
We’ve seen several ways to program parallel computers …
how do they compare?

 Last time, Brad said regarding machine model
4) A Note on Machine Model

 As with ZPL, the CTA is still present in our design to reason
about locality

 That said, it is probably more subconscious for us

 And we vary in some minor ways:
▪ no controller node -- though we do utilize a front-end launcher node

in practice

▪ nodes can execute multiple tasks/threads -- through software
multiplexing if not hardware

 Is that really different from what we used?

5/25/2010 © 2010 Larry Snyder, CSE 2

 At one point Brad distinguished Chapel from
ZPL by pointing out that Chapel doesn’t have
a WYSIWYG performance model

 Does it matter?

 Can you understand how C works even though it
isn’t WYSIWYG?

 Is understanding the semantics sufficient?

5/25/2010 © 2010 Larry Snyder, CSE 3

 If high level languages will save us in parallel
computation, then the compiler is our
primary tool for making the idea work ...

 How do compilers produce efficient code?

5/25/2010 © 2010 Larry Snyder, CSE 4

5/25/2010 © 2010 Larry Snyder, CSE 5

 The Amazing Levialdi Shrinking Operator (1972)

 Each pixel simultaneously changes state according to the
following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and
North

(2) A 0 bit becomes a 1 if there are 1’s to its West
and North

X

0 ? 1

? ?1

1

0 1

0 0

? 0

? ?

(3) All other bits remain unchanged

5/25/2010 © 2010 Larry Snyder, CSE 6

. . .

Count := 0;

repeat

Next := Image & (Image@north | Image@nw | Image@west);

Next := Next | (Image@west & Image@north & !Image);

Conn := Next@east | Next@se | Next@south;

Conn := Image & !Next & !Conn;

Count += Conn;

Image := Next;

smore := |<< Next;

until !smore;

. . .

 ZPL Solution

Rule 1

Rule 2

Test for Poof

 Lines in an array language translate into
loops

Next:=Image & (Image@north | Image@nw | Image@west);

for (i=0; i<dim_1; i++){

for (j=0; j<dim_2; j++){

... /* scalar code stmt 1 */

}

}

Next:=Next | (Image@west & Image@north & !Image);

for (i=0; i<dim_1; i++){

for (j=0; j<dim_2; j++){

... /* scalar code stmt 2 */

}

}

5/25/2010 © 2010 Larry Snyder, CSE 7

 When the ranges match, the bodies can be
merged

for (i=0; i<dim_1; i++){

for (j=0; j<dim_2; j++){

... /* scalar code stmt 1 */

... /* scalar code stmt 2 */

... /* scalar code stmt 3 */ basic block

... /* scalar code stmt 4 */

... /* scalar code stmt 5 */

}

}

 Large basic block permit much optimizaiton
5/25/2010 © 2010 Larry Snyder, CSE 8

5/25/2010 © 2010 Larry Snyder, CSE 9

 Given

 X and Y are 1D arrays of coordinates such that (Xi,
Yi) is a position in the coordinate plane

 How do you compute the bounding box in ZPL?

[R] begin

rightedge := max<< X;

topedge := max<< Y;

leftedge := min<< X;

bottomedge := min<< Y;

end;

5/25/2010 © 2010 Larry Snyder, CSE 10

type point = record

x : integer; -- x coordinate

y : integer; -- y coordinate

end;

var Points : [1..n] point; -- points in a plane

. . .

[R] begin

rightedge := max<< Points.x;

topedge := max<< Points.y;

leftedge := min<< Points.x;

bottomedge := min<< Points.y;

end;

 Using a Point Type

 A key property is the regions are the same

5/25/2010 © 2010 Larry Snyder, CSE 11

[R] begin

// rightedge := max<< Points.x;

val1=find_local_max(Points.x);

reduce_upsweep_max(val1);

rightedge=catch_broadcast();

// topedge := max<< Points.y;

val2=find_local_max(Points.y);

reduce_upsweep_max(val2);

topedge=catch_broadcast();

...

end;

