
Producing languages with better abstractions is possible … 
why are there not more such languages?



 We have acknowledged that present day || 
programming facilities are inadequate … a 
good question would be, what do we want?

 Today we give two languages that exhibit a 
high level of parallel abstraction

 ZPL from UW

 Nesl from CMU

 The languages have weaknesses, but mostly 
we’re focused on their strengths as exemplars

5/11/2010 © 2010 Larry Snyder, CSE 2
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 ZPL, a research parallel language w/ 3 goals
 Performance == as good as platform-specific 

custom code

 Portability == runs well on all platforms 

 Convenience == clean, easy-to-understand 
programs; no parallel grunge 

 Developed at UW by 6 really smart grad 
students: Brad Chamberlain, Sung-Eun Choi, 
Steve Deitz, E Chris Lewis, Calvin Lin, Derrick 
Weathersby
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 ZPL is our representative high-level parallel language … 
few competitors because achieving those goals is tough

 To realize a solution …
 ZPL is designed and built on the CTA

 ZPL is the first high-level language to achieve “performance 
portability”

 ZPL presents programmers with a visually-cued performance 
model: WYSIWYG

 ZPL is insensitive to shared or message passing architectures, 
making it universal

ZPL is “designed from first principles” 
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 Life: organisms w/2,3 neighbors live, birth occurs w/ 3 
neighbors; death otherwise; world is a torus

 Organism in next generation if position is alive in this 
generation and has 2 neighbors, or in this generation it 
has 3 neighbors 

 Or: (thisGen && neighbors== 2) || (neighbors==3)

See Life As An Array Computation 
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 Count neighbors by adding organisms (bits)

 Consider the sum of these arrays from a 
single cell’s perspective …

Edges wrap around 

:= + + + + + + +
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Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE

+ TW@^W +                    TW@^E

+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);

until ! (|<< TW);

Add up 

neighbor bits

Apply rules 

to live by
“Or” bits in world 

to see if any alive

:= + + + + + + +



 The torus world says that each direction 
wraps – expressed as @^

5/11/2010 © 2010 Larry Snyder, CSE 9

TW@^nw is the array of Northwest neighbors 
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program Life; Conway's Life

config const n : integer = 10;   The world is n n; default to 10

region R = [1..n, 1..n]; Index set of computation

direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w  = [ 0, -1];               e  = [ 0, 1]; 

sw = [ 1, -1]; so = [ 1, 0]; se = [ 1, 1];

var  TW : [R] boolean;  Problem state, The World

NN : [R] sbyte;   Work array, Number of Neighbors

procedure Life(); Entry point procedure

begin -- Initialize the world    I/O or other data specification

[R] repeat Region R ==> apply ops to all indices

NN := TW@^nw + TW@^no + TW@^ne Add 8 nearest neighbor bits (type

+ TW@^w  +          TW@^e   coercion like C); carat(^) means

+ TW@^sw + TW@^so + TW@^se; toroidal neighbor reference

TW := (TW & NN = 2) | (NN = 3); Update world with next generation

until !(|<< TW); Continue till all die out

end;
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program Life;

config const n : integer = 10; 

region R = [1..n, 1..n];

direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w  = [ 0, -1];               e  = [ 0, 1]; 

sw = [ 1, -1]; so = [ 1, 0]; se = [ 1, 1];

var  TW : [R] boolean;  

NN : [R] sbyte;   

procedure Life();

begin -- Initialize the world

[R] repeat

NN := TW@^nw + TW@^no + TW@^ne

+ TW@^w  +          TW@^e

+ TW@^sw + TW@^so + TW@^se; 

TW := (TW & NN = 2) | (NN = 3); 

until !(|<< TW);

end;

Topics

“Typical” Form

Regions 

Directions 

Config Vars 

Reduce
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 Regions are index sets … not arrays
 Any number of dimensions, any bounds

region V = [1..n];

region R = [1..m, 1..m]; BigR = [0..m+1,0..m+1];

region Left = [1..m, 1];

region Odds = [1..n by 2];

 Short names are preferred--regions are used 
everywhere--and capitalization is a coding 
convention

 Naming regions is recommended, but literals are 
OK 
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 Regions are used to declare arrays … it’s like 
adding data to the indices

