory:
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More HW Terms: Shared vs. Distributed Memory

shared memory: A system in which memory can be
accessed via simple load/store instructions

— example: your multicore laptop/desktop

— also used to refer to programming models for such
architectures

— typically executes a single OS image

distributed memory:
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More HW Terms: Shared vs. Distributed Memory

shared memory: A system in which memory can be
accessed via simple load/store instructions
— example: your multicore laptop/desktop

— also used to refer to programming models for such
architectures

— typically executes a single OS image

distributed memory: A system with multiple distinct
memory segments that are not trivially accessible from
one another

— examples: commodity clusters; desktops on a network

— typically an OS image per segment
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For now, we’ll focus on shared memory

Memory Controller
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Multicore Processors: How did we get here?

10,000,000

* Inshort, transistor density /

has continued following o

Intel CPU Trends -

(sources: Intel, Wikipedia, K. Olukotun) -

Moore’s Law

100,000

* But clock speeds have
stopped increasing as
rapidly as historically

10,000

* So what to do with extra
transistors? And how to
provide the performance
boosts we’re used to? N | | PN

@ Clock Speed (MHz)
o oo APower (W)
@ Perf/Clock (ILP)

* Answer: add parallelism 0 |

1970 1975 1980 1985 1990 1995 2000 2005 2010
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Prototyplcal Next Gen Processor Technologies

"W irm,

AMD Trinity

Dragonfly Interconnect (optical fiber)
feee| 2 UART, 2 USB DDR3 Controller

- JTAG, I’C, SPI
High-Radix Router Module (RM) ) 1C,
3 6 c res

e
PCle 2.0 - 8 Lanes

e ——

o 2,
% PCle 2.0 -4 Lanes

Smart NIC Hardware

PCle 2.0 - 4 Lanes

N(xer(N())?ﬂlF 1618/, 256GB
D (M Su T AL TR : Flexible 1/O DDR3 Controller

Cch»?lon System

Nvidia Echelon Tilera Tile-Gx
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General Characteristics of These Architectures

DOR3 Controller

* |ncreased hierarchy and/or sensitivity to locality
* Potentially heterogeneous processor/memory types
* Increasingly resemble supercomputers-on-a-chip

= Next-gen programmers will have a lot more to
think about at the node level than in the past
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Outline for Today

v’ Parallel Computing: Definition and Motivation

* Introductory stuff
— A little about me
— Course overview

* Metrics for parallel execution
e Algorithm: Embarrassingly Parallel Computation

* Programming Models:

— POSIX threads
— Chapel

* This week’s assignment
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Me



My Parallel Computing Background

Graduated from UW in 2001

— dissertation focused on ZPL
* an array-based parallel language developed at UW during the 1990’s

— advisor: Larry Snyder
* he taught this course until he retired
* he also co-authored our textbook

Spent an educational year at a start-up
— worked on a parallel language for embedded computing

Joined Cray Inc. in 2002

— have worked primarily on Chapel
* an emerging parallel language
* will be used throughout this class
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Supercomputing vs. Desktop Parallel Computing

* Most of my experience is in the HPC space
— you may not particularly care about HPC

 Don’t let this dissuade you from taking this class
— at any scale, parallelism and locality are the key issues
— the mainstream increasingly resembles HPC as time passes
— thus, lessons learned from HPC will still apply

e Also, note that the mainstream is often HPC-like:

— cloud computing, big data centers, map-reduce, etc.

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Why am | teaching this class?

e As afavor to the department

* To put my money where my mouth is

(we’ve been claiming that Chapel is an ideal language for
parallel programming education for the past several years)

* To expose local professionals and students to Chapel
(and get your feedback)

* As a personal challenge
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The Good, the Bad (and hopefully no Ugly)

The Good:

— Having worked in this field for 20 years, | know it well

* that said, there’s also plenty | don’t know
* but | typically know who to ask/where to go to find answers

— I’'m passionate about the subject matter

The Bad:

— This is my first time teaching a class in 13 years

* will need your patience and feedback in throttling the pace
— And, it’s my first time teaching this class

* my slides are likely to be of varying quality and from various sources

— Like you, | have a day job
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The Course




Overall Goals

Expose you to as much information about parallel
computing as possible within the allotted time

— foundations

— best practices

— recent trends

Teach you principles of parallel programming
Give you practical parallel programming experience

— using adopted programming models
* Pthreads, OpenMP, MPI, UPC

— using Chapel as an idealized parallel language



Course Content

Backbone: follow a progression of architectures and
programming models from shared memory to
distributed memory

Along the way: cover common parallel algorithms/
patterns, hazards, grab-bag topics, ...



Class Sessions

* During the quarter, | hope to use a mix of:
— mini-lectures
— discussion
— interactive programming
— Q&A
— guest speakers
— inspirational music?, jokes?, ...?

...to break up the 3-hour timeslot.

* You can help prevent things from dragging by asking
qguestions, participating in discussion, etc.



