
©2009, 2013 Simon Kahan

 Competition => Collaboration
a runtime-centric view of parallel computation

Simon Kahan
skahan@cs.washington.edu

©2009, 2013 Simon Kahan

Competition

Multiple entities in contention for limited, indivisible resources or opportunities

©2009, 2013 Simon Kahan

Direct Mitigation Techniques
• Take turns

• Share

• Find more dolls

©2009, 2013 Simon Kahan

Direct Mitigation Techniques
• Take turns

– Mutual Exclusion

• Share
– Transactions

• Find more dolls
– Replication (eg, of Data Structures)

©2009, 2013 Simon Kahan

Direct Mitigation Techniques
• Take turns

– Mutual exclusion
– Delay is linear in concurrency: does not scale

• Share
– Transactions
– Aborted work is up to quadratic in concurrency: does not scale

• Find more dolls
– Replication (eg, of Data Structures)
– Cost ~ maximum concurrency sustained + coherency overheads: does not scale

©2009, 2013 Simon Kahan

Collaboration

Entities align to reduce contention, increase throughput.

©2009, 2013 Simon Kahan

Transform competition to collaboration?

Why won’t these people collaborate ?!

©2009, 2013 Simon Kahan

Are computers better collaborators?

©2009, 2013 Simon Kahan 9

MTA-2 Processor

load, store,
int_fetch_add

+ - * /, etc.

Arithmetic
Pipeline

Every clock cycle, a ready instruction may begin execution…

(M A C) Stream1

Stream2

.

.

.

Stream128

I
n
s
t
r
u
c
t
i
o
n
s

©2009, 2013 Simon Kahan 10

CPU

Memory

Be Parallel or Die.

CPU

CPU

Simplified Cray/Tera MTA-2 System Architecture

4,
00

0
A

ct
iv

e
Th

re
ad

s

©2009, 2013 Simon Kahan

OS

Heap

Application

Memory Allocation

sbreak()

malloc(), free()

©2009, 2013 Simon Kahan

OS

Heap

Application

Parallel Memory Allocation

sbreak()

malloc(), free()malloc(), free()malloc(), free()malloc(), free()

©2009, 2013 Simon Kahan

OS

Application

…

Replication for Concurrency

Heap HeapHeap

sbreak() sbreak() sbreak()

©2009, 2013 Simon Kahan

OS

Application

…

Increase heap size to lower sbreak rate

Heap
sbreak()

Heap Heap

Q: What’s wrong with this picture? A: O(P2) wasted space!

©2009, 2013 Simon Kahan

Can collaboration help?

• Idea: apply the ticket line trick!
– tasks need to “find” each other
– aggregate their requests into one
– one “master” task continues; other waits
– until master finds heap uncontended, repeat process
– master locks heap, fulfills request, unlocks heap
– master recursively splits and awakens waiters

• Simon Kahan and Petr Konecny. 2006. "MAMA!": a memory allocator for
multithreaded architectures. PPoPP '06.

15

©2009, 2013 Simon Kahan

Combining Funnels
Concurrent Asynchronous Individual

Malloc and Free Requests

Ti
m

e:
 lg

 F

Aggregate Requests of Size at most F served serially.
(Output rate is at most a constant.)

“Funnel”:
combining data structure

Concurrency: F

See: “Combining Funnels: a Dynamic Approach to Software Combining”, Nir Shavit, Asaph Zemach, 1999

©2009, 2013 Simon Kahan

Aggregates: Pennants for speed
Single requests (Pennants of order 0)

Combine

Combine

Combine

• Merge is 2 ops:

T2.left = T1.right

T1.right = T2

• Balanced

Unlike linked lists,
supports parallel traversal

•Unique representation

©2009, 2013 Simon Kahan

Tree-Heap

NULL NULL
………

NULL

while (int_fetch_add(&sem, 1)) try_combine();
heap_op(); sem = 0;

Allocate tries for corresponding slot; if empty, marches to right.
Free tries for corresponding slot; if full, combines and carries.
It’s just binary arithmetic! Worst-case O(log N); Average O(1)

©2009, 2013 Simon Kahan

Instructions vs Delay

MAMA! 1 cpu is highest

MTA Malloc 10 cpu highest
(instructions)

©2009, 2013 Simon Kahan

Original MTA malloc vs MAMA

220 MHz MTA-40, 100 streams per processor

MTA

MAMA

40

40

5

5

©2009, 2013 Simon Kahan

annihilate (or void fn).

General Combining Scheme
Asynchronous (Competitive)
•Arbitrary # computations
•Any number of threads
•Timing of interaction arbitrary
•Chaos!

Synchronous (Collaborative)
•Single computation
•Number of threads is explicit
•Synchronized, exclusive access to data
•Order!

Data
Structure

make requests …
Asynchronous threads…

combine in funnel…
aggregate tries lock…

if fail, circulate...

got lock!

re-enter funnel and
try again…

Satisfy aggregate in
parallel
synchronously…

release lock…de-aggregate, returning results in
parallel to requesting threads.

©2009, 2013 Simon Kahan

Conclusion

• Concurrency often creates competition.
• Competition indicates duplication in need.
• Serializing, transacting, replicating -- may

only mitigate competition
• Consider transforming competition to

collaboration, aligning common need to get
there faster.

22