 Capitals are used by convention to distinguish 
arrays from scalars

 Named or literal regions are OK
var A, B, C : [R] double;

var Seq : [V] boolean;

var Huge : [0..2^n, -5..5] float;

 Regions are used once; no array has more than 
one region component

 Regions are a source of parallelism… 
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 Statements containing arrays need a region to specify 
which items participate

[1..n,1..n] A := B + C;

[R] A := B + C; -- Same as above

 Regions are scoped 
[R] begin All array computations in compound 

…     statements are performed over indices

[Left] … in [R], except statement prefixed by

end; [Left]

 Operations over region elements performed in parallel
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 Let A, B be arrays over [1..n,1..n], and C be an array 
over [2..n-1,2..n-1] as in

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

 Then
[2..n-1,2..n-1] A := C;

[2..n-1,2..n-1] C := A + B;

[2..n-1,2] A := B;

:=

:= +

:=
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The @ operator combines regions with directions to allow 
references to neighbors

 Two forms, standard(@) and wrapping(@^)

 Syntax:  A@east     A@^east
 Semantics: the direction is added to elements of region 

giving new region, whose elements are referenced; think 
of a region translation

[1..n,1..n] A := A@^east; -- shift array left with wrap 
around

 @-modified variables can appear on l or r of :=

:=
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 Let 
var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

direction east = [0,1]; ne = [-1,1];

 Then
[2..n-1,2..n-1] A := C@^east;

[2..n-1,2..n-1] A := C@^ne + B@^ne;

[2..n-1,2] A@east := B;
:=

:=

:= +
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 Reduction (<<) “reduces” the size of an array by 
combining its elements

 Associative (and commutative) operations are 
+<<, *<<, &<<, |<<, max<<, min<<

[1..n, 1..n] biggest   := max<<A;

[R] all_false := |<< TW;

 All elements participate; order of evaluation is 
unspecified … caution floating point users

 ZPL also has partial reductions, scans, partial 
scans, and user defined reductions and scans
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 The importance of regions motivates region operators 
 Prepositions: at, of, in, with, by … take region and 

direction and produce a new region

▪ at translates the region’s index set in the direction

▪ of defines a new region adjacent to the given region 
along direction edge and of direction extent

region R = [1..8,1..8];
C = [2..7,2..7];

var X, Y : [R] byte;

direction e = [ 0,1];
n = [-1,0];
ne = [-1,1];

[n of C]Y:= [C]Y:=X@ne [R]X:= [C]X:= [C at e]Y:= 

execution
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 Model heat defusing through a plate
 Represent as array of floating point 

numbers
 Use a 4-point stencil to model defusing
 Main steps when thinking globally

Initialize

Compute new averages

Find the largest error

Update array

… until convergence

High-level Language should match high-level  thinking
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program Jacobi;
config var n : integer = 512; 

eps : float = 0.00001;
region     R = [1..n, 1..n]; 

BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];

E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;

A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin

[BigR]  A := 0.0;
[S of R]  A := 1.0;

repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err  := max<< abs(Temp - A);
A    := Temp;

until err < eps;
end;

Initialize

Compute new averages

Find the largest error

Update array

… until convergence
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 ZPL has ‘full’ reduce: +<<, *<<, max<<, …
 ZPL also has ‘partial’ reduce

 Applies reduce across rows, down columns,…

 Requires two regions:

▪ One region on statement, as usual

▪ One region between operator and operand

[1..n,1] B := +<< [1..n,1..n] A;    -- add across rows

[1,1..n] C := min<<[1..n,1..n] A; -- min down columns

 In these examples, result stored in 1st row/col

Collapsed dimensions indicate reduce dimension(s)
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 Reduce “reduces” 1 or more dimensions
 Opposite is flood -- fill 1 or more dimensions

[1..n,1..n] B := >> [1..n, 1] A;

[1..n,1..n] B := >> [1..n, n] A;

 The replication uses multicast, often an 
efficient operation

:=

:=



24

[1..m,1] MaxC := max<<[1..m,1..n] A; Max of each row

[1..m,1..n]    A := A /  >>[1..m,1] MaxC; Scale each row

 Flooding distributes values (efficiently) so that 
the computation is element-wise … lowers 
communication 

2  4  4  2

0  2  3  6

3  3  3  3

8  2  4  0
A

4 

6

3

8
MaxC >>[1..m,1] MaxC

4  4  4  4

6  6  3  6

3  3  3  3

8  8  8  8

Keep MaxC a 2D array to control allocation
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Flood dimensions recognize that specifying a particular column 
over specifies the situation

Need a generic column -- or a column that does not have a 
specific position … use ‘*’ as value

region FlCol = [1..m, *];     -- Flood regions

FlRow = [*, 1..n];

var    MaxC : [FlCol] double; -- An m length col

Row  : [FlRow] double; -- An n length row

[1..m,*] MaxC := max<< [1..m,1..n] A; -- Better

max

......

