Competition => Collaboration

a runtime-centric view of parallel computation

Simon Kahan

skahan@cs.washington.edu

©2009, 2013 Simon Kahan

Competition

PR AL R~ 3

Pt

Multiple entities in contention for limited, indivisible resources or opportunities

©2009, 2013 Simon Kahan

Direct Mitigation Techniques

e Take turns

¢ Share

¢ Find more dolls

©2009, 2013 Simon Kahan

Direct Mitigation Techniques

e Take turns

— Mutual Exclusion

e Share

— Transactions

¢ Find more dolls

— Replication (eg, of Data Structures)

©2009, 2013 Simon Kahan

Direct Mitigation Techniques

Take turns
— Mutual exclusion
— Delay is linear in concurrency: does not scale
Share
— Transactions
— Aborted work is up to quadratic in concurrency: does not scale

Find more dolls

Replication (eg, of Data Structures)

Cost ~ maximum concurrency sustained + coherency overheads: does not scale

©2009, 2013 Simon Kahan

Collaboration

Entities align to reduce contention, increase throughput.

©2009, 2013 Simon Kahan

Transform competition to collaboration?

Why won’t these people collaborate ?!

©2009, 2013 Simon Kahan

Are computers better collaborators?

©2009, 2013 Simon Kahan

Every clock cycle, a ready instruction may begin execution...

w >SS0 —T0O0C 0w —

MTA-2 Processor

Stream1

Stream?2

Stream128

T

(MAC)

load, store,
int_fetch_add
+-% ek‘

Arithmetic

Pipeline -

©2009, 2013 Simon Kahan

at\\\\

A\ W\

4,000 Active Threads

Simplified Cray/Tera MTA-2 System Architecture

=
=

T —— ——— —— =D
T —— T — S

A T — T ——— &)

A —— T —— T — T T——— &

Be Parallel or Die.

©2009, 2013 Simon Kahan 10

Memory Allocation

OS

sbreak()

Heap

‘ malloc(), free()

Application

©2009, 2013 Simon Kahan

Parallel Memory Allocation

OS

sbreak()

W,

Application

©2009, 2013 Simon Kahan

Replication for Concurrency

sbreak() sbreak() sbreak()

Heap Heap to Heap

1t)
=

Application

©2009, 2013 Simon Kahan

Increase heap size to lower sbreak rate

(O
T
I { |
sbreak()
Heap Heap . Heap
Application

Q: What’s wrong with this picture? A: O(P?) wasted space!

©2009, 2013 Simon Kahan

Can collaboration help?

* Idea: apply the ticket line trick!
— tasks need to “find” each other
— aggregate their requests into one
— one “master’ task continues; other waits
— until master finds heap uncontended, repeat process
— master locks heap, fulfills request, unlocks heap

— master recursively splits and awakens waiters

Simon Kahan and Petr Konecny. 2006. "MAMA!": a memory allocator for
multithreaded architectures. PPoPP '06.

©2009, 2013 Simon Kahan 15

Combining Funnels

Concurrent Asynchronous Individual
Malloc and Free Requests

Concurrency: F

Time: Ig F

“Funnel”:
combining data structure

Aggregate Requests of Size at most F served serially.
(Output rate is at most a constant.)

See: “Combining Funnels: a Dynamic Approach to Software Combining”, Nir Shavit, Asaph Zemach, 1999
©2009, 2013 Simon Kahan

Aggregates: Pennants for speed

Single requests (Pennants of order 0)

* Merge is 2 ops:

Combine T T2.left = T1.right
) Y Tlright="T2
Combine a He
N * Balanced
Unlike linked lists,
Combine % supports parallel traversal
BN *Unique representation

©2009, 2013 Simon Kahan

Tree-Heap

while (int_fetch add(&sem, 1)) try combine();
heap op(); sem=0;

ooooooooo

| NULL | | NULL NULL

o

N\ N
7N\ —\
7\ 7N\

Allocate tries for corresponding slot; if empty, marches to right.
Free tries for corresponding slot; if full, combines and carries.
It’s just binary arithmetic! Worst-case O(log N); Average O(1)

©2009, 2013 Simon Kahan

of issues per nalloc+free

90 ' ' ' ' ' ' "MTA malloc, 1CPU ——
HAHA, 1CPU ——

HTA nalloc, 2CPU —*—

HAHA, 2CPU —=—

HTA nalloc, S5CPU —=—

468 x HAKA, SCPU 1
b} HTA nalloc, 168CPU —+—

% HANA, 18CPU —o—
\ .

B MTA Malloc 10 cpu highest]
N N (instructions)
M —————% 2 r m——"1

300 .

MAMAL! 1 cpu is highest .
250 [ML
,,.—*‘""’*__‘F:"i__“__“_ 77797*“_*3**77&77778774977
200 %;Qeee#*ﬂﬂ - -
156 , . , . . . , . .
8 100 200 300 488 500 600 768 8608 900

Instructions vs Delay

Delay between calls in single strean
~ay Jetueen calls AN 3iNE

1600

Original MTA malloc vs MAMA
220 MHz MTA-40, 100 streams per processor

0 50 100 150 200 250 300
Delay between calls in single stream
MAMA, 5CPUs —— MAMA, 40CPUs --x-- MTA, 20CPUs - » --

MAMA, 10CPUs ---+--- MTA, 5CPUs - ©- MTA, 40CPUs =
MAMA, 20CPUs - -@-- MTA, 10CPUs - - -

Figure 11. Microseconds per malloc

©2009, 2013 Simon Kahan

General Combining Scheme

Asynchronous (Competitive)
*Arbitrary # computations

*Any number of threads

*Timing of interaction arbitrary
*Chaos!

Asynchronous threads. ..
make requests ...

combine in funnel...

re-enter funnel and
try again...

! AN
/N

D R de-aggregate, returning results in
parallel to requesting threads.

if fail, circulate...
N\, N

——-

&

agoregate tries lock...

Synchronous (Collaborative)
*Single computation
*Number of threads is explicit

*Synchronized, exclusive access to data
*Order!

N\
—\

lock!
got loc N

Satisfy aggregate in

parallel
synchronously...
__release lock... Data
Structure

©2009, 2013 Simon Kahan

Conclusion

Concurrency often creates competition.
Competition indicates duplication in need.
Serializing, transacting, replicating -- may
only mitigate competition

Consider transforming competition to
collaboration, aligning common need to get

v 4

there faster. </

©2009, 2013 Simon Kahan 2

