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Goal: Consider some of the parallel opportunities on the horizon 
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 Define a cluster computer as an connected set of 
independent computers … it usually implies “connected 
by a dedicated network”

 Grid: the Internet is the only network; “resources not in 
a single administrative unit”
 Greater latency -- locality, a bigger deal

 Interference by other traffic

 Nodes more autonomous -- configuration, security, 
heterogeneity, etc all issues

 Bottomline: Grid has all of the problems of || 
architectures, but worse and more
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 SETI and BOINC type problems work well 
because (a) the problems are independent, 
and (b) have limited need for communication

 Other computations are proportionally 
tougher -- best to consider Grid as distributed 
resource rather than a || computer
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 Several forms of attached processors are 
popular:
 FPGA

 Cell

 GPGPU
 These machines do not match the CTA model 

-- why? -- and require different programming 
concepts
 There is a machine model (type architecture) by 

Ebeling, van Essen and Ylvisaker
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 These engines benefit from Si advances more 
than standard processors

 They exploit …
 Kernel processing … only speeding inner loop; 

leave all other processing/orchestrating to CPU

 Data streaming from memory to get high 
throughput … moving lots of data fast permits 
cheap computations on each item

 Specialized circuit designs at the expense of 
generality, making VLSI pay big
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 Field Programmable Gate Array (Xilinx, Altera)

 “Programmable hardware”

 Ideal for ints, bit-twiddling, etc.

 Very dramatic “regime change” between CPU and 
attached engine

 FPGAs are supported “well” for circuit designers, 
but tools low level compared to IDE

 Drop into “Opteron slot” for fast system build

Mostly for special purpose
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A Type Architecture for Hybrid Micro-Parallel Computers (search UW)  



 When programming a family of machines 
that departs significantly from the “usual 
suspects,” work out a type architecture

 The TA will be the simplest logical machine 
that exhibits the important costs

 Notice 

 How the CTA does this 

 How the EVY Machine Does This
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 Though IBM canceled Cell development last 
November, the ideas in it are crucial to our 
parallel computation discussion

 (And it’s still a fire breather)
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 Basic Floor plan and photo
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 Blachford describes cell programming
 Cell however, has gone against the grain and 

actually removed a level of abstraction.  The 
programming model for the Cell will be concrete, 
when you program an SPE you will be 
programming what is in the SPE itself, not some 
abstraction.  You will be "hitting the hardware" so 
to speak.  The SPEs programming model will 
include 256K of local store and 128 registers, the 
SPE itself will include 128 registers and 256K of 
local store, no less, no more. [Feb, 2005]
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 Complexity seems dramatic
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 The GPU is viewed as a compute device that:
 Is a coprocessor to the CPU or host

 Has its own DRAM (device memory)

 Runs many threads in parallel
 Data-parallel portions of an application are 

executed on the device as kernels which run in 
parallel on many threads

 Differences between GPU and CPU threads 
 GPU threads are extremely lightweight

▪ Very little creation overhead

 GPU needs 1000s of threads for full efficiency

▪ Multi-core CPU needs only a few



 A kernel is executed as a grid 
of thread blocks
 All threads share data memory 

space
 A thread block is a batch of 

threads that can cooperate
with each other by:
 Synchronizing their execution

▪ For hazard-free shared 
memory accesses

 Efficiently sharing data through 
a low latency shared memory

 Two threads from two 
different blocks cannot 
cooperate
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 Threads and blocks have IDs
 So each thread can decide 

what data to work on

 Block ID: 1D or 2D

 Thread ID: 1D, 2D, or 3D 
 Simplifies memory

addressing when processing
multidimensional data
 Image processing

 Solving PDEs on volumes

 …
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 Each thread can:
 R/W per-thread registers

 R/W per-thread local memory

 R/W per-block shared memory

 R/W per-grid global memory

 Read only per-grid constant 
memory

 Read only per-grid texture memory
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 Global memory
 Main means of 

communicating R/W Data 
between host and device

 Contents visible to all 
threads

 Texture and Constant 
Memories
 Constants initialized by 

host 

 Contents visible to all 
threads
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 Attached processors provide enormous power for low 
price, but they …

 Use a different programming paradigm than our CTA-based 
view

 Have no pretense of being general purpose

 Should be programmed as though configuring hardware or 
building a hybrid machine

 Strengths are fast data streaming and leveraging VLSI
 Liabilities are programming challenges and rigidity 
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 A goal of || abstractions is to specify efficient 
computation without specifying unnecessary 
order

 Problem Space 
Promotion is One 
Way 

 Consider a counting
sort:

for (j=0; j<n; j++) {

B[j] = 0; // Init

}

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

if (A[i]<A[j]) // Count #

B[j]++;     // larger

}

}

for (j=0; j<n; j++) {

B[j] = A[B[j]];  // Reorder

}

for (j=0; j<n; j++) {

A[j] = B[j];     // Restore

}
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 Specify the operations w/o ordering

 The solution “promotes” the operand to be 
2D, allowing all pairs to be tested at once