Think of column in 

every position
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Since flood arrays have some unspecified 
dimensions, they can be “promoted” in those 
dimensions, i.e logically replicated

 Scaling a value by max of row w/o flooding:

[1..m,*]   MaxC := max<< [1..m,1..n] A;

[1..m,1..n]      A := A / MaxC;     --Scale A;

The promotion of flooded arrays is only logical
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 Lower dimensional arrays can specify a 
singleton or a flood … it affects allocation

Region [1..n,1..n] allocated 
to 4 processors

Regions [1..n,1] and [n,1..n] 
allocated to 4 processors

Regions [1..n,*] and [*,1..n] 
allocated to 4 processors
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For each col-row in the common dimension, flood the item and combine it...
var   A:[1..m, 1..n] double;   

B:[1..n, 1..p] double;

C:[1..m, 1..p] double;

Col:[ 1..m,*]    double; 

Row:   [*, 1..p] double;

...

[1..m,1..p]    C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;;

Inherit the 

prevailing 

dimension
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c11 c12 c13  a11 a12 a13 a14  b11 b12 b13

c21 c22 c23  a21 a22 a23 a24  b21 b22 b23

c31 c32 c33  a31 a32 a33 a34  b31 b32 b33

c41 c42 c43  a41 a42 a43 a44  b41 b42 b43

a11 a11 a11

a21 a21 a21

a31 a31 a31

a41 a41 a41

b11 b12 b13

b11 b12 b13

b11 b12 b13

b11 b12 b13

a11b11 a11b12 a11b13

a21b11 a21b12 a21b13

a31b11 a31b12 a31b13

a41b11 a41b12 a41b13



Col Row C

SUMMA is the easiest MM algorithm to program in ZPL

van de Geijn & Watts say it’s the fastest machine independent

=
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For each col-row in the common dimension, flood the 
item and combine it...

[1..m,1..p]    C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;

--- or, more simply ---

for k := 1 to n do

[1..m,1..p]  C += (>>[ ,k] A)*(>>[k, ] B);

end;
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If flooding is so good for columns/rows, why not use it 
for whole planes?
region IK = [1..n,*,1..n];

JK = [*,1..n,1..n];

IJ = [1..n,1..n,*];

IJK = [1..n,1..n,1..n];

[IJ]  A2 := >>A#[Index1, Index2]; 

[JK]  B2 := >>B#[Index2, Index3];

[IK]   C := +<<[IJK](A2*B2);

Input

A2

B2

C
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 Partial scans are possible too, but unlike 
reduce they do not reduce dimensionality, 
so the compiler cannot tell which 
dimension to reduce … so specify

+||[2]A is a partial scan in the 2nd dimension
1  1  1  1

1  1  1  1

1  1  1  1

1  1  1  1

1   2   3   4

1   2   3   4

1   2   3   4

1   2   3   4

+||[2]
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 The operators for reduce, scan and flood 
are suggestive …

▪ Reduce << produces a result of smaller size

▪ Scan || produces a result of the same size

▪ Flood >> produces a result of greater size






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 ZPL comes with “constant arrays” of any size
 Indexi means indices of the ith dimension
[1..n,1..n]begin

Z := Index1; -- fill with first index

P := Index2; -- fill with second index

L := Z=P;    -- define identity array

end;

Indexi arrays: compiler created using no space

1  1  1  1

2  2  2  2

3  3  3  3

4  4  4  4

1  2  3  4

1  2  3  4

1  2  3  4

1  2  3  4

Index1 Index2

1  0  0  0

0  1  0  0

0  0  1  0

0  0  0  1

L
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The remap operator (#) implements general data 
motion, including rank change

 Two cases: 
Gather, A := B#[C1,C2];

