Chapel: Heat Transfer
(+ X10/Fortress)

Brad Chamberlain
Cray Inc.

CSEP 524
May 20, 2010

UUUUUUUUUUUUUUUUUUUUUUU

CRANY

Heat Transfer in Pictures

A _

repeat until max
change <¢

Heat Transfer in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, O0..n+1],
D: subdomain (BigD) = [1..n, 1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp(i,3j) = (A(i-1,7) + A(i+1,3)

+ A(j—/j_l) + A(llj+1)) / 4;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

CRANY

Heat Transfer in Chapel

config const n = ¢,
epsilon = 1.0e-5;

Declare program parameters

const = can’t change values after initialization

config = can be set on executable command-line
prompt> jacobli --n=10000 --epsilon=0.0001

note that no types are given; inferred from initializer
n = integer (current default, 32 bits)
epsilon = floating-point (current default, 64 bits)

, (e — P

Heat Transfer in Chapel

const BigD: domain(2) = [0..nt+t1l, 0..n+1],
D: subdomain (BigD) = [1..n, 1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);

Declare domains (first class index sets)

domain(2) = 2D arithmetic domain, indices are integer 2-tuples

subdomain(P) = a domain of the same type as P whose indices
are guaranteed to be a subset of P’s

0 =

n+ 1 il
BigD D LastRow

exterior = one of several built-in domain generators

CRANY

Heat Transfer in Chapel

var A, Temp : [BigD] real;

Declare arrays

var = can be modified throughout its lifetime

: T = declares variable to be of type T

. [D] T = array of size D with elements of type T

(no initializer) = values initialized to default value (0.0 for reals)

BigD A Temp

_ CRANY

Heat Transfer in Chapel

A[LastRow] = 1.0;

Set Explicit Boundary Condition

indexing by domain = slicing mechanism
array expressions = parallel evaluation

CRANY

Heat Transfer in Chapel

Compute 5-point stencil

[(i,)) in D] = parallel forall expression over D’s indices, binding them
to new variables i and j

Note: since (i,j)) e D and D < BigD and Temp: [BigD]

= no bounds check required for Temp(i,j)
with compiler analysis, same can be proven for A's accesses

Z[+ 4 [

[(1,]J) in D] Temp(i,3j) = (A(i-1,3) + A(i+1,])
+ A(lrj_l) + A(l/j+1)) / 4;

_ CRANY

Heat Transfer in Chapel

Compute maximum change

op reduce = collapse aggregate expression to scalar using op

Promotion: abs() and — are scalar operators, automatically promoted to
work with array operands

const delta = max reduce abs(A[D] - Temp[D]Yy;

CRANY

Heat Transfer in Chapel

Copy data back & Repeat until done

A [L4 uses slicing and whole array assignment
standard do...while loop construct

A[D] = Temp[D];
} while (delta > epsilon);

| AN

Heat Transfer in Chapel

A[LastRow] = 1.0;

Write array to console

If written to a file, parallel I/O would be used

CRANY

Heat Transfer in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;

With this change, same code runs in a distributed manner

Domain distribution maps indices to locales
— decomposition of arrays & default location of iterations over locales
Subdomains inherit parent domain’s distribution

BigD D LastRow A Temp

Heat Transfer in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp(i,3j) = (A(i-1,7) + A(i+1,3)

+ A(j—/j_l) + A(llj+1)) / 4;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

Heat Transfer in Chapel
(Variations)

THE SUPCRCOMPUTER COMPANY

CRANY

Heat Transfer in Chapel (double buffered version)

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],

LastRow: subdomain (BigD) = D.exterior(1,0);
var A : [1..2] [BigD] real;
A[..][LastRow] = 1.0;
var src = 1, dst = 2;
do {

[(1,J) in D] A(dst) (1,3) = (A(src) (i-1,3J) + A(src) (1+1,3)

+ A(src) (i,3-1) + A(src) (i,3+1)) / 4;
const delta = max reduce abs (A[src] - A[dst]);
src <=> dst;

} while (delta > epsilon);

writeln (A) ;

Heat Transfer in Chapel (ZPL style)

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],

LastRow: subdomain (BigD) = D.exterior(1,0);
const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {

[ind in D] Temp(ind) = (A(ind + north) + A(ind + south)

+ A(ind + east) + A(ind + west)) / 4;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;

CRANY

Heat Transfer in Chapel (array of offsets version)

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],

LastRow: subdomain (BigD) = D.exterior(1,0);
param offset : [1..4] (int, int) = ((-1,0), (1,0), (0,1), (O0,-1));
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {

