
Producing languages with better abstractions is possible …
why are there not more such languages?

 We have acknowledged that present day ||
programming facilities are inadequate … a
good question would be, what do we want?

 Today we give two languages that exhibit a
high level of parallel abstraction

 ZPL from UW

 Nesl from CMU

 The languages have weaknesses, but mostly
we’re focused on their strengths as exemplars

5/11/2010 © 2010 Larry Snyder, CSE 2

3

 ZPL, a research parallel language w/ 3 goals
 Performance == as good as platform-specific

custom code

 Portability == runs well on all platforms

 Convenience == clean, easy-to-understand
programs; no parallel grunge

 Developed at UW by 6 really smart grad
students: Brad Chamberlain, Sung-Eun Choi,
Steve Deitz, E Chris Lewis, Calvin Lin, Derrick
Weathersby

5/11/2010 © 2010 Larry Snyder, CSE 4

Secosky Lewis Snyder Weathersby

Ngo
Watson

Choi LinChamberlain
Deitz

5

 ZPL is our representative high-level parallel language …
few competitors because achieving those goals is tough

 To realize a solution …
 ZPL is designed and built on the CTA

 ZPL is the first high-level language to achieve “performance
portability”

 ZPL presents programmers with a visually-cued performance
model: WYSIWYG

 ZPL is insensitive to shared or message passing architectures,
making it universal

ZPL is “designed from first principles”

6

 Life: organisms w/2,3 neighbors live, birth occurs w/ 3
neighbors; death otherwise; world is a torus

 Organism in next generation if position is alive in this
generation and has 2 neighbors, or in this generation it
has 3 neighbors

 Or: (thisGen && neighbors== 2) || (neighbors==3)

See Life As An Array Computation

7

 Count neighbors by adding organisms (bits)

 Consider the sum of these arrays from a
single cell’s perspective …

Edges wrap around 

:= + + + + + + +

8

Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE

+ TW@^W + TW@^E

+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);

until ! (|<< TW);

Add up

neighbor bits

Apply rules

to live by
“Or” bits in world

to see if any alive

:= + + + + + + +

 The torus world says that each direction
wraps – expressed as @^

5/11/2010 © 2010 Larry Snyder, CSE 9

TW@^nw is the array of Northwest neighbors

10

program Life; Conway's Life

config const n : integer = 10; The world is n n; default to 10

region R = [1..n, 1..n]; Index set of computation

direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w = [0, -1]; e = [0, 1];

sw = [1, -1]; so = [1, 0]; se = [1, 1];

var TW : [R] boolean; Problem state, The World

NN : [R] sbyte; Work array, Number of Neighbors

procedure Life(); Entry point procedure

begin -- Initialize the world I/O or other data specification

[R] repeat Region R ==> apply ops to all indices

NN := TW@^nw + TW@^no + TW@^ne Add 8 nearest neighbor bits (type

+ TW@^w + TW@^e coercion like C); carat(^) means

+ TW@^sw + TW@^so + TW@^se; toroidal neighbor reference

TW := (TW & NN = 2) | (NN = 3); Update world with next generation

until !(|<< TW); Continue till all die out

end;

11

program Life;

config const n : integer = 10;

region R = [1..n, 1..n];

direction nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];

w = [0, -1]; e = [0, 1];

sw = [1, -1]; so = [1, 0]; se = [1, 1];

var TW : [R] boolean;

NN : [R] sbyte;

procedure Life();

begin -- Initialize the world

[R] repeat

NN := TW@^nw + TW@^no + TW@^ne

+ TW@^w + TW@^e

+ TW@^sw + TW@^so + TW@^se;

TW := (TW & NN = 2) | (NN = 3);

until !(|<< TW);

end;

Topics

“Typical” Form

Regions

Directions

Config Vars

Reduce

12

 Regions are index sets … not arrays
 Any number of dimensions, any bounds

region V = [1..n];

region R = [1..m, 1..m]; BigR = [0..m+1,0..m+1];

region Left = [1..m, 1];

region Odds = [1..n by 2];

 Short names are preferred--regions are used
everywhere--and capitalization is a coding
convention