Scatter, A#[C1,C2] := B;
 For r rank array, provide r rank r arrays giving indices 

to be referenced
 Transpose: AT[i,j] = A[j,i]

[R] AT := A#[Index2,Index1]; -- Standard Idiom for transpose
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The index array in the ith position gives the 
indices for the ith dimension

1  1  1  1

2  2  2  2

3  3  3  3

4  4  4  4

1  2  3  4

1  2  3  4

1  2  3  4

1  2  3  4

Index2 Index1

a b c d

e f g h

i j k l

m n o p

A

a e i m

b f j n

c g k o

d h l p

:= # ,

AT

Gather: For a position, where does value come from

a c e b d f  a b c d e f#[1 3 5 2 4 6]
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 Scatter Remap has potential problem in that values can 
map to the same place … order is unspecified … use +=, 
etc. if not unique

1  1  1  1

2  2  2  2

3  3  3  3

4  4  4  4

1  2  3  4

1  2  3  4

1  2  3  4

1  2  3  4

Index2 Index1

a b c d

e f g h

i j k l

m n o p

A

a e i m

b f j n

c g k o

d h l p

:=# ,

AT

Scatter: For a value, where does it go?

a d b e c f #[1 3 5 2 4 6]  a b c d e f
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 ZPL was built on the CTA
 Semantics of operation customized to CTA

 Compiler targets CTA machines

 Performance model reflects the costs of CTA
 The benefit of building on the CTA:
 Programming constraints are realistic, scalable

 Programs are portable with performance

 Programmers can reliably estimate performance 
and observe it (or better) on every platform 

Building on CTA is a key contribution of ZPL 
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 We now explain ZPL’s performance model
 What is it?

 It is the way programmers know how fast (or 
slow) the statements of their programs will run”

 We all “know” the performance model for C
 Every || language should have a performance 

model 
 Learning this idea is why we’ve learned ZPL
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 How does it work?

 First, the language designers, knowing the CTA, 
formulate operations compatible with it

 The compiler “targets” the CTA

 The performance of the language features is 
expressed in terms of CTA concepts and “given” 
to the programmers

 In ZPL’s case the performance is “syntactically 
visible” and called the WYSIWYG performance 
model
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To state how ZPL performs operations, each operator’s 
work and communication needs are given …
 Performance is given in terms of the CTA (and RAM)

 Performance is relative, e.g. x is more expensive in 
communication than y -- absolute not possible

 To start allocate work (owner computes) and data:

P=4 allocations

for 2D arrays:

columns, 

rows, blocks
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Describe the costs for all language constructs
 Declarations, control flow have negligible cost
 Scalar computations are redundant, also “free”
 Array operations costs depend on operators:

 Rules…
A + B -- Element-wise array operations

▪ No communication

▪ Per processor work is comparable to C

▪ Work fully parallelizable, i.e. time = work/P
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A@^east -- @ references including @^

Arrays allocated with “fluff” for every direction used

▪ Nearest neighbor point-to-point communication of edge elements, 
i.e. small communication, little congestion

▪ Edge communication benefits from surface-to-volume advantage: an 
n increase in elements, adds n comm load

▪ Local data motion, possibly

P2P1 P3P0
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+<<A -- Reduce

▪ Accumulate local elements

▪ O(log P) tree accumulation, or better

▪ Broadcast, which is worst case O(log P), but usu. less

+||A -- Scan

▪ Accumulate local elements

▪ Ladner/Fischer O(log P) tree parallel prefix logic

▪ Update of local elements

>>[1..n,k]A -- Flood

▪ Multicast array segments, O(log P) w.c.

▪ Represent data “non-redundantly”
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A#[I1, I2] -- Remap, both gather and scatter

▪ (Potential) all-to-all processors communication to distribute 
routing information implied by I1, I2

▪ (Potential) all-to-all processors communication to route the 
elements of A

▪ Heavily optimized, esp. to save first all-to-all

 Full information online in Chapter 8 of ZPL 
Programmer’s Guide or in dissertations

 “What you see is what you get” performance model 
… large performance features visible

ZPL is only parallel language with performance model 
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ZPL allocates regions (and therefore arrays) to 
processors so many contiguous elements are 
assigned to each to exploit locality

 Array Allocation Rules

 Union the regions together to compute the bounding region

 Get processor number and arrangement from the 
command line

 Allocate the bounding region to the processors

Let’s walk-through the process
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Create the “footprint” of the regions by aligning indices

