
1

Goal: Consider some of the parallel opportunities on the horizon

2

 Define a cluster computer as an connected set of
independent computers … it usually implies “connected
by a dedicated network”

 Grid: the Internet is the only network; “resources not in
a single administrative unit”
 Greater latency -- locality, a bigger deal

 Interference by other traffic

 Nodes more autonomous -- configuration, security,
heterogeneity, etc all issues

 Bottomline: Grid has all of the problems of ||
architectures, but worse and more

3

 SETI and BOINC type problems work well
because (a) the problems are independent,
and (b) have limited need for communication

 Other computations are proportionally
tougher -- best to consider Grid as distributed
resource rather than a || computer

4

 Several forms of attached processors are
popular:
 FPGA

 Cell

 GPGPU
 These machines do not match the CTA model

-- why? -- and require different programming
concepts
 There is a machine model (type architecture) by

Ebeling, van Essen and Ylvisaker

5

 These engines benefit from Si advances more
than standard processors

 They exploit …
 Kernel processing … only speeding inner loop;

leave all other processing/orchestrating to CPU

 Data streaming from memory to get high
throughput … moving lots of data fast permits
cheap computations on each item

 Specialized circuit designs at the expense of
generality, making VLSI pay big

6

 Field Programmable Gate Array (Xilinx, Altera)

 “Programmable hardware”

 Ideal for ints, bit-twiddling, etc.

 Very dramatic “regime change” between CPU and
attached engine

 FPGAs are supported “well” for circuit designers,
but tools low level compared to IDE

 Drop into “Opteron slot” for fast system build

Mostly for special purpose

6/1/2010 © 2010 Larry Snyder, CSE 7

A Type Architecture for Hybrid Micro-Parallel Computers (search UW)

 When programming a family of machines
that departs significantly from the “usual
suspects,” work out a type architecture

 The TA will be the simplest logical machine
that exhibits the important costs

 Notice

 How the CTA does this

 How the EVY Machine Does This

6/1/2010 © 2010 Larry Snyder, CSE 8

 Though IBM canceled Cell development last
November, the ideas in it are crucial to our
parallel computation discussion

 (And it’s still a fire breather)

6/1/2010 © 2010 Larry Snyder, CSE 9

10

 Basic Floor plan and photo

6/1/2010 © 2010 Larry Snyder, CSE 11

12

 Blachford describes cell programming
 Cell however, has gone against the grain and

actually removed a level of abstraction. The
programming model for the Cell will be concrete,
when you program an SPE you will be
programming what is in the SPE itself, not some
abstraction. You will be "hitting the hardware" so
to speak. The SPEs programming model will
include 256K of local store and 128 registers, the
SPE itself will include 128 registers and 256K of
local store, no less, no more. [Feb, 2005]

13

14

 Complexity seems dramatic

6/1/2010 © 2010 Larry Snyder, CSE 15

DRAM

Cache Cache Cache Cache

ALU ALU ALU ALU

Control Control Control Control

DRAM

Cache

Control A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

A

L

U

6/1/2010 © 2010 Larry Snyder, CSE 16

6/1/2010 © 2010 Larry Snyder, CSE 17

 The GPU is viewed as a compute device that:
 Is a coprocessor to the CPU or host

 Has its own DRAM (device memory)

 Runs many threads in parallel
 Data-parallel portions of an application are

executed on the device as kernels which run in
parallel on many threads

 Differences between GPU and CPU threads
 GPU threads are extremely lightweight

▪ Very little creation overhead

 GPU needs 1000s of threads for full efficiency

▪ Multi-core CPU needs only a few

 A kernel is executed as a grid
of thread blocks
 All threads share data memory

space
 A thread block is a batch of

threads that can cooperate
with each other by:
 Synchronizing their execution

▪ For hazard-free shared
memory accesses

 Efficiently sharing data through
a low latency shared memory

 Two threads from two
different blocks cannot
cooperate

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Courtesy: NDVIA

 Threads and blocks have IDs
 So each thread can decide

what data to work on

 Block ID: 1D or 2D

 Thread ID: 1D, 2D, or 3D
 Simplifies memory

addressing when processing
multidimensional data
 Image processing

 Solving PDEs on volumes

 …

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Courtesy: NDVIA

 Each thread can:
 R/W per-thread registers

 R/W per-thread local memory

 R/W per-block shared memory

 R/W per-grid global memory

 Read only per-grid constant
memory

 Read only per-grid texture memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and