 This technique works a lot … 3D MM is instance

 Promotion is logical … no actual copy needed 

CST  S compare all pairs,(1 if true, else 0)
Psum_cols(C) column sums give sorted index positions
SS[P] permute elements of S into order

Bradford L. Chamberlain, E Christopher Lewis, and Lawrence Snyder. Problem 

space promotion and its evaluation as a technique for efficient parallel 

computation. In Proceedings of the ACM International Conference on 

Supercomputing, 1999.
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 You all know parallel programming is tough
 How to make it easier? Raise abstractions!
 Transactional Memory: Return of old idea
 Databases concurrently manage external data 

consistently using multiple computers; well studied

 Apply idea to concurrent management of the internal 
memory image

 Transaction: Atomically change memory to new state or 
do nothing at all

 Say the goal not how to achieve it

Idea: David Lomet in 1977
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An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)

no interleaved computation;

no unfair starvation

void deposit(int x){

synchronized(this){

int tmp = balance;

tmp += x;

balance = tmp;

}}

void deposit(int x){

atomic {

int tmp = balance;

tmp += x;

balance = tmp; 

}}
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 The code executing atomically is everything 
(dynamically) between braces, including foo().

atomic {

if (x != null) x.foo();

y = true;

}

 Three choices: commit; abort; not terminate
 Optimistic: Little overhead  if no conflict
 Avoid races and deadlocks due to lock acquisition
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 In DB transactions have ACID properties
 A = atomicity … sequence of operations never 

interrupted or incomplete; commit or abort

 C= consistency …changes leave memory in 
consistent state relative to application; for 
example new_balance==old_balance+deposit

 I = isolation … transaction works correctly with 
any combination of other transactions

 D = durability … result persists; not appropriate 
for multithreading memory case 
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 DBs use disks, meaning the SW support for 
DB transactions not time-critical; referencing 
memory is too brief (and frequent) to allow 
for heavy-weight protection

 TM need not be durable (last) since data 
doesn’t outlast execution; simplifying

 TM must retrofit into a rich world of legacy 
code … must coexist with all other 
mechanisms; pervasive changes not feasible
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 It’s not difficult to mess up using atomic
Thread 1 Thread 2

atomic { atomic {

while (!flagA) flagA = true;

flagB = true; while (!flagB);

} }

flags have to be true at the start of block

 This code not serializable, i.e. there is no 
correct serial execution
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 Transactions are no panacea
 Neither hardware nor software implementations 

have proved themselves
 Very Nice Monograph: Larus & Rajwar
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611

CAC002

 A fundamental problem TM will not solve: 
How to scale shared memory computations 
to architectures with much larger which 
are inevitable

http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002
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 Rather than using the Test&Set to guard 
shared data, use Fetch&Add

▪ Fetch&Add is an atomic read-modify-write operation on 
memory -- requires special hardware, to be discussed

▪ Use Fetch&Add as a semaphore and as a scheduler

 Operation:  Fetch&Add(V,e)
▪ V is a memory location

▪ e is an integer expression

▪ Contents of V are returned

▪ New value of V is V+e

▪ Operation is atomic

V: 0

Fetch&Add(V,1)

V: 1

0 is returned
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 When multiple Fetch&Adds are executed 
simultaneously, they are serializable

 Assume  Fetch&Add(V, e1), Fetch&Add(V, 
e2) execute simultaneously

▪ Assuming an initial value of e0

▪ Final value is e0+e1+e2

▪ The 1st process receives either e0 or e0+e2, implying it was 
first (e0) or second (e0+e2)

▪ The 2nd process receives either e0 or e0+e1, implying it was 
second (e0+e1) or first (e0)

Suppose both execute Fetch&Add(I,1), then one gets I back, the 

other I+1, and final is I+2
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 Though earlier solutions attempt to reduce 
sharing to reduce the amount of invalidation 
and acknowledgment, Fetch&Add does 
better with greater sharing

 Sharing is used to schedule or allocate, 
which is then independent activity

▪ Sharing is concentrated in a few variables 

▪ Fine grain size is possible

 Since load/store, Test&Set, etc. are 
implementable, it is a “sufficient” primitive  
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 Fetch&Add assumes a flat shared memory 
as implemented by a “dance hall 
architecture”
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 The interconnection network is an W-
network
 Connection between 2 and 6 … follow bits to 

destination lsb to msb
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 The W-Network requires O(P log P) routers
 The given network uses 2x2 but 2bx2b work
 Wiring is consistent at each stage
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 The network is pipelined
 There is a unique path between any 

processor and memory port pair
 Conflicts are possible because there exist 

permutations in which packets collide
 What happens when two packets collide at 

a router?
▪ Packet is delayed, leaving its “file”

▪ Pipelining is affected, here comes more
0 0

1 1

The separate packets must be serialized
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 Simultaneous requests collide in network
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Idea: Combine requests for same dest. In 
limit all nodes could reference same loc.
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 At a switch combine loads and stores to a 
common location as follows

▪ Load/Load -- forward one of the loads towards the memory, and 
when the value is returned, satisfy both 

▪ Load/Store -- forward the store, and when the ACK arrives back at 
the switch, return value to satisfy load