Technical point: Only interacting regions are 
“unioned,” e.g. if region R is used to declare an array 
which is manipulated in the scope of region S, R and 
S are said to interact

=

Bounding 

2D Region

The bounding region is allocated to processors

i,j
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The number and arrangement of processors is given by the 
programmer on the command line [or programmed; more 
later]

 For the purpose of [understanding] allocation, processors are 
viewed as being arranged in grids … this is simply an 
abstraction:

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7

P2

P1

P3

P0

The CTA does not favor 
any arrangement, so use 
a generic one
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The bounding region is allocated to processor grid in 
the “most balanced” way possible

▪ Regions inherit their position from their position in the 
bounding region

▪ Array elements inherit their positions from their index’s 
position in the region, and hence their allocation



P0 P1

P3P2
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 1D is segmented; 
 2D is panels, strips or blocks; 

 3D ...

P2P1 P3P0

P1P0

P2 P3

P2P1 P3P0

P1

P0

P2

P3

ZPL uses Ceiling/Floor and includes fluff
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Such allocations are mostly standard, but one fact makes 
ZPL performance clear:

ZPL has the property that for any arrays A, B of the same rank 
and having an element [i, …, k], that element of each will 
be stored on the same processor

Corollary:  Element-wise operations do not require any 
communication: [R] … A+B … 

=
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program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

BigR = [0..n+1,0..n+1];
direction  N = [-1, 0]; NE = [-1, 1]; 

E = [ 0, 1]; SE = [ 1, 1];
S = [ 1, 0]; SW = [ 1,-1];
W = [ 0,-1]; NW = [-1,-1];

var NN : [R] ubyte; TW : [BigR] boolean;
procedure Life();

[R] begin
TW := (Index1 * Index2) % 2; -- Make data
repeat
NN := (TW@N + TW@NE + TW@E + TW@SE 

+ TW@S + TW@SW + TW@W + TW@NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
end;

Code for performance costs implied by WYSIWYG
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Blue: Effectively no time … each processor does set-
up and scalar computation locally
Pink: Element-wise computation perfectly parallel … 
Indexi constants are generated

How is TW allocated on 4 procs?  Three basic choices...

Delay is cl
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Purple:  Element-wise computation with 
@ operations … expect l delay for @ (all 
at once if synch’ed) and then full parallel 
speed-up for local operations
Red: Reduce uses Ladner/Fischer parallel 
prefix, with local combining and log(P) tree 
to communicate … potentially the most 
complex operation in Life

Knowing the relative costs of the program allows us to 
optimize it for some purpose … count generations 
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 Compute count of generations before life dies out
program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1]; 

W = [ 0,-1];               E = [ 0, 1]; 
SW = [ 1,-1]; S = [ 1, 0]; SE = [ 1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat           

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE 

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;

Add a counter to previous program
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Testing on each generation my be excessive -- analyze
program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1]; 

W = [ 0,-1];               E = [ 0, 1]; 
SW = [ 1,-1]; S = [ 1, 0]; SE = [ 1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat           

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE 

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;
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config var n : integer = 512; epoch : integer = 50;
...
var NN:[R] ubyte; TW,TWo:[R] boolean; count:integer = 0;
procedure Live(integer:gens);

begin var i : integer;
for i := 1 to gens do

NN := (TW@^N + TW@^NE + TW@^E + TW@^SE 
+ TW@^S + TW@^SW + TW@^W + TW@^NW);

TW := (NN=2 & TW) | NN=3;
end;

end;
procedure Life();

[R] begin read(TW); 
while |<<TW do 
TWo:=TW; Live(epoch); count += epoch;

end;
count -= epoch; TW := TWo; -- Roll back
repeat
Live(1); count += 1;

until ! |<<TW;
writeln(count, " generations");
end;

Analyze Costs 

Do Epochs

Recover State

Redo World End

Report
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WYSIWYG, a key tool for parallel algorithm design … 
work through the logic of balancing costs

 There are dozens (hundreds?) of matrix product 
algorithms … which do you want?

MM is a common building block, so someone else should have done this 
(vdG&W did!) but we use it as an example of process

 Two popular choices are 
▪ Cannon’s algorithm

▪ SUMMA

 Which is better as a ZPL program, i.e. better for the 
CTA model
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c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41

Compute: C = AB as follows ...