 Though no asymptotic benefit, performance
win

5/25/2010 © 2010 Larry Snyder, CSE 12

[R] begin

val1=find_local_max(Points.x);

val2=find_local_max(Points.y); loops fused

val3=find_local_min(Points.x);

val4=find_local_min(Points.y);

reduce_upsweep_((max,val1),(max,va2),

(min,val3),(min,val4));

temp=catch_broadcast();

rightedge=temp[0];

topedge=temp[1];

leftedge=temp[2];

bottomedge=temp[3];

end;

5/25/2010 © 2010 Larry Snyder, CSE 13

 Data parallelism

 Often quite regular except for the end-cases

 ZPL elevates the concept of a boundary condition

periodic mirror

 The shallow
benchmark

5/25/2010 © 2010 Larry Snyder, CSE 14

/* Periodic boundary conditions */
[e of I] wrap U, Uold, V, Vold, P, Pold;
[s of I] wrap U, Uold, V, Vold, P, Pold;
[se of I] wrap U, Uold, V, Vold, P, Pold;

ZPL

C Periodic boundary conditions
uold(m+1,:n) = uold(1,:n)
vold(m+1,:n) = vold(1,:n)
pold(m+1,:n) = pold(1,:n)
u(m+1,:n) = u(1,:n)
v(m+1,:n) = v(1,:n)
p(m+1,:n) = p(1,:n)

CAPR$ DO PAR on POLD<:,1>
uold(:m,n+1) = uold(:m,1)
vold(:m,n+1) = vold(:m,1)
pold(:m,n+1) = pold(:m,1)
u(:m,n+1) = u(:m,1)
v(:m,n+1) = v(:m,1)
p(:m,n+1) = p(:m,1)
uold(m+1,n+1) = uold(1,1)
vold(m+1,n+1) = vold(1,1)
pold(m+1,n+1) = pold(1,1)
u(m+1,n+1) = u(1,1)
v(m+1,n+1) = v(1,1)
p(m+1,n+1) = p(1,1)

HPF

ZPL

periodic

5/25/2010 © 2010 Larry Snyder, CSE 15

 Compute partial differential equations

 Use successive over-relaxation

 Arrange 3D values into red and black cells

 Update in place by alternately computing values
for red and black cells

5/25/2010 © 2010 Larry Snyder, CSE 16

DO nrel = 1,iter
where (RED(2:NX-1,2:NY-1,2:NZ-1))

! Relaxation of the Red points
U(2:NX-1,2:NY-1,2:NZ-1) = &

& factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+ &
& U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+ &
& U(2:NX-1,1:NY-2,2:NZ-1) + U(2:NX-1,1:NY-2,2:NZ-1)+ &
& U(2:NX-1,2:NY-1,1:NZ-2) + U(2:NX-1,2:NY-1,3:NZ))

elsewhere
! Relaxation of the Black points

U(2:NX-1,2:NY-1,2:NZ-1) = &
& factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+ &
& U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+

 Regions and region operators raise the level of abstraction

for nrel := 1 to nITER do
/* Red relaxation */

[I with Red] U := factor*(hsq*F + U@top + U@bot + U@left+
U@right + U@front + U@back);

/* Black relaxation */
[I without Red] U := factor*(hsq*F + U@top + U@top + U@left+

U@right + U@front + U@back);
end;

ZPL

F90/HPF

5/25/2010 © 2010 Larry Snyder, CSE 17

DO nrel = 1,iter
where (RED(2:NX-1,2:NY-1,2:NZ-1))

! Relaxation of the Red points
U(2:NX-1,2:NY-1,2:NZ-1) = &

& factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+ &
& U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+ &
& U(2:NX-1,1:NY-2,2:NZ-1) + U(2:NX-1,1:NY-2,2:NZ-1)+ &
& U(2:NX-1,2:NY-1,1:NZ-2) + U(2:NX-1,2:NY-1,3:NZ))

elsewhere
! Relaxation of the Black points

U(2:NX-1,2:NY-1,2:NZ-1) = &
& factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+ &
& U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+

 Regions and region operators raise the level of abstraction

for nrel := 1 to nITER do
/* Red relaxation */

[I with Red] U := factor*(hsq*F + U@top + U@bot + U@left+
U@right + U@front + U@back);

/* Black relaxation */
[I without Red] U := factor*(hsq*F + U@top + U@top + U@left+

U@right + U@front + U@back);
end;

ZPL

F90/HPF

Did you spot the bugs?

