
We’ve seen several ways to program parallel computers … 
how do they compare?



 Last time, Brad said regarding machine model
4) A Note on Machine Model 

 As with ZPL, the CTA is still present in our design to reason 
about locality 

 That said, it is probably more subconscious for us 

 And we vary in some minor ways: 
▪ no controller node -- though we do utilize a front-end launcher node 

in practice 

▪ nodes can execute multiple tasks/threads -- through software 
multiplexing if not hardware

 Is that really different from what we used?
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 At one point Brad distinguished Chapel from 
ZPL by pointing out that Chapel doesn’t have 
a WYSIWYG performance model

 Does it matter?

 Can you understand how C works even though it 
isn’t WYSIWYG?

 Is understanding the semantics sufficient?
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 If high level languages will save us in parallel 
computation, then the compiler is our 
primary tool for making the idea work ...

 How do compilers produce efficient code?
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 The Amazing Levialdi Shrinking Operator (1972)

 Each pixel simultaneously changes state according to the 
following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and 
North

(2) A 0 bit becomes a 1 if there are 1’s to its West 
and North

X

0 ? 1

? ?1

1

0 1

0 0

? 0

? ?

(3) All other bits remain unchanged
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. . .

Count := 0;

repeat

Next  := Image & (Image@north | Image@nw | Image@west);

Next  := Next  | (Image@west  & Image@north & !Image);

Conn  := Next@east | Next@se | Next@south;

Conn  := Image & !Next & !Conn;

Count += Conn;

Image := Next;

smore := |<< Next;

until !smore;

. . .

 ZPL Solution

Rule 1

Rule 2

Test for Poof



 Lines in an array language translate into 
loops

Next:=Image & (Image@north | Image@nw | Image@west);

for (i=0; i<dim_1; i++){

for (j=0; j<dim_2; j++){

... /* scalar code stmt 1 */

}

}

Next:=Next | (Image@west  & Image@north & !Image);

for (i=0; i<dim_1; i++){

for (j=0; j<dim_2; j++){

... /* scalar code stmt 2 */

}

}
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 When the ranges match, the bodies can be 
merged

for (i=0; i<dim_1; i++){

for (j=0; j<dim_2; j++){

... /* scalar code stmt 1 */

... /* scalar code stmt 2 */

... /* scalar code stmt 3 */    basic block

... /* scalar code stmt 4 */

... /* scalar code stmt 5 */

}

}

 Large basic block permit much optimizaiton
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 Given

 X and Y are 1D arrays of coordinates such that (Xi, 
Yi) is a position in the coordinate plane

 How do you compute the bounding box in ZPL?

[R] begin

rightedge  := max<< X;

topedge    := max<< Y;

leftedge   := min<< X;

bottomedge := min<< Y;

end;
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type point = record

x : integer; -- x coordinate

y : integer; -- y coordinate

end;

var Points : [1..n] point; -- points in a plane

. . .

[R] begin

rightedge  := max<< Points.x;

topedge    := max<< Points.y;

leftedge   := min<< Points.x;

bottomedge := min<< Points.y;

end;

 Using a Point Type



 A key property is the regions are the same
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[R] begin

// rightedge  := max<< Points.x;

val1=find_local_max(Points.x);

reduce_upsweep_max(val1);

rightedge=catch_broadcast();

// topedge    := max<< Points.y;

val2=find_local_max(Points.y);

reduce_upsweep_max(val2);

topedge=catch_broadcast();

...

end;



 Though no asymptotic benefit, performance 
win
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[R] begin

val1=find_local_max(Points.x);

val2=find_local_max(Points.y); loops fused

val3=find_local_min(Points.x);

val4=find_local_min(Points.y);

reduce_upsweep_((max,val1),(max,va2),

(min,val3),(min,val4));

temp=catch_broadcast();

rightedge=temp[0];

topedge=temp[1];

leftedge=temp[2];

bottomedge=temp[3];

end;
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 Data parallelism

 Often quite regular except for the end-cases

 ZPL elevates the concept of a boundary condition

periodic mirror



 The shallow 
benchmark
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/* Periodic boundary conditions */
[e of I]  wrap U, Uold, V, Vold, P, Pold;
[s of I]  wrap U, Uold, V, Vold, P, Pold;
[se of I] wrap U, Uold, V, Vold, P, Pold;

ZPL

C Periodic boundary conditions
uold(m+1,:n) = uold(1,:n)
vold(m+1,:n) = vold(1,:n)
pold(m+1,:n) = pold(1,:n)
u(m+1,:n) = u(1,:n)
v(m+1,:n) = v(1,:n)
p(m+1,:n) = p(1,:n)