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step at a time

Elements arriving at a place are 
multiplied, added in




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c43 = c43 + a41b13





Second steps ...

c43 = c43 + a42b23

c33 = c33 + a31b13

c42 = c42 + a41b12

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a42 a43 a44

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41
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Pack skewed arrays into dense 
arrays by rotation; process all 
n2 elements at once

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13   c11 c12 c13  a11 a12 a13 a14

b12 b23   c21 c22 c23  a22 a23 a24 a21 

b11 b22 b33   c31 c32 c33  a33 a34 a31 a32 

b21 b32 b43   c41 c42 c43  a44 a41 a42 a43 

b31 b42       b11 b22 b33 

b41           b21 b32 b43 

b31 b42 b13 

b41 b12 b23 
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for i := 2 to m do

[i..m, 1..n] A := A@^right;  -- Shift last m-i rows left

end;

a11 a12 a13 a14            a11 a12 a13 a14

a21 a22 a23 a24            a22 a23 a24 a21

a31 a32 a33 a34            a32 a33 a34 a31

a41 a42 a43 a44            a42 a43 a44 a41

Initial i = 2 step

a11 a12 a13 a14            a11 a12 a13 a14

a22 a23 a24 a21            a22 a23 a24 a21

a33 a34 a31 a32            a33 a34 a31 a32

a43 a44 a41 a42            a44 a41 a42 a43

i = 3 step                                                               i = 4 step

… And Skew B vertically
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For completeness, when A is mn, B is np, 
and the declarations are …

region      Lop = [1..m, 1..n];

Rop = [1..n, 1..p];

Res = [1..m, 1..p];

direction right = [ 0, 1];

below = [ 1, 0];

var           A : [Lop] double;

B : [Rop] double;

C : [Res] double;
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Skew A, Skew B, {Multiply, Accum, Rotate}

for i := 2 to m do -- Skew A

[i..m, 1..n] A := A@^right;

end;

for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;

end;

[Res] C := 0.0;      -- Initialize C

for i := 1 to n do -- For common dim

[Res] C := C + A*B;  -- For product

[Lop] A := A@^right; -- Rotate A

[Rop] B := B@^below; -- Rotate B

end;
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var   Col : [1..m,*] double; -- Col flood array

Row : [*,1..p] double; -- Row flood array

A : [1..m,1..n] double;

B : [1..n,1..p] double;

C : [1..m,1..p] double;

...

[1..m,1..p]    C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;
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 Analyze the choices with WYSIWYG …

 SUMMA has shortest code [so what?]

 Cannon’s uses only local communication

 The two algorithms abstractly: 

Cannon’s 
Declare 
Skew A 
Skew B 
Initialize 
loop til n       
C+=A*B 
Rotate A,B

SUMMA
Declare 
Initialize 
loop til n 
Flood A 
Flood B 
C+=A*B
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 Step one is to cancel out the equivalent parts of the two 
solutions … they’ll work the same

 For MM the comparison reduces to whether the initial 
skews and the iterated rotates are more/less expensive 
than iterated floods 

Cannon’s 
Declare 
Skew A 
Skew B 
Initialize 
loop til n       
C+=A*B 
Rotate A,B

SUMMA
Declare 
Initialize 
loop til n 
Flood A 
Flood B 
C+=A*B
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Skew A, Skew B, {Multiply, Accum, Rotate}

for i := 2 to m do -- Skew A

[i..m, 1..n] A := A@^right;

end;

for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;

end;

[Res] C := 0.0;      -- Initialize C

for i := 1 to n do -- For common dim

[Res] C := C + A*B;  -- For product

[Lop] A := A@^right; -- Rotate A
[Rop] B := B@^below; -- Rotate B
end;

Comms have l latency, 
but much data motion
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The flood is (likely) more expensive than l time, 
but less that l(log P)   ... probably much less, 
and there are fewer of them

[1..m,1..p]    C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;

SUMMA does not require as much 
comm or data motion as Cannon’s, nor 
does it “touch” the array as much
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 We assert that SUMMA is the better algorithm
 Though it does “potentially more expensive” 

communication, it does less of it

 It’s “nonredundant” flood arrays cache well

 There is less data motion
 Analytically ...