3:NY

5/25/2010 © 2010 Larry Snyder, CSE 18

 What’s the difference in the two codes?

 We cheated by not showing the definition of the Red mask
in ZPL

 More fundamentally

 Indexing is error prone

 Different things should look different
▪ With the explicit indices, everything looks similar

▪ Why is this important?

 Abstraction principle
▪ If something is important, then it should be given a name and

reused

▪ Regions and directions support provide abstraction for data-parallel
computation

5/25/2010 © 2010 Larry Snyder, CSE 19

 MPI provides a wide interface

 12 ways to perform point-to-point communication

 MPI 2.0 offers one-sided communication

 Why so many choices?
 What problems does this create?

Normal

Nonblock

Persistent

Normal Sync Ready Buffered

MPI_Send

MPI_Send_init MPI_Ssend_init

MPI_Isend

MPI_Rsend_init MPI_Bsend_init

MPI_Ssend

MPI_Issend MPI_Irsend

MPI_Rsend MPI_Bsend

MPI_Ibsend

CS380P Lecture 19 Performance Portability 20

 Short term problems

 Complicates the interface

 Some of the specialized routines are difficult to
use

▪ Eg. MPI_Rsend() assumes that the sender and receiver
are already synchronized; if not, the message is dropped
on the floor

CS380P Lecture 19 Performance Portability 21

 Long term problems

 No performance portability

 A form of premature optimization

Sun E5000 Cray T3E

CS380P Lecture 19 Performance Portability 22

 The root of all evil

 Requires manual changes to the application source code

 Embeds optimizations into the source code

 Long term implications

 Complicates maintenance

 Defeats portability

 What’s the fundamental problem?

 MPI is too low level

 MPI over-specifies the communication
▪ It specifies what to send, when to send it, and how to send it by

specifying details of the implementation, such as the marshalling of
data, synchronization, and buffering

CS380P Lecture 19 Performance Portability 23

 The root of all evil

 Requires manual changes to the application source code

 Embeds optimizations into the source code

 Long term implications

 Complicates maintenance

 Defeats portability

 What’s the fundamental problem?

 MPI is too low level

 MPI over-specifies the communication
▪ It specifies what to send, when to send it, and how to send it by

specifying details of the implementation, such as the marshalling of
data, synchronization, and buffering

Why don’t compilers
have this same problem?

5/25/2010 © 2010 Larry Snyder, CSE 24

 Option 1: Portable compiler

 Compile to an intermediate language, such as C+MPI

Advantages

– Intermediate code is portable

– Compiler has a single backend

Disadvantages

– Favors portability over

performance

– We’re still using the MPI

interface, so we have the same

performance portability problems

that an MPI programmer faces
m3m1 m2

ZPL

C + MPI

ZPL
Compiler

5/25/2010 © 2010 Larry Snyder, CSE 25

 Option 2: Machine-specific compiler

 Create multiple backends for multiple target platforms

m3m1 m2

ZPL

C2 + MPI

ZPL
Compiler1

C1 + MPI C3 + MPI

Advantages

– Can exploit machine

assumptions

Disadvantages

– Intermediate code is not portable

– Lots of work in building backends

How can we resolve this conflict between portability and performance?

5/25/2010 © 2010 Larry Snyder, CSE 26

 A communications interface

 A set of four calls which define constraints
about possible communication

 Individually, each call has little meaning

 Collectively, they can be bound to
different mechanisms for different
machines

 The name is not based on the comic
book

 It’s a reference to Strawman, Woodman,
Tinman and Ironman, . . . which were
different versions of the Ada spec

5/25/2010 © 2010 Larry Snyder, CSE 27

 DR– Destination Ready

 Earliest point at which the
destination can receive data

 SR– Source Ready

 Earliest point at which the sender
can transmit data

 DN– Destination Needed

 Latest point at which destination
can receive data

 SV– Sender Volatile

 Latest point by which data must be
transmitted from the sender

time

DR

SR

DN

SV

comm

comm: dest  source

5/25/2010 © 2010 Larry Snyder, CSE 28

 DR– Destination Ready

 Assuming the destination receives data into a
buffer, the receive cannot occur until the buffer
has been allocated, nor can it occur while the
buffer’s data is in use

 SR– Source Ready

 Data cannot be sent until computed by sender

 DN– Destination Needed

 The point at which the destination needs to use
the data it’s receiving

 SV– Source Volatile


If the sender is re-using the buffer, then this is the point at which
the source’s data is no longer valid

DR

SR

DN

SV

time

5/25/2010 © 2010 Larry Snyder, CSE 29

 Example ZPL code
X := D;

. . .