texture memories

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

Courtesy: NDVIA

 Global memory
 Main means of

communicating R/W Data
between host and device

 Contents visible to all
threads

 Texture and Constant
Memories
 Constants initialized by

host

 Contents visible to all
threads

23

 Attached processors provide enormous power for low
price, but they …

 Use a different programming paradigm than our CTA-based
view

 Have no pretense of being general purpose

 Should be programmed as though configuring hardware or
building a hybrid machine

 Strengths are fast data streaming and leveraging VLSI
 Liabilities are programming challenges and rigidity

24

 A goal of || abstractions is to specify efficient
computation without specifying unnecessary
order

 Problem Space
Promotion is One
Way

 Consider a counting
sort:

for (j=0; j<n; j++) {

B[j] = 0; // Init

}

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

if (A[i]<A[j]) // Count #

B[j]++; // larger

}

}

for (j=0; j<n; j++) {

B[j] = A[B[j]]; // Reorder

}

for (j=0; j<n; j++) {

A[j] = B[j]; // Restore

}

25

 Specify the operations w/o ordering

 The solution “promotes” the operand to be
2D, allowing all pairs to be tested at once

 This technique works a lot … 3D MM is instance

 Promotion is logical … no actual copy needed

CST  S compare all pairs,(1 if true, else 0)
Psum_cols(C) column sums give sorted index positions
SS[P] permute elements of S into order

Bradford L. Chamberlain, E Christopher Lewis, and Lawrence Snyder. Problem

space promotion and its evaluation as a technique for efficient parallel

computation. In Proceedings of the ACM International Conference on

Supercomputing, 1999.

26

 You all know parallel programming is tough
 How to make it easier? Raise abstractions!
 Transactional Memory: Return of old idea
 Databases concurrently manage external data

consistently using multiple computers; well studied

 Apply idea to concurrent management of the internal
memory image

 Transaction: Atomically change memory to new state or
do nothing at all

 Say the goal not how to achieve it

Idea: David Lomet in 1977

27

An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)

no interleaved computation;

no unfair starvation

void deposit(int x){

synchronized(this){

int tmp = balance;

tmp += x;

balance = tmp;

}}

void deposit(int x){

atomic {

int tmp = balance;

tmp += x;

balance = tmp;

}}

28

 The code executing atomically is everything
(dynamically) between braces, including foo().

atomic {

if (x != null) x.foo();

y = true;

}

 Three choices: commit; abort; not terminate
 Optimistic: Little overhead if no conflict
 Avoid races and deadlocks due to lock acquisition

29

 In DB transactions have ACID properties
 A = atomicity … sequence of operations never

interrupted or incomplete; commit or abort

 C= consistency …changes leave memory in
consistent state relative to application; for
example new_balance==old_balance+deposit

 I = isolation … transaction works correctly with
any combination of other transactions

 D = durability … result persists; not appropriate
for multithreading memory case

30

 DBs use disks, meaning the SW support for
DB transactions not time-critical; referencing
memory is too brief (and frequent) to allow
for heavy-weight protection

 TM need not be durable (last) since data
doesn’t outlast execution; simplifying

 TM must retrofit into a rich world of legacy
code … must coexist with all other
mechanisms; pervasive changes not feasible

31

 It’s not difficult to mess up using atomic
Thread 1 Thread 2

atomic { atomic {

while (!flagA) flagA = true;

flagB = true; while (!flagB);

} }

flags have to be true at the start of block

 This code not serializable, i.e. there is no
correct serial execution

32

 Transactions are no panacea
 Neither hardware nor software implementations

have proved themselves
 Very Nice Monograph: Larus & Rajwar
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611