[ind in D] Temp (ind) = (+ reduce [off in offset] A(ind + off))

/ offset.numElements;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;

CRANY

Heat Transfer in Chapel (sparse offsets version)

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
param stencilSpace: domain(2) = [-1..1, -1..1],
offSet: sparse subdomain (stencilSpace)
= ((_110)1 (]—IO)I (Oll)l (Or_]—));
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[ind in D] Temp(ind) = (+ reduce [off in offSet] A(ind + off))

/ offSet.numIndices;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;

The Other HPCS Languages

THE SUPCRCOMPUTER COMPANY

X10 in a Nutshell

= Heavily influenced by Java, Scala

° emphasis on type safety, OOP design, small core language
* also ZPL.: support for global-view domains and arrays

= Similar concepts to what you’ve heard about today in Chapel
* yet a fairly different syntax and design aesthetic

= Main differences from Chapel

= For more information:
* http://x10-lang.org/
* http://sf.net/projects/x10
* http://dist.codehaus.org/
* http://dist.codehaus.org/x10/documentation/presentations/UWMay2010.pdf

http://x10-lang.org/
http://x10-lang.org/
http://x10-lang.org/
http://sf.net/projects/x10
http://dist.codehaus.org/
http://dist.codehaus.org/x10/documentation/presentations/UWMay2010.pdf

X10: Similarities to Chapel

= PGAS memory model
plus, language concepts for referring to realms of locality

= more dynamic (“post-SPMD”) execution model
one logical task executes main()
any task can create additional tasks--local or remote

= global-view data structures

ability to declare and access distributed arrays holistically rather than
piecemeal

= many similar concepts, often with different names/semantics
tasks vs. tasks
places vs. locales
‘at’ vs. ‘on’
‘ateach’ vs’ ‘coforall’ + ‘on’
‘async’ vs. ‘begin’
finish’ vs. ‘sync’

X10: Differences from Chapel

= X10:

takes a purer object-oriented approach
for example, arrays have reference rather than value semantics
A = B; // alias or copy 1f A and B are arrays?
based on Java/Scala rather than ab initio
- reflects IBM’s customer base relative to Cray’s
a bit more minimalist and purer
e.g., less likely to add abstractions to the language if expressible
using objects
semantics distinguish between local and remote more strongly
e.g., communication is more visible in the code
e.g., some operations are not legal on remote objects
reflect differing choices on orthogonality vs. performance/safety
has a stronger story for exceptions

Heat Transfer in X10

class HeatTransfer v2 {
const BigD = Dist.makeBlock ([0..n+1, 0..n+1], 0);
const D = BigDh | ([l..n, 1..n] as Region);
const LR = [0..0, 1..n] as Region;
const A = DistArray.make[double] (BigD, (p:Point)=>{ LR.contains(p) ? 1 : 0 });
const Temp = DistArray.make [double] (BigD) ;
static def stencil 1((x,y):Point(2)) {
return ((at(A.dist(x-1,y)) A(x-1,y)) +
(at (A.dist (x+1,vy)) A(x+1l,y)) +
A(x,y-1) + A(x,y+1)) / 4;
}
def run() {
val D Base = Dist.makeUnique (D.places());
var delta:double = 1.0;
do {
finish ateach (z in D Base)
for (p:Point(2) in D | here)
Temp (p) = stencil 1(p);
delta = A.lift (Temp, D.region, (x:double, y:double)
=>Math.abs (x-y)) .reduce (Math.max. (Double,Double), 0);
finish ateach (p in D) A(p) = Temp(p):
} while (delta > epsilon);

Heat Transfer in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1l, 0..n+l] dmapped Block,
D: subdomain (BigD) = [1..n, 1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp(i,3j) = (A(i-1,7) + A(i+1,3)

+ A(j—/j_l) + A(llj+1)) / 4;
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

CRANY

Fortress in a Nutshell

= The most blue-sky, clean-slate of the HPCS languages

= Goal: define language semantics in libraries, not compiler:
data structures and types (including scalars types?)
operators, typecasts
operator precedence
In short, as much as possible to support future changes, languages

= Other themes:
implicitly parallel -- most things are parallel by default
supports mathematical notation, symbols, operators
functional semantics
hierarchical representation of target architecture’s structure
units of measurement in the type system (meters, seconds, miles, ...)

= For more information:
http://research.sun.com/projects/plra/
http://projectfortress.sun.com/Projects/Community/

http://research.sun.com/projects/plrg/
http://projectfortress.sun.com/Projects/Community/