S := . . .;

. . .

D := S@east

Y := D;

. . .

S := . . .;

DR();

SR();

DN();

SV();

Last use of D before data transfer
Cannot receive into D before this point

Last modification of S before data transfer
Cannot send D before this point

Need to receive D by this point
Next use of D after data transfer

Need to send S by this point
Next modification of S after data transfer

5/25/2010 © 2010 Larry Snyder, CSE 30

 Example ZPL code

X := D;

. . .

S := . . .;

. . .

D := S@east;

Y := D;

. . .

S := . . .;

DR();

SR();

DN();

SV();

Overall compilation scheme

– Identify the need for communication

– Use dependence analysis to identify Defs and Uses,

which define the four points of interest

– Perform code motion to push the four locations apart

– Assign static Communication Tags to each set of

Ironman calls

– These tags are used to maintain state across

calls at runtime

– Insert parameters to each call

Array language

semantics help by

reducing control

flow

5/25/2010 © 2010 Larry Snyder, CSE 31

 Synchronous Sends
Effect at P1 SPMD code Effect at P2

- DR() -

Send data from P1 SR() -

- DN() Receive data in P2

- SV() -

Q: Can we bind DR() to a receive?

A: No. It would be legal from P2’s point of view, but it would cause

deadlock in an SPMD program in which processes both send and

receive data

5/25/2010 © 2010 Larry Snyder, CSE 32

 Non-blocking Sends and non-blocking
Receives

Effect at P1 SPMD code Effect at P2

- DR()

Non-blocking

receive in P2

Non-blocking send

from P1 SR() -

- DN()

Wait for receive at

P2

Wait for send to

complete SV() -

5/25/2010 © 2010 Larry Snyder, CSE 33

 User-Defined Callback Routines
Effect at P1 SPMD code Effect at P2

Synchronize DR()

Post receive

callback

Send data SR() -

- DN()

Wait for receive to

complete

- SV() -
Usage

– This binding is similar to the use of non-blocking receives, but when the

message is complete, a user-defined callback routine is called to un-

marshall the data as it arrives

5/25/2010 © 2010 Larry Snyder, CSE 34

 One-sided Communication
Effect at P1 SPMD code Effect at P2

Synchronize DR() Synchronize

Put data into

destination SR() -

Synchronize DN() Synchronize

- SV() -
Usage

– Some hardware allows one processor to Put data onto another processor’s

memory

– This mechanism is one-sided because the destination process is not

involved

5/25/2010 © 2010 Larry Snyder, CSE 35

 Extra procedure call overhead

 Less than 1%

 On clusters and explicit MP machines

 Can use MPI as envisioned by the designers

 On the Cray T3E and machines with 1-sided comm

 One-sided communication is 60-66% faster than MPI

 On shared memory machines, use load/store
 Key benefit

 Ironman produces code that is both portable and efficient
though abstraction (dest  source) and late binding

5/25/2010 © 2010 Larry Snyder, CSE 36

 Higher level languages

 Can use richer and more complicated interfaces

 No human would want to use the Ironman interface

 Abstract interfaces

 Abstract interfaces can convey more information than
lower-level interfaces

 Abstract interfaces can be both portable and efficient—
but they need to convey the right information

 In the case of communication, they should specify what
and when to transfer data and nothing more

5/25/2010 © 2010 Larry Snyder, CSE 37

 MPI strengths

 Has proven to be practically useful

 Runs on almost all parallel platforms

 Relatively easy to implement

 Can often serve as a building block for higher level
languages

 MPI weaknesses

 Too low-level of an interface

 Limited process model

 Forces programmer to maintain a mental map between a
global view of data and multiple local views of data