CAC002

 A fundamental problem TM will not solve:
How to scale shared memory computations
to architectures with much larger which
are inevitable

http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002

33

34

 Rather than using the Test&Set to guard
shared data, use Fetch&Add

▪ Fetch&Add is an atomic read-modify-write operation on
memory -- requires special hardware, to be discussed

▪ Use Fetch&Add as a semaphore and as a scheduler

 Operation: Fetch&Add(V,e)
▪ V is a memory location

▪ e is an integer expression

▪ Contents of V are returned

▪ New value of V is V+e

▪ Operation is atomic

V: 0

Fetch&Add(V,1)

V: 1

0 is returned

35

 When multiple Fetch&Adds are executed
simultaneously, they are serializable

 Assume Fetch&Add(V, e1), Fetch&Add(V,
e2) execute simultaneously

▪ Assuming an initial value of e0

▪ Final value is e0+e1+e2

▪ The 1st process receives either e0 or e0+e2, implying it was
first (e0) or second (e0+e2)

▪ The 2nd process receives either e0 or e0+e1, implying it was
second (e0+e1) or first (e0)

Suppose both execute Fetch&Add(I,1), then one gets I back, the

other I+1, and final is I+2

36

 Though earlier solutions attempt to reduce
sharing to reduce the amount of invalidation
and acknowledgment, Fetch&Add does
better with greater sharing

 Sharing is used to schedule or allocate,
which is then independent activity

▪ Sharing is concentrated in a few variables

▪ Fine grain size is possible

 Since load/store, Test&Set, etc. are
implementable, it is a “sufficient” primitive

37

 Fetch&Add assumes a flat shared memory
as implemented by a “dance hall
architecture”

P0

PNI

P1

PNI

P2

PNI

P6

PNI

P7

PNI

P3

PNI

P4

PNI

P5

PNI

Interconnection Network

M0

MNI

M1

MNI

M2

MNI

M3

MNI

M4

MNI

M6

MNI

M5

MNI

M7

MNI

38

 The interconnection network is an W-
network
 Connection between 2 and 6 … follow bits to

destination lsb to msb

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

P
ro

c
e
s
s
o
r

ID
H

i M
e
m

o
ry

 B
its

39

 The W-Network requires O(P log P) routers
 The given network uses 2x2 but 2bx2b work
 Wiring is consistent at each stage

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Long Wires Are Necessary

40

 The network is pipelined
 There is a unique path between any

processor and memory port pair
 Conflicts are possible because there exist

permutations in which packets collide
 What happens when two packets collide at

a router?
▪ Packet is delayed, leaving its “file”

▪ Pipelining is affected, here comes more
0 0

1 1

The separate packets must be serialized

41

 Simultaneous requests collide in network
0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Fetch&Add(V)

Fetch&Add(V)

V

Fetch&Add increases potential for collisions

Hot spot

42

Idea: Combine requests for same dest. In
limit all nodes could reference same loc.

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

V

43

 At a switch combine loads and stores to a
common location as follows

▪ Load/Load -- forward one of the loads towards the memory, and
when the value is returned, satisfy both

▪ Load/Store -- forward the store, and when the ACK arrives back at
the switch, return value to satisfy load

▪ Store/Store -- forward one of the stores, and when the ACK arrives
back at the switch, return it for both

 Processors are restricted to having only one
outstanding request at a time to a given
location

44

 Include an adder with the Memory Network
Interface chips

 For Fetch&Add(V,e)
▪ Fetch the value of V, say e0

▪ Return e0 to processor requesting

▪ Add e0+e

▪ Store e0+e back into V

 It is probably necessary to do these
concurrently

MNI

Mem Mem

45

Suppose Fetch&Add(V,e), Fetch&Add(V,f) arrive at a
switch together …

 Form the sum f+e

 Send Fetch&Add(V,f+e) on to the memory

 Store e locally

 When g0 is returned by the memory

▪ Return g0 as response to Fetch&Add(V,e)

▪ Return g0+e as response to Fetch&Add(V,f)

Switch

F&E(V,e+f)
g0

F&E(V,f)
g0+e

F&E(V,e)
g0

46

 Combining can apply to all memory traffic to a
location V

 Consider the following cases
▪ Fetch&Add/Fetch&Add -- as just described

▪ Fetch&Add/Load -- Treat Load as Fetch&Add(V,0)