Your Work

Assignments:

— format: A mix of readings, programming problems, and
thinking/writing questions
— rate: Due every 1-2 weeks

— late policy: Twice during the quarter, you may turn in an
assignment late (intended for use with work/family
emergencies)

End-of-term project:
— learn about and report on some technology we didn’t cover

— or possibly an independent programming project

» challenge: picking a scope that’s neither too hard nor too easy



Course Software

We'll be using the departmental Fedora 17 VM as
our official OS

— the one we’re committed to answering questions about
— the one we’ll use for executing your code in grading

You can choose to use your own OS at your own risk
— Linux/Mac/BSD — will probably work just fine
— Windows — ???



Nuts and Bolts

TA: Brandon Myers (may also add a second %:-time TA)
Text: Lin & Snyder, Principles of Parallel Programming

(2"d printing contains a number of bug fixes)

Office Hours:

— Brandon and me: “office happy hour” just after class
— Brandon: Thursdays 1:30-2:30pm (CSE 218 and online)

Online Resources:

webpage (http://www.cs.washington.edu/education/courses/csep524/13wi/)
hangout, dropbox, feedback mechanisms (see www above)

Slides: will be made available in PDF (typically after lecture)



Questions for you

Is anyone uncomfortable with C / UNIX?

Anything else that you’d specifically like to see
covered?

Exam? Meet exam week?
Other thoughts/questions/feedback?

(there will also be a survey covering these things)



Metrics for Parallel Execution



Scalability:
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Scalability

Scalability: the degree to which a program behaves
well as we increase the scale at which it’s executing

— “scale” typically refers to the number of processors
— it could also refer to other considerations like problem size

Ideally, parallel programs should be written to scale
arbitrarily

— i.e., “That worked well on 8 processors, but now that we’re
running on 16 it falls over!” isn’t very satisfying
* in part to make it portable across architectures

* in part because that’s your route to better performance over time in
a world without clock speed improvements



“Sherman, set the WABAC machine for
1999, CSE 373 (Data Structures and
Algorithms)...”




Simplifying Assumption

Constants are insignificant compared to the
asymptotic behavior of the program

— expressed as a function of the problem size
— expressed using functions like: n, n?, log n, 2", etc.

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain



Getting some Intuition...

100
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60

40

20
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Using the Computer...
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On A Larger Scale...
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Ignoring 2
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Ignoring n’
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On Yet a Larger Scale
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Smallest Functions Only
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The Moral

Performance can be broken down into primary
and secondary effects
— primary effects: asymptotic growth pattern

— secondary effects: constant factors, less significant
terms

e In this class, we’ Il mainly be concerned with primary
effects (asymptotic analysis)

e In the real world, secondary effects are also often
worth paying attention to (after the primary ones)

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain



“Returning to the present...”




In Parallel Computing, Constants Matter

* Asymptotic analysis (big-O notation) is crucial in
parallel computing, as in traditional computing

* However, constant factors also matter

— in particular, we’ll be running on a constant number of
pProcessors
* anecdote from computational chemist colleague
— also, since performance is a primary motivator for parallel
computing, we typically want to squeeze out as many
overheads as possible
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Measuring Parallel Computations (Directly)

Timings: How long did the program take to run?
— typically measured in wallclock seconds (or fractions thereof)

Performance: At what rate is the program running?
— e.g., FLOPS (floating point operations per second)
e or simply OPS

— or something more domain-specific:
» graph codes: TEPS (traversed edges per second)
* memory bandwidth: GB/s (gigabytes per second)
» table updates: GUPS (giga-updates per second)

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

54



Measuring Parallel Computations (Relatively)

Speedup: How does the parallel execution compare to
a serial execution?

Speedupp = serial/ Tp

Linear/ldeal Speedup: Speedup,=p
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Sample Speedup Graph

64 — p
— — — - linear speedup
48 | —@— program A
—@— program B
Q
=
o 32 —
Qo
n
__.'
16 —
0 |
0 4 8 16 32 64

Processors
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Computing Speedup: The Baseline

A key issue: What to use for the serial timing?

— some options:

 the parallel code running using 1 task/processor?
* aserial implementation of the same algorithm?
* the best serial implementation available?

— The last is the most ideal/valuable

* e.g., if the parallel version is 100x slower on 1 processor, computing
speedup relative to itself is not very helpful

— However, depending on what’s being studied, any of these
choices may be reasonable

Moral: always pay attention to what speedup is
computed against!
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Computing Speedup relative to different baselines

Jacobi (n = 2560) -- Cray T3E Jacobi (n =2560) -- Cray T3E
256 — - 256 —
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N
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relative to a serial implementation relative to itself
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Speedup over best 1-processor time
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Some More Speedup Graphs

MG Class B -- Linux cluster (myrinet)
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These curves are all computed using the identical serial/baseline value
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Measuring Parallel Computations Relatively (2)

Efficiency: How does the parallel execution compare to
a linear speedup?