 In the second half we compare and contrast
languages … be prepared to comment on
how the language you reviewed compares

5/25/2010 © 2010 Larry Snyder, CSE 38

 Key criteria to evaluate any parallel
programming facility:

 Correctness

 Performance

 Portability

 Scalability

5/25/2010 © 2010 Larry Snyder, CSE 39

We discuss criteria for evaluating languages and identify good
features that we expect future languages to have … think about

how these compare with the language you reviewed

 P-Independence

 A parallel program is P-independent if and only if it
always produces the same output on an input
regardless of the number or arrangement of
processes on which it is run; otherwise, it is called
P-dependent

 Global view vs Local view

 Classify ||-programming abstractions: locks,
Send/Receive, forall loops, Barrier, Reduce/Scan

 How important is correctness in alg choice?

5/25/2010 © 2010 Larry Snyder, CSE 40

 Performance is difficult to achieve in many
cases because …

 <examples>

 What is the affect of ||-performance on
sequential execution?

 What else is there in parallel computation
besides performance???

 Does performance affect the choice of algorithm?

5/25/2010 © 2010 Larry Snyder, CSE 41

 Is scalability a concern in the the multicore
world?

 Does scalability affect the choice of algorithm?

 Good SW Engineering says that we should
focus on getting the program working, and
then optimize; if a program has been ||-ized
by focusing on the 10% of the code where all
of the time is spent, do we expect it to be
scalable?

5/25/2010 © 2010 Larry Snyder, CSE 42

 It’s a basic fact of CS that computers are
universal, so programs “run” on an platform

 Performance portability is the term that
stresses that parallel programs should “run
well” everywhere

 Is it worth it?

 Does portability affect the choice of algorithm?

5/25/2010 © 2010 Larry Snyder, CSE 43

 Both high level
 Both rest on a small number of fundamental

abstractions
 Both get their parallelism by data parallel

evaluation of array expressions

 Key difference – ZPL’s performance model
gives direct info on how program will run

 Nesl’s complexity model uses idealized PRAM

5/25/2010 © 2010 Larry Snyder, CSE 44

 We have seen several concepts that we want
in future languages

 Hidden parallelism

 Transparent performance

 Knowledge of Affects on Locality

 Constrained Parallelism

 Implicit vs Explicit Parallelism

5/25/2010 © 2010 Larry Snyder, CSE 45

Consider Each

 If we didn’t have to give it another thought,
we’d all be happy!

 If we can benefit from parallelism without
explicitly thinking about, we win

 Find abstractions that are hand for programming
but which also allow the compiler to generate
parallelism

5/25/2010 © 2010 Larry Snyder, CSE 46

 We need to know when we’re winning and
when we are losing in order to make effective
algorithm choices

 Somehow we must “see” the effects of our
decisions

 WYSIWYG may be overkill, but vague, nonexistant
or inaccurate information is a barrier to effective
engineering

5/25/2010 © 2010 Larry Snyder, CSE 47

 As with merchandizing, in parallel computing
(actually, computing generally) its locality,
locality, locality

 The main component of the CTA (after P) is l
and that value must be in our mind always

 Languages must guide us to exploit locality

 locales in Chapel

 places in X-10

5/25/2010 © 2010 Larry Snyder, CSE 48

 Finding the right set of facilities for parallel
programming is a balancing act – enough
flexibility to get the job done, but not enough
to be a barrier to productivity

 Correctness impacts

 Performance impacts

 Unlimited parallelism

5/25/2010 © 2010 Larry Snyder, CSE 49

 Allowing the compiler to find the parallelism
is ideal, assuming it does a perfect job

 Being able to say where the parallelism is can
guarantee that we achieve it our goals of
performance, scalability and portability

 But neither extreme is perfect

 Multiple levels (possibly like Chapel) might be best

 Application specific with experts doing the heavy
lifting might also work

5/25/2010 © 2010 Larry Snyder, CSE 50

 Are there further comments regarding the
languages you reviewed and the goals for the
future?

5/25/2010 © 2010 Larry Snyder, CSE 51

