Chapel: Status/Community

Brad Chamberlain
Cray Inc.

CSEP 524
May 20, 2010

UUUUUUUUUUUUUUUUUUUUUUU

Outline

v
v
v

J Status, Collaborations, Future Work

-

Sung-Eun Choi, David Iten, Lee Prokowich,
Steve Deitz, Brad Chamberlgln,
and half of Greg Titus

\ = |nterns

Hannah Hemmaplardh ("10-UW)
Jonathan Turner ('10 — Boulder)
Jacob Nelson ('09 — UW)

Albert Sidelnik (09 — UIUC)
Andy Stone (08 — Colorado St)
James Dinan (07 — Ohio State)
Robert Bocchino (‘06 — UIUC)
Mackale Joyner ('05 — Rice)

S = Alumni

David Callahan
Roxana Diaconescu
Samuel Figueroa
Shannon Hoffswell
Mary Beth Hribar
Mark James

John Plevyak
Wayne Wong

Hans Zima

CRANY

Chapel Work

= Chapel Team’s Focus:
* specify Chapel syntax and semantics
° implement open-source prototype compiler for Chapel
* perform code studies of benchmarks, apps, and libraries in Chapel
* do community outreach to inform and learn from users/researchers
° support users of code releases
* refine language based on all these activities

code specify
studies Chapel
support
release

Compiling Chapel

CinEpe Chapel
Source e Compiler [
Code 1

Chapel
Standard
Modules

Chapel

Executable

Chapel Compiler Architecture

Chapel &S
Compiler

Chapel Standard
Source b—» Chapel-_to-C - Generated C Compiler Chapel
Compiler C Code . Executable
Code & Linker

— 1] i
Internal Modules Runtime Support
Chapel (written in Chapel) Libraries (in C)
Standard I
Modules 1-sided Messaging,

Threading Libraries

Chapel and the Community

= Our philosophy:
* help the parallel community understand what we are doing
* develop Chapel as an open-source project
° encourage external collaborations
° over time, turn language over to the community

= Goals:
° to get feedback that will help make the language more useful
° to support collaborative research efforts
° to accelerate the implementation
° to aid with adoption

Chapel Release

= Current release: version 1.1 (April 15t 2010)
= Supported environments: UNIX/Linux, Mac OS X, Cygwin

= How to get started.:
1. Download from: http://sourceforge.net/projects/chapel
2. Unpack tar.gz file

3. See top-level README
for quick-start instructions
for pointers to next steps with the release

= Your feedback desired!

= Remember: a work-in-progress
= it’s likely that you will find problems with the implementation
= this is still a good time to influence the language’s design

Implementation Status (v1.1)

= Base language: stable

= Task parallel:
* stable multi-threaded implementation of tasks, sync variables
° atomic sections are an area of ongoing research with U. Notre Dame

= Data parallel:
* stable multi-threaded data parallelism for dense domains/arrays

= |ocality:
* stable locale types and arrays
* stable task parallelism across multiple locales
* initial support for some distributions: Block, Cyclic

= Performance:
* has received much attention in designing the language
° yet minimal implementation effort to date

Sel eCted CO I I ab O ra“ ons (see chapel.cray.com for complete list)

Notre Dame/ORNL (Peter Kogge, Srinivas Sridharan, Jeff Vetter):
Asynchronous Software Transactional Memory over distributed memory
UIUC (David Padua, Albert Sidelnik):
Chapel for hybrid CPU-GPU computing
BSC/UPC (Alex Duran):
Chapel over Nanos++ user-level tasking
U/Malaga (Rafa Asenjo, Maria Gonzales, Rafael Larossa):
Parallel file I/O for whole-array reads/writes
University of Colorado, Boulder (Jeremy Siek, Jonathan Turner):
Concepts/interfaces for improved support for generic programming
PNNL/CASS-MT (John Feo, Daniel Chavarria):
Hybrid computing in Chapel; performance tuning for the Cray XMT; ARMCI port
ORNL (David Bernholdt et al.; Steve Poole et al.):
Chapel code studies — Fock matrices, MADNESS, Sweep3D, coupled models, ...
U Oregon, Paratools Inc.:
Chapel performance analysis using Tau

CO I I ab O ratl O n Op p O rt U n |t| eS (see chapel.cray.com for more details)

= memory management policies/mechanisms

= dynamic load balancing: task throttling and stealing
= parallel I/O and checkpointing

= exceptions; resiliency

= language interoperability

= application studies and performance optimizations
= Index/subdomain semantics and optimizations

= targeting different back-ends (LLVM, MS CLR, ...)
" runtime compilation

= |ibrary support

= tools
debuggers, performance analysis, IDES, interpreters, visualizers

= database-style programming

Chapel and Education

= |f | were to offer a parallel programming class, |I'd want to

teach about:
data parallelism
task parallelism
concurrency
synchronization
locality/affinity
deadlock, livelock, and other pitfalls
performance tuning

= | don’t think there’s a good language out there...
...for teaching all of these things
...for teaching some of these things at all
...until now: | think Chapel has the potential to play a crucial role here

Our Next Steps

= Expand our set of supported distributions

= Continue to improve performance

= Continue to add missing features

= Expand the set of codes that we are studying

= Expand the set of architectures that we are targeting

= Support the public release

= Continue to support collaborations and seek out new ones
= Continue to expand our team

Summary

Chapel strives to greatly improve Parallel Productivity

via its support for...
...general parallel programming
...global-view abstractions
...control over locality
...multiresolution features
...modern language concepts and themes