 Naming regions is recommended, but literals are
OK

13

 Regions are used to declare arrays … it’s like
adding data to the indices

 Capitals are used by convention to distinguish
arrays from scalars

 Named or literal regions are OK
var A, B, C : [R] double;

var Seq : [V] boolean;

var Huge : [0..2^n, -5..5] float;

 Regions are used once; no array has more than
one region component

 Regions are a source of parallelism…

14

 Statements containing arrays need a region to specify
which items participate

[1..n,1..n] A := B + C;

[R] A := B + C; -- Same as above

 Regions are scoped
[R] begin All array computations in compound

… statements are performed over indices

[Left] … in [R], except statement prefixed by

end; [Left]

 Operations over region elements performed in parallel

15

 Let A, B be arrays over [1..n,1..n], and C be an array
over [2..n-1,2..n-1] as in

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

 Then
[2..n-1,2..n-1] A := C;

[2..n-1,2..n-1] C := A + B;

[2..n-1,2] A := B;

:=

:= +

:=

16

The @ operator combines regions with directions to allow
references to neighbors

 Two forms, standard(@) and wrapping(@^)

 Syntax: A@east A@^east
 Semantics: the direction is added to elements of region

giving new region, whose elements are referenced; think
of a region translation

[1..n,1..n] A := A@^east; -- shift array left with wrap
around

 @-modified variables can appear on l or r of :=

:=

17

 Let
var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

direction east = [0,1]; ne = [-1,1];

 Then
[2..n-1,2..n-1] A := C@^east;

[2..n-1,2..n-1] A := C@^ne + B@^ne;

[2..n-1,2] A@east := B;
:=

:=

:= +

18

 Reduction (<<) “reduces” the size of an array by
combining its elements

 Associative (and commutative) operations are
+<<, *<<, &<<, |<<, max<<, min<<

[1..n, 1..n] biggest := max<<A;

[R] all_false := |<< TW;

 All elements participate; order of evaluation is
unspecified … caution floating point users

 ZPL also has partial reductions, scans, partial
scans, and user defined reductions and scans

19

 The importance of regions motivates region operators
 Prepositions: at, of, in, with, by … take region and

direction and produce a new region

▪ at translates the region’s index set in the direction

▪ of defines a new region adjacent to the given region
along direction edge and of direction extent

region R = [1..8,1..8];
C = [2..7,2..7];

var X, Y : [R] byte;

direction e = [0,1];
n = [-1,0];
ne = [-1,1];

[n of C]Y:= [C]Y:=X@ne [R]X:= [C]X:= [C at e]Y:=

execution

20

 Model heat defusing through a plate
 Represent as array of floating point

numbers
 Use a 4-point stencil to model defusing
 Main steps when thinking globally

Initialize

Compute new averages

Find the largest error

Update array

… until convergence

High-level Language should match high-level thinking

21

program Jacobi;
config var n : integer = 512;

eps : float = 0.00001;
region R = [1..n, 1..n];

BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; S = [1, 0];

E = [0, 1]; W = [0,-1];
var Temp : [R] float;

A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin

[BigR] A := 0.0;
[S of R] A := 1.0;

repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err := max<< abs(Temp - A);
A := Temp;

until err < eps;
end;

Initialize

Compute new averages

Find the largest error

Update array

… until convergence

22

 ZPL has ‘full’ reduce: +<<, *<<, max<<, …
 ZPL also has ‘partial’ reduce

 Applies reduce across rows, down columns,…

 Requires two regions:

▪ One region on statement, as usual

▪ One region between operator and operand

[1..n,1] B := +<< [1..n,1..n] A; -- add across rows

[1,1..n] C := min<<[1..n,1..n] A; -- min down columns

 In these examples, result stored in 1st row/col

Collapsed dimensions indicate reduce dimension(s)

23

 Reduce “reduces” 1 or more dimensions
 Opposite is flood -- fill 1 or more dimensions

[1..n,1..n] B := >> [1..n, 1] A;

[1..n,1..n] B := >> [1..n, n] A;

 The replication uses multicast, often an
efficient operation

:=

:=

24

[1..m,1] MaxC := max<<[1..m,1..n] A; Max of each row

[1..m,1..n] A := A / >>[1..m,1] MaxC; Scale each row

 Flooding distributes values (efficiently) so that
the computation is element-wise … lowers
communication