CAPR$ DO PAR on POLD<:,1>
uold(:m,n+1) = uold(:m,1)
vold(:m,n+1) = vold(:m,1)
pold(:m,n+1) = pold(:m,1)
u(:m,n+1) = u(:m,1)
v(:m,n+1) = v(:m,1)
p(:m,n+1) = p(:m,1)
uold(m+1,n+1) = uold(1,1)
vold(m+1,n+1) = vold(1,1)
pold(m+1,n+1) = pold(1,1) 
u(m+1,n+1) = u(1,1)
v(m+1,n+1) = v(1,1)
p(m+1,n+1) = p(1,1)

HPF

ZPL

periodic
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 Compute partial differential equations 

 Use successive over-relaxation

 Arrange 3D values into red and black cells

 Update in place by alternately computing values 
for red and black cells
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DO nrel = 1,iter
where (RED(2:NX-1,2:NY-1,2:NZ-1))

!     Relaxation of the Red points
U(2:NX-1,2:NY-1,2:NZ-1) =                               &

&              factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+        &
&    U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+      &
&    U(2:NX-1,1:NY-2,2:NZ-1) + U(2:NX-1,1:NY-2,2:NZ-1)+    &
&    U(2:NX-1,2:NY-1,1:NZ-2) + U(2:NX-1,2:NY-1,3:NZ))

elsewhere
!     Relaxation of the Black points 

U(2:NX-1,2:NY-1,2:NZ-1) =                               &
&              factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+        &
&    U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+

 Regions and region operators raise the level of abstraction

for nrel := 1 to nITER do
/* Red relaxation */

[I with Red]    U := factor*(hsq*F + U@top   + U@bot   + U@left+
U@right + U@front + U@back);

/* Black relaxation */
[I without Red] U := factor*(hsq*F + U@top   + U@top   + U@left+

U@right + U@front + U@back);
end;

ZPL

F90/HPF
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DO nrel = 1,iter
where (RED(2:NX-1,2:NY-1,2:NZ-1))

!     Relaxation of the Red points
U(2:NX-1,2:NY-1,2:NZ-1) =                               &

&              factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+        &
&    U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+      &
&    U(2:NX-1,1:NY-2,2:NZ-1) + U(2:NX-1,1:NY-2,2:NZ-1)+    &
&    U(2:NX-1,2:NY-1,1:NZ-2) + U(2:NX-1,2:NY-1,3:NZ))

elsewhere
!     Relaxation of the Black points 

U(2:NX-1,2:NY-1,2:NZ-1) =                               &
&              factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+        &
&    U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+

 Regions and region operators raise the level of abstraction

for nrel := 1 to nITER do
/* Red relaxation */

[I with Red]    U := factor*(hsq*F + U@top   + U@bot   + U@left+
U@right + U@front + U@back);

/* Black relaxation */
[I without Red] U := factor*(hsq*F + U@top   + U@top   + U@left+

U@right + U@front + U@back);
end;

ZPL

F90/HPF

Did you spot the bugs?

3:NY
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 What’s the difference in the two codes?

 We cheated by not showing the definition of the Red mask 
in ZPL

 More fundamentally

 Indexing is error prone

 Different things should look different
▪ With the explicit indices, everything looks similar

▪ Why is this important?

 Abstraction principle
▪ If something is important, then it should be given a name and 

reused

▪ Regions and directions support provide abstraction for data-parallel 
computation
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 MPI provides a wide interface

 12 ways to perform point-to-point communication

 MPI 2.0 offers one-sided communication

 Why so many choices?
 What problems does this create?

Normal

Nonblock

Persistent

Normal Sync Ready Buffered

MPI_Send

MPI_Send_init MPI_Ssend_init

MPI_Isend

MPI_Rsend_init MPI_Bsend_init

MPI_Ssend

MPI_Issend MPI_Irsend

MPI_Rsend MPI_Bsend

MPI_Ibsend
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 Short term problems

 Complicates the interface

 Some of the specialized routines are difficult to 
use

▪ Eg. MPI_Rsend() assumes that the sender and receiver 
are already synchronized; if not, the message is dropped 
on the floor
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 Long term problems

 No performance portability

 A form of premature optimization

Sun E5000 Cray T3E
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 The root of all evil

 Requires manual changes to the application source code

 Embeds optimizations into the source code 

 Long term implications

 Complicates maintenance

 Defeats portability

 What’s the fundamental problem?