▪ Fetch&Add/Store -- If Fetch&Add(V,e) meets Store(V,f) send
Store(V,e+f) to memory; when ACK is received, return f as
value of F&A

 Conclusion -- it is possible to combine all requests to
the same memory location

47

 Potential Problems …
▪ Network routing is driven entirely by performance, so a

complicated switch is usually a problem

▪ Routers typically forward non-blocked packets in <= 3 tix

▪ Matching to recognize that two requests collide is an “add”
operation

▪ Combining is an “add” operation after the previous add

▪ Combining relies on the requests getting to the switch
simultaneously, or at worst, before the forwarded packet leaves
… this is improbable

▪ Most traffic is non-combinable -- headed for different places

▪ A combining router was created by Susan Dickey

48

 If the network switch is too slow then …
 Do not combine at every stage … so that some stages can

be fast

 Use two networks, one fast and one that does combining --
it can handle the sharing requests

 Combine only like requests, e.g. loads/loads

 Limit combining at a node to two requests

 As it happened

▪ Only like requests have ever been implemented in switch

▪ IBM used the two network solution in the RP3

49

 Norton and Pfister discovered in simulation for the
RP3 computer that the W-Network develops hot-
spots

 It was thought that combining would remove the
hot-spots … it seemed to for 64-way network

 The problem is that once a node
becomes hot, a “back-up” tree
forms “behind” the node

50

 Lee, Kruskal, Kuck studied by simulation, analysis
▪ LKK discovered and named the “back-up tree”

▪ Showed in simulation that the 64-way network is lucky

▪ Combining doesn’t help because it’s the other traffic

0.125% traffic

directed at a hot

spot

51

 It was a good idea but it didn’t work

 Good

▪ Fetch&Add is clever -- a primitive with good properties

▪ Shifting from protecting data to allocating work is better

▪ Computation at memory is powerful, worth doing

 Bad

▪ Pipelined multistage networks probably just don’t work

▪ Complexity in a switch is wrong -- speed is essential

▪ Failed to exploit locality -- caching basically impossible

52

Goal: Summarize what we’ve covered and what you might have learned

53

 To write successful parallel programs, we
need a model of how a || computer works

 CTA is a generalization of || hardware

 CTA favors …

▪ Locality because of high 

▪ Minimizing inter-thread dependences because of high 
plus wait time and sometimes contention

 CTA algorithms were successful and usually they
were the only ones that worked well

Lambda is always relevant, usually very significant

54

In parallel algorithm design and parallel
programming, be guided by the CTA

55

 We acquired parallel programming skills
using small exercises

 Thread programming

 Peril-L

 MPI

 Chapel

 Experiences --

 Much of it is low-level and grotty

 Not always easy to get performance

56

 Approach problems “top down”, maximizing
the highest level of parallelism first

 Corollary: Don’t try to be too smart at low level

 Granularity, the coarser the better
 Communication load, less is better
 Bandwidth, use wisely
 Minimize “programming to the machine”

57

 What in your view was the high-order bit?

58

 Using parallel computers is tough
 Parallel computers generally behave like the

CTA, so program to it … it won’t disappoint
 Parallel algorithms often require fresh

thinking -- sequential case may not be a good
place to begin

 CMPs are sweet-spot now, but for how long?
 Reduce/Scan are basic building blocks

59

 Programming tools are all over the place

 OpenMP is very simple, but not too expressive

 Pthreads, a standard library, but very low level

 MPI is universal, low level and abstraction-free

 ZPL leaves all parallelism to compiler, but gives
WYSIWYG as guide to writing good programs

 Chapel, Transactional Memory have promise, but
NRFPT

 Hardware design is very volatile at moment

 Need a volunteer at each site
 Fill out both forms

 Bubble in the white form

 Give me suggestions on the yellow form

 Volunteer

▪ On campus, drop the completed forms in box across st

▪ In Redmond, Fedex the completed forms to campus

6/1/2010 © 2010 Larry Snyder, CSE 60