2 4 4 2

0 2 3 6

3 3 3 3

8 2 4 0
A

4

6

3

8
MaxC >>[1..m,1] MaxC

4 4 4 4

6 6 3 6

3 3 3 3

8 8 8 8

Keep MaxC a 2D array to control allocation

25

Flood dimensions recognize that specifying a particular column
over specifies the situation

Need a generic column -- or a column that does not have a
specific position … use ‘*’ as value

region FlCol = [1..m, *]; -- Flood regions

FlRow = [*, 1..n];

var MaxC : [FlCol] double; -- An m length col

Row : [FlRow] double; -- An n length row

[1..m,*] MaxC := max<< [1..m,1..n] A; -- Better

max

......

Think of column in

every position

26

Since flood arrays have some unspecified
dimensions, they can be “promoted” in those
dimensions, i.e logically replicated

 Scaling a value by max of row w/o flooding:

[1..m,*] MaxC := max<< [1..m,1..n] A;

[1..m,1..n] A := A / MaxC; --Scale A;

The promotion of flooded arrays is only logical

27

 Lower dimensional arrays can specify a
singleton or a flood … it affects allocation

Region [1..n,1..n] allocated
to 4 processors

Regions [1..n,1] and [n,1..n]
allocated to 4 processors

Regions [1..n,*] and [*,1..n]
allocated to 4 processors

28

For each col-row in the common dimension, flood the item and combine it...
var A:[1..m, 1..n] double;

B:[1..n, 1..p] double;

C:[1..m, 1..p] double;

Col:[1..m,*] double;

Row: [*, 1..p] double;

...

[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end;;

Inherit the

prevailing

dimension

29

c11 c12 c13 a11 a12 a13 a14 b11 b12 b13

c21 c22 c23 a21 a22 a23 a24 b21 b22 b23

c31 c32 c33 a31 a32 a33 a34 b31 b32 b33

c41 c42 c43 a41 a42 a43 a44 b41 b42 b43

a11 a11 a11

a21 a21 a21

a31 a31 a31

a41 a41 a41

b11 b12 b13

b11 b12 b13

b11 b12 b13

b11 b12 b13

a11b11 a11b12 a11b13

a21b11 a21b12 a21b13

a31b11 a31b12 a31b13

a41b11 a41b12 a41b13



Col Row C

SUMMA is the easiest MM algorithm to program in ZPL

van de Geijn & Watts say it’s the fastest machine independent

=

30

For each col-row in the common dimension, flood the
item and combine it...

[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end;

--- or, more simply ---

for k := 1 to n do

[1..m,1..p] C += (>>[,k] A)*(>>[k,] B);

end;

31

If flooding is so good for columns/rows, why not use it
for whole planes?
region IK = [1..n,*,1..n];

JK = [*,1..n,1..n];

IJ = [1..n,1..n,*];

IJK = [1..n,1..n,1..n];

[IJ] A2 := >>A#[Index1, Index2];

[JK] B2 := >>B#[Index2, Index3];

[IK] C := +<<[IJK](A2*B2);

Input

A2

B2

C

32

 Partial scans are possible too, but unlike
reduce they do not reduce dimensionality,
so the compiler cannot tell which
dimension to reduce … so specify

+||[2]A is a partial scan in the 2nd dimension
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

+||[2]

33

 The operators for reduce, scan and flood
are suggestive …

▪ Reduce << produces a result of smaller size

▪ Scan || produces a result of the same size

▪ Flood >> produces a result of greater size







34

 ZPL comes with “constant arrays” of any size
 Indexi means indices of the ith dimension
[1..n,1..n]begin

Z := Index1; -- fill with first index

P := Index2; -- fill with second index

L := Z=P; -- define identity array

end;

Indexi arrays: compiler created using no space

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Index1 Index2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

L

35

The remap operator (#) implements general data
motion, including rank change

 Two cases:
Gather, A := B#[C1,C2];

Scatter, A#[C1,C2] := B;
 For r rank array, provide r rank r arrays giving indices

to be referenced
 Transpose: AT[i,j] = A[j,i]

[R] AT := A#[Index2,Index1]; -- Standard Idiom for transpose

36

The index array in the ith position gives the
indices for the ith dimension

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Index2 Index1

a b c d

e f g h

i j k l

m n o p

A

a e i m

b f j n

c g k o

d h l p

:= # ,

AT

Gather: For a position, where does value come from

a c e b d f  a b c d e f#[1 3 5 2 4 6]