Efficiency, = Speedup, / p

Ideal Efficiency: 1.0 for any value of p

Arguably the best way to display parallel performance

— it makes the best use of a graph’s area
e doesn’t compress small scales to the lower corner

— yet it’s not used in practice as much as you’d think
* in part because it’s hard to achieve 1.0, so it tends to look worse
* also doesn’t give that positive sense of “things are trending upward”
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Efficiency Graph

(wouldn’t a picture here be great? To the whiteboard!)
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Strong vs. Weak Scalability

Strong scaling: Uses a fixed problem size as the
number of processors increases.

Weak scaling: Grows the problem size with the number
of processors

Both approaches have their place depending on what
you care about

— again, this is something to pay attention to in interpreting
parallel performance results



Embarrassingly Parallel Computations



Terminology

task: a computation that can/should execute in parallel
with other tasks

— note: specific parallel programming models may attach
additional characteristics to the term “task”

thread: a vehicle for executing tasks
— typically supplied by the HW/OS/runtime

— note that many programming models conflate the terms
* typically when there is a 1:1 correspondence between the two



Embarrassingly Parallel

Embarrassingly Parallel Computations: Those in which
the parallel tasks have no need to communicate or
coordinate

— (or perhaps “no significant need”...)

— this is actually a very happy thing!

III

* “pleasingly parallel” might therefore be a better term
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Writing Embarrassingly Parallel Programs

The basic steps

1. Create the tasks

2. Have each determine what part of the problem it owns
3. Have it compute its portion of the problem

4. Wait for all the tasks to complete
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Work Distribution

 Determining how to distribute the work is the main
challenge

e Two common techniques:

block: each task gets a similar-sized block of consecutive
items
cyclic: items are passed out to tasks round-robin

(wouldn’t a picture here be great? To the whiteboard!)
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Pthreads




Pthreads: Our first parallel programming model

Pthreads: POSIX threads

— a C-based interface for thread-based programming
— quite standard, widespread, heavily-used
— a bit painful, but valuable to have experience with

* analogous to the value of learning assembly for C programmers

e or learning C for performance-minded programmers

* today, we’ll learn how to create tasks and wait for
them to finish

* next week we’ll get into more detail on coordination
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Creating Pthreads

int pthread create(pthread t* tid,
const pthread attr t* attr,
void* (*start routine) (void*),

void* argqg);

overall purpose: create a new thread running a task
tid: a handle to the thread, upon successful creation

attr: attributes controlling the thread’s execution
— NULL => use the default attributes

start_routine: function the thread should execute
— (we might think of this as the thread’s task)

arg: the argument bundle to pass to start_routine
returns: 0 on success, error code otherwise
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Waiting for Pthreads to terminate

int pthread join(pthread t tid,

void** status);

overall purpose: wait for a specific thread to terminate/exit
* threads exit by returning from their start_routine

* orbycalling void pthread exit (void* status);

tid: the thread to wait for (“join with”)

status: a handle to where its exit result should be copied
— NULL => 1 don’t care about the status

returns: 0 on success, error code otherwise
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Trivial Pthread Create/Join Example

int resultloc;

void* addone (void* arg) {

int argAsInt = *(int*)arg;

printf ("thread running foo (%d)\n", argAsInt);

resultLoc = argAsInt + 1;

return &resultloc;

pthread t myThread;

int arg = 3;

pthread create (&myThread, NULL, addone, é&arqg);

void* result;

pthread join (myThread, &result);

printf ("Original thread got %d as result\n",
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Full Pthread Create/Join Example

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

int resultLoc;

void* addone (void* arg) {
int argAsInt = * (int*)arg;
printf ("thread running foo (%d)\n", argAsInt);
resultLoc = argAsInt + 1;

return &resultlLoc;

int main(int argc, char* argvl[]) {

pthread t myThread;

int arg 3;
int err;
if (err = pthread create(&myThread, NULL,
addone, &arg)) |
printf ("pthread create() got an error!\n");

exit (1) ;

void* result;

if (err = pthread join(myThread, &result)) {
printf ("pthread join() got an error!\n");
exit(1);

printf ("Original thread got %d as result\n", *(int*)result);
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This week’s assignment



Goal

 Get everyone’s feet wet and ready to go

* |tems:

— Course Survey

— Reading
* 3 items this week:
— “The Free Lunch is Over”
— selections from Lin & Snyder
— Chapelintro
* need to send in a few discussion questions by Monday evening

— SW Installation: Fedora 17 VM, Chapel
— Embarrassingly Parallel Performance Study



Embarrassingly Parallel (EP) Study

* You're going to write and study two programs:
— 1 in C+Pthreads, 1 in Chapel
— input parameters: problem size, # tasks
— each will allocate array, initialize it, do EP computation

e Study this space:
— computations: negate array element vs. compute factorial
— input deck: random values vs. value ramp
— distributions: block vs. cyclic

— numbers of tasks: 1..#cores

* Predict which will perform best, measure, analyze
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e Questions?
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That'’s it for today!
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