 MPI is too low level

 MPI over-specifies the communication
▪ It specifies what to send, when to send it, and how to send it by 

specifying details of the implementation, such as the marshalling of 
data, synchronization, and buffering
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 The root of all evil

 Requires manual changes to the application source code

 Embeds optimizations into the source code 

 Long term implications

 Complicates maintenance

 Defeats portability

 What’s the fundamental problem?

 MPI is too low level

 MPI over-specifies the communication
▪ It specifies what to send, when to send it, and how to send it by 

specifying details of the implementation, such as the marshalling of 
data, synchronization, and buffering

Why don’t compilers 
have this same problem?
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 Option 1:  Portable compiler

 Compile to an intermediate language, such as C+MPI

Advantages

– Intermediate code is portable

– Compiler has a single backend 

Disadvantages

– Favors portability over 

performance

– We’re still using the MPI 

interface, so we have the same 

performance portability problems 

that an MPI programmer faces
m3m1 m2

ZPL

C + MPI

ZPL
Compiler
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 Option 2:  Machine-specific compiler

 Create multiple backends for multiple target platforms

m3m1 m2

ZPL

C2 + MPI

ZPL
Compiler1

C1 + MPI C3 + MPI

Advantages

– Can exploit machine 

assumptions

Disadvantages

– Intermediate code is not portable

– Lots of work in building backends

How can we resolve this conflict between portability and performance?
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 A communications interface

 A set of four calls which define constraints 
about possible communication

 Individually, each call has little meaning

 Collectively, they can be bound to 
different mechanisms for different 
machines

 The name is not based on the comic 
book

 It’s a reference to Strawman, Woodman, 
Tinman and Ironman, . . . which were 
different versions of the Ada spec
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 DR– Destination Ready

 Earliest point at which the 
destination can receive data

 SR– Source Ready

 Earliest point at which the sender 
can transmit data

 DN– Destination Needed

 Latest point at which destination 
can receive data

 SV– Sender Volatile

 Latest point by which data must be 
transmitted from the sender

time

DR

SR

DN

SV

comm

comm:  dest  source



5/25/2010 © 2010 Larry Snyder, CSE 28

 DR– Destination Ready

 Assuming the destination receives data into a 
buffer, the receive cannot occur until the buffer 
has been allocated, nor can it occur while the 
buffer’s data is in use

 SR– Source Ready

 Data cannot be sent until computed by sender

 DN– Destination Needed

 The point at which the destination needs to use 
the data it’s receiving

 SV– Source Volatile 


If the sender is re-using the buffer, then this is the point at which 
the source’s data is no longer valid

DR

SR

DN

SV

time
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 Example ZPL code
X := D;

. . .

S := . . .;

. . .

D := S@east

Y := D;

. . .

S := . . .;

DR();

SR();

DN();

SV();

Last use of D before data transfer
Cannot receive into D before this point

Last modification of S before data transfer
Cannot send D before this point

Need to receive D by this point
Next use of D after data transfer

Need to send S by this point
Next modification of S after data transfer
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 Example ZPL code

X := D;

. . .

S := . . .;

. . .

D := S@east;

Y := D;

. . .

S := . . .;

DR();

SR();

DN();

SV();

Overall compilation scheme

– Identify the need for communication

– Use dependence analysis to identify Defs and Uses, 

which define the four points of interest

– Perform code motion to push the four locations apart

– Assign static Communication Tags to each set of 

Ironman calls

– These tags are used to maintain state across 

calls at runtime

– Insert parameters to each call

Array language 

semantics help by 

reducing control 

flow



5/25/2010 © 2010 Larry Snyder, CSE 31

 Synchronous Sends
Effect at P1 SPMD code Effect at P2

- DR() -

Send data from P1 SR() -

- DN() Receive data in P2

- SV() -

Q: Can we bind DR() to a receive?

A: No.  It would be legal from P2’s point of view, but it would cause  

deadlock in an SPMD program in which processes both send and      

receive data



5/25/2010 © 2010 Larry Snyder, CSE 32

 Non-blocking Sends and non-blocking 
Receives

Effect at P1 SPMD code Effect at P2

- DR()

Non-blocking 

receive in P2

Non-blocking send 

from P1 SR() -

- DN()

Wait for receive at 

P2

Wait for send to 

complete SV() -
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 User-Defined Callback Routines
Effect at P1 SPMD code Effect at P2

Synchronize DR()

Post receive 

callback

Send data SR() -

- DN()

Wait for receive to 

complete

- SV() -
Usage

– This binding is similar to the use of non-blocking receives, but when the 

message is complete, a user-defined callback routine is called to un-

marshall the data as it arrives
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 One-sided Communication
Effect at P1 SPMD code Effect at P2

