
Quick Guide to Using sunfire for CSEP 524 Students

Matthew Kehrt

1 Introduction
As a student in CSEP 524 , you have access to a Sunfire T2000 for writing programming assign-
ments on. This is entirely optional, but there’s no reason not to take advantage of it. The Sunfire
T2000 is a SPARC machine running Solaris 10 with 8 cores.

2 Connecting to sunfire
The machine is named sunfire . You should have received an email specifying your username
and password for it. This was sent to your u.washington.edu address; if for some reason you did
not receive this email, please contact me at mkehrt@cs.washington.edu and I will send you this
information again.

You will need to connect to sunfire over ssh . If you have a Mac or a Linux machine, you
should be able to use ssh from a terminal. If you have a Windows machine, you will need to
download an ssh client. I recomment using PuTTY, which is available at
http://www.chiark.greenend.org.uk/ sgtatham/putty/download.html .

The fully qualified hostame for sunfire is sunfire.cs.washington.edu . If you are
connecting to the machine from outside the UW CSE network, you will need to use this name.

To connect to sunfire over ssh from a command line (Mac or Linux), type

ssh <username>@sunfire.cs.washington.edu

You will be prompted for your password.
For users of PuTTY (Windows), you should be able to enter the hostname you wish to connect

to, your username and your password from a dialog box and save these values for later use.
In both cases, the first time you connect to any machine, it will probably give a warning that

the host key is unknown, and ask if you want to add it to your local database. Say yes to this.

3 Using sunfire
sunfire is a Unix machine. If you have never used one before, explaining simple Unix usage is
beyond the scope of this document. However, the Internet is full of tutorials. One that looks fairly

1

good is available at http://www.ee.surrey.ac.uk/Teaching/Unix/ .
For those of you who are used to Linux, Solaris may offer some unexpected surprised. These

will mainly come in the form of command line switches not doing what you expect. Moreover,
many programs expect all command line switches to come before other arguments. When in doubt,
read the man pages!

The first thing that you should do on logging into sunfire is to set your password. Do this
by running passwd . It will prompt you for your existing password and then ask you to enter and
then to confirm a new password.

Currently, C is the only language installed and working on sunfire . I hope to have C++ and
Java working soon. make should also be working.

4 pthreads Introduction
To write threaded code in C, you will need to use the pthreads library. This can be done by
including pthreads.h.

The most basic pthreads function is pthread create, which is used to create a new thread.
It has the following signature:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

pthread create takes four arguments. The first is a pointer to a pthread t, into which
pthread create will put a descriptor used to manipulate this thread in the future. The memory
location this pointer points to will be overwritten and in many cases will be a new pthread t
declared on the stack.

The second argument is a pointer to a pthread attr t, which is a struct describing optional
attributes for the thread. This should in general be NULL, which will use default attributes.

The next argument is a pointer to the function the thread will actually run. It takes a void* and
returns a void*. The return value of this function will be made available by calling pthread join
on the pthread t of the thread running it (see below for more about this). While the syntax of
function pointers in C are notoriously difficult, it suffices to use the name of a function defined
elsewhere in your code here.

The final argument is a void* which is the argument passed to the thread when it begins to
run.

Finally, pthread create returns an error code. If no errors occurred, it returns 0.
An example usage of pthread create follows. Suppose we have defined the following

function.

void* go(void* str)
{

printf("In thread: %s\n", str);
}

2

We then can write the following lines in another C function.

pthread_t t;
char* str = "Hello, world!";

pthread_create(&t, NULL, go, (void*)str);

Which will run go and print ”In thread: Hello world!”.
However, simply running this code may not actually run the thread. The main thread may exit,

exiting the program and not running the thread created by pthread create. Moreover, we
as yet have no way of getting the return value of go. We can solve both of these problems with
pthread join.

pthread join waits for a thread to return and gets its return value, which is defined as being
either the return value of the function that the thread was started with, or a value the thread passed
to pthread exit (discussed below). The signature of pthread join follows.

int pthread_join(pthread_t thread, void **value_ptr);

pthread join takes two arguments. The first is the thread descriptor of the thread to wait on.
Recall that this was set by pthread create above. The second is a pointer to a void* to write
the return value of the thread into. Finally, pthread join returns an error code, 0 on success.

For example, the following code defines a function which, when run in a thread, returns the
value returned by printf.

%void* go(void* str)
{

int ret;
ret = printf("In thread: %s\n", str);
return (void*)ret;

}

This can be used with the following code to spawn a thread and then wait for the return value of
go

pthread_t t;
char* str = "Hello, world!";
int ret;

pthread_create(&t, NULL, go, (void*)str);
pthread_join(t, (void**)&ret);

Finally, two other functions must be mentioned. The first is pthread exit. This is used to
prematurely exit a thread with a given return value. The signature of pthread exit is

void pthread_exit(void *value_ptr);

3

This takes a void* as a return value and exits the thread it was called from. It does not return.
Finally, to allow other threads to join on an exited thread, some information about the exited

thread must be kept around after the thread has exited. If you do not join on the thread, this informa-
tion is kept around indefinitely. To prevent this from happening, you must use pthread detatch
to free this information. This will make joining on the thread impossible, but will prevent this space
leak. pthread detatch has the following signature.

int pthread_detach(pthread_t thread);

It is called on a thread descriptor. It returns an error code which is 0 on success.
More information about pthreads is available online. A simple tutorial is at

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

4