▪ Store/Store -- forward one of the stores, and when the ACK arrives 
back at the switch, return it for both

 Processors are restricted to having only one 
outstanding request at a time to a given 
location 
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 Include an adder with the Memory Network 
Interface chips

 For Fetch&Add(V,e) 
▪ Fetch the value of V, say e0

▪ Return e0 to processor requesting 

▪ Add e0+e

▪ Store e0+e back into V

 It is probably necessary to do these 
concurrently

MNI

Mem Mem
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Suppose Fetch&Add(V,e), Fetch&Add(V,f) arrive at a 
switch together …

 Form the sum f+e

 Send Fetch&Add(V,f+e) on to the memory

 Store e locally

 When g0 is returned by the memory

▪ Return g0 as response to Fetch&Add(V,e)

▪ Return g0+e as response to Fetch&Add(V,f)

Switch

F&E(V,e+f)
g0

F&E(V,f)
g0+e

F&E(V,e)
g0
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 Combining can apply to all memory traffic to a 
location V

 Consider the following cases
▪ Fetch&Add/Fetch&Add -- as just described

▪ Fetch&Add/Load -- Treat Load as Fetch&Add(V,0)

▪ Fetch&Add/Store -- If Fetch&Add(V,e) meets Store(V,f) send 
Store(V,e+f) to memory; when ACK is received, return f as 
value of F&A

 Conclusion -- it is possible to combine all requests to 
the same memory location
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 Potential Problems …
▪ Network routing is driven entirely by performance, so a 

complicated switch is usually a problem

▪ Routers typically forward non-blocked packets in <= 3 tix

▪ Matching to recognize that two requests collide is an “add” 
operation

▪ Combining is an “add” operation after the previous add

▪ Combining relies on the requests getting to the switch 
simultaneously, or at worst, before the forwarded packet leaves 
… this is improbable

▪ Most traffic is non-combinable -- headed for different places

▪ A combining router was created by Susan Dickey
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 If the network switch is too slow then …
 Do not combine at every stage … so that some stages can 

be fast

 Use two networks, one fast and one that does combining --
it can handle the sharing requests

 Combine only like requests, e.g. loads/loads

 Limit combining at a node to two requests

 As it happened

▪ Only like requests have ever been implemented in switch

▪ IBM used the two network solution in the RP3
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 Norton and Pfister discovered in simulation for the 
RP3 computer that the W-Network develops hot-
spots

 It was thought that combining would remove the 
hot-spots … it seemed to for 64-way network

 The problem is that once a node 
becomes hot, a “back-up” tree 
forms “behind” the node
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 Lee, Kruskal, Kuck studied by simulation, analysis 
▪ LKK discovered and named the “back-up tree” 

▪ Showed in simulation that the 64-way network is lucky

▪ Combining doesn’t help because it’s the other traffic

0.125% traffic 

directed at a hot 

spot
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 It was a good idea but it didn’t work

 Good

▪ Fetch&Add is clever -- a primitive with good properties

▪ Shifting from protecting data to allocating work is better

▪ Computation at memory is powerful, worth doing

 Bad

▪ Pipelined multistage networks probably just don’t work

▪ Complexity in a switch is wrong -- speed is essential

▪ Failed to exploit locality -- caching basically impossible
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Goal: Summarize what we’ve covered and what you might have learned 
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 To write successful parallel programs, we 
need a model of how a || computer works

 CTA is a generalization of || hardware

 CTA favors …

▪ Locality because of high 

▪ Minimizing inter-thread dependences because of high 
plus wait time and sometimes contention

 CTA algorithms were successful and usually they 
were the only ones that worked well

Lambda is always relevant, usually very significant
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In parallel algorithm design and parallel 
programming, be guided by the CTA
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 We acquired parallel programming skills 
using small exercises

 Thread programming

 Peril-L

 MPI

 Chapel

 Experiences --

 Much of it is low-level and grotty

 Not always easy to get performance
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 Approach problems “top down”, maximizing 
the highest level of parallelism first

 Corollary: Don’t try to be too smart at low level 

 Granularity, the coarser the better
 Communication load, less is better
 Bandwidth, use wisely
 Minimize “programming to the machine”



57

 What in your view was the high-order bit?
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 Using parallel computers is tough
 Parallel computers generally behave like the 

CTA, so program to it … it won’t disappoint
 Parallel algorithms often require fresh 

thinking -- sequential case may not be a good 
place to begin

 CMPs are sweet-spot now, but for how long?
 Reduce/Scan are basic building blocks
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 Programming tools are all over the place

 OpenMP is very simple, but not too expressive

 Pthreads, a standard library, but very low level

 MPI is universal, low level and abstraction-free

 ZPL leaves all parallelism to compiler, but gives 
WYSIWYG as guide to writing good programs

 Chapel, Transactional Memory have promise, but 
NRFPT

 Hardware design is very volatile at moment



 Need a volunteer at each site
 Fill out both forms

 Bubble in the white form

 Give me suggestions on the yellow form

 Volunteer

▪ On campus, drop the completed forms in box across st

▪ In Redmond, Fedex the completed forms to campus
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