 Test the assertion experimentally…
Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin, 

Lawrence Snyder, and W. Derrick Weathersby. ZPL's WYSIWYG performance model.

In Proceedings of the IEEE Workshop on High-Level Parallel Programming Models and 

Supportive Environments, 1998.
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Y-axis is time …

SUMMA

Cannon
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 WYSIWYG is the worst case … optimizations are 
possible … 

 Sequential Optimizations e.g. stencil opts

Sum of orange items performed once

 Parallel Optimizations e.g. communication motion --
prefetching to overlap communication with 
computation

7 additions are 
used for each 
element, but 
fewer adds are 
sufficient

 
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ZPL uses a different approach to performance than 
other parallel languages

 Historically, performance came from compiler 
optimizations that might/might not fire …

 WYSIWYG guarantees (it’s a contract) that ZPL 
programs will work a certain way …

 It may be better … WYSIWYG is a worst case that often 
doesn’t materialize

 Aggressive optimizations help a lot

If there are any surprises, they’ll be pleasant
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 Data and processing allocations are given
 All constructs of the language are explained in terms 

of the allocations and the CTA
 Result: relative, worst-case statement of how the 

computation runs anywhere … rely on it 
 Optimizations can improve on the times, but if they 

don’t fire, nothing is lost 

The best use of the WYSIWYG model is to 
make comparative programming decisions
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 The reason we learned ZPL was because it 
illustrates how a high level parallel language can 
give access to the CTA machine model, allowing 
programmers to write intelligent parallel 
programs easily and portably

 You want your programming language to have 
that property, too!

 If it doesn’t, dump it and use a library that lets you 
apply the CTA model yourself 
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 ZPL Classic (the portion we learned) is a 
global view language, meaning it’s 

 P-independent, all executions of the program 
produce the same result regardless of the number 
or arrangement of the processors

 Functional languages tend to be P-independent

 P-independent is a very desirable property from a 
programmers view

 Another is NESL
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 NESL was developed by Guy Belloch at CMU
 Key structure is a sequence
 [2 14 -5 0 7]

 "sequences can be composed of characters"

 ["sequence" "elements" "can be sequences"]

provided all are composed of the same atomic type

 Basic operation is apply to each, written with set notation
{a+1: a in [2 13 0 4 8]} producing [3 14 1 5 9]
{a+b: a in [1 2 3]; b in [8 7 6]} producing [9 9 9]



78

 Compare NESL dot product with UPC
function dotprod(a,b) = sum({x*y: x in a; y in b});

dotprod([2, 3, 1], [6, 1, 4]);

producing [19]

 “Nested” in NESL refers to nested 

parallelism:

 Applying parallelism and within each parallel 

operation, applying more parallelism

 In NESL, apply to each ops in apply to each

 Consider NESL’s matrix multiplication algorithm
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 The function is defined
function matrix_multiply(A,B)= 

{{sum({x*y : x in rowA; y in columnB}) 

:   columnB in transpose(B)} 

:   rowA in A}

 Three apply to each braces

 Outer brace applied to rowA, in ||

 Next brace applied to columnB, transposed, in ||

 Inner brace applied to each of n2 row/col pairs
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 NESL researchers identify two types of 
complexity in a program:
 Work, which is the number of basic operations

▪ MM has O(n3) work; dotproduct has O(n) work

 Depth, which is the longest chain of dependences; 
e.g. sum has O(log2 n) depth
▪ Both MM and dotproduct have O(log2 n) depth

 Like the PRAM, these metrics do not yield a 
performance model as they are not 
conditioned on P, l, locality, etc.



 Parallel programming will be convenient and 
non-disruptive when languages provide the 
kinds of abstractions programmers need

 ZPL abstracts above the HW, but not so far 
that we loose track of the underlying (logical) 
machine

▪ ZPL achieves performance-portability

▪ ZPL “works” because it has a built-in performance 
model: WYSIWYG

▪ You use a performance model – it might as well be one 
that the compiler-writers target
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 Write a ZPL program to solve the Red/Blue 
simulation using a new termination criterion, 
and analyze its performance w.r.t. WYSIWYG 
model

 Terminate if any row or column outside the range 
[toofew, toomany] (N.B. This is different from the 
earlier assignment.)

 Classify the statements in terms of their 
approximate cost using the WYSIWYG model

 Submit a document with program & analysis
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