Synchronize DR() Synchronize

Put data into 

destination SR() -

Synchronize DN() Synchronize

- SV() -
Usage

– Some hardware allows one processor to Put data onto another processor’s 

memory

– This mechanism is one-sided because the destination process is not 

involved
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 Extra procedure call overhead

 Less than 1%

 On clusters and explicit MP machines

 Can use MPI as envisioned by the designers

 On the Cray T3E and machines with 1-sided comm

 One-sided communication is 60-66% faster than MPI

 On shared memory machines, use load/store
 Key benefit

 Ironman produces code that is both portable and efficient 
though abstraction (dest  source) and late binding
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 Higher level languages

 Can use richer and more complicated interfaces

 No human would want to use the Ironman interface

 Abstract interfaces

 Abstract interfaces can convey more information than 
lower-level interfaces

 Abstract interfaces can be both portable and efficient—
but they need to convey the right information

 In the case of communication, they should specify what 
and when to transfer data and nothing more
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 MPI strengths

 Has proven to be practically useful

 Runs on almost all parallel platforms

 Relatively easy to implement

 Can often serve as a building block for higher level 
languages

 MPI weaknesses

 Too low-level of an interface

 Limited process model

 Forces programmer to maintain a mental map between a 
global view of data and multiple local views of data



 In the second half we compare and contrast 
languages … be prepared to comment on 
how the language you reviewed compares

5/25/2010 © 2010 Larry Snyder, CSE 38



 Key criteria to evaluate any parallel 
programming facility:

 Correctness

 Performance

 Portability

 Scalability

5/25/2010 © 2010 Larry Snyder, CSE 39

We discuss criteria for evaluating languages and identify good 
features that we expect future languages to have … think about 

how these compare with the language you reviewed



 P-Independence

 A parallel program is P-independent if and only if it 
always produces the same output on an input 
regardless of the number or arrangement of 
processes on which it is run; otherwise, it is called 
P-dependent

 Global view vs Local view

 Classify ||-programming abstractions: locks, 
Send/Receive, forall loops, Barrier, Reduce/Scan

 How important is correctness in alg choice?
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 Performance is difficult to achieve in many 
cases because …

 <examples>

 What is the affect of ||-performance on 
sequential execution?

 What else is there in parallel computation 
besides performance???

 Does performance affect the choice of algorithm?
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 Is scalability a concern in the the multicore 
world?

 Does scalability affect the choice of algorithm?

 Good SW Engineering says that we should 
focus on getting the program working, and 
then optimize; if a program has been ||-ized 
by focusing on the 10% of the code where all 
of the time is spent, do we expect it to be 
scalable?
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 It’s a basic fact of CS that computers are 
universal, so programs “run” on an platform

 Performance portability is the term that 
stresses that parallel programs should “run 
well” everywhere

 Is it worth it?

 Does portability affect the choice of algorithm?
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 Both high level 
 Both rest on a small number of fundamental 

abstractions
 Both get their parallelism by data parallel 

evaluation of array expressions

 Key difference – ZPL’s performance model 
gives direct info on how program will run

 Nesl’s  complexity model uses idealized PRAM
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 We have seen several concepts that we want 
in future languages

 Hidden parallelism

 Transparent performance

 Knowledge of Affects on Locality

 Constrained Parallelism

 Implicit vs Explicit Parallelism
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Consider Each



 If we didn’t have to give it another thought, 
we’d all be happy!

 If we can benefit from parallelism without 
explicitly thinking about, we win

 Find abstractions that are hand for programming 
but which also allow the compiler to generate 
parallelism
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 We need to know when we’re winning and 
when we are losing in order to make effective 
algorithm choices

 Somehow we must “see” the effects of our 
decisions

 WYSIWYG may be overkill, but vague, nonexistant 
or inaccurate information is a barrier to effective 
engineering
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 As with merchandizing, in parallel computing 
(actually, computing generally) its locality, 
locality, locality

 The main component of the CTA (after P) is l
and that value must be in our mind always

 Languages must guide us to exploit locality

 locales in Chapel

 places in X-10
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 Finding the right set of facilities for parallel 
programming is a balancing act – enough 
flexibility to get the job done, but not enough 
to be a barrier to productivity

 Correctness impacts

 Performance impacts

 Unlimited parallelism
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 Allowing the compiler to find the parallelism 
is ideal, assuming it does a perfect job

 Being able to say where the parallelism is can 
guarantee that we achieve it our goals of 
performance, scalability and portability

 But neither extreme is perfect

 Multiple levels (possibly like Chapel) might be best

 Application specific with experts doing the heavy 
lifting might also work
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 Are there further comments regarding the 
languages you reviewed and the goals for the 
future?
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