37

 Scatter Remap has potential problem in that values can
map to the same place … order is unspecified … use +=,
etc. if not unique

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Index2 Index1

a b c d

e f g h

i j k l

m n o p

A

a e i m

b f j n

c g k o

d h l p

:=# ,

AT

Scatter: For a value, where does it go?

a d b e c f #[1 3 5 2 4 6]  a b c d e f

38

 ZPL was built on the CTA
 Semantics of operation customized to CTA

 Compiler targets CTA machines

 Performance model reflects the costs of CTA
 The benefit of building on the CTA:
 Programming constraints are realistic, scalable

 Programs are portable with performance

 Programmers can reliably estimate performance
and observe it (or better) on every platform

Building on CTA is a key contribution of ZPL

39

 We now explain ZPL’s performance model
 What is it?

 It is the way programmers know how fast (or
slow) the statements of their programs will run”

 We all “know” the performance model for C
 Every || language should have a performance

model
 Learning this idea is why we’ve learned ZPL

40

 How does it work?

 First, the language designers, knowing the CTA,
formulate operations compatible with it

 The compiler “targets” the CTA

 The performance of the language features is
expressed in terms of CTA concepts and “given”
to the programmers

 In ZPL’s case the performance is “syntactically
visible” and called the WYSIWYG performance
model

41

To state how ZPL performs operations, each operator’s
work and communication needs are given …
 Performance is given in terms of the CTA (and RAM)

 Performance is relative, e.g. x is more expensive in
communication than y -- absolute not possible

 To start allocate work (owner computes) and data:

P=4 allocations

for 2D arrays:

columns,

rows, blocks

42

Describe the costs for all language constructs
 Declarations, control flow have negligible cost
 Scalar computations are redundant, also “free”
 Array operations costs depend on operators:

 Rules…
A + B -- Element-wise array operations

▪ No communication

▪ Per processor work is comparable to C

▪ Work fully parallelizable, i.e. time = work/P

43

A@^east -- @ references including @^

Arrays allocated with “fluff” for every direction used

▪ Nearest neighbor point-to-point communication of edge elements,
i.e. small communication, little congestion

▪ Edge communication benefits from surface-to-volume advantage: an
n increase in elements, adds n comm load

▪ Local data motion, possibly

P2P1 P3P0

44

+<<A -- Reduce

▪ Accumulate local elements

▪ O(log P) tree accumulation, or better

▪ Broadcast, which is worst case O(log P), but usu. less

+||A -- Scan

▪ Accumulate local elements

▪ Ladner/Fischer O(log P) tree parallel prefix logic

▪ Update of local elements

>>[1..n,k]A -- Flood

▪ Multicast array segments, O(log P) w.c.

▪ Represent data “non-redundantly”

45

A#[I1, I2] -- Remap, both gather and scatter

▪ (Potential) all-to-all processors communication to distribute
routing information implied by I1, I2

▪ (Potential) all-to-all processors communication to route the
elements of A

▪ Heavily optimized, esp. to save first all-to-all

 Full information online in Chapter 8 of ZPL
Programmer’s Guide or in dissertations

 “What you see is what you get” performance model
… large performance features visible

ZPL is only parallel language with performance model

46

ZPL allocates regions (and therefore arrays) to
processors so many contiguous elements are
assigned to each to exploit locality

 Array Allocation Rules

 Union the regions together to compute the bounding region

 Get processor number and arrangement from the
command line

 Allocate the bounding region to the processors

Let’s walk-through the process

47

Create the “footprint” of the regions by aligning indices

Technical point: Only interacting regions are
“unioned,” e.g. if region R is used to declare an array
which is manipulated in the scope of region S, R and
S are said to interact

=

Bounding

2D Region

The bounding region is allocated to processors

i,j

48

The number and arrangement of processors is given by the
programmer on the command line [or programmed; more
later]

 For the purpose of [understanding] allocation, processors are
viewed as being arranged in grids … this is simply an
abstraction:

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7

P2

P1

P3

P0

The CTA does not favor
any arrangement, so use
a generic one

49

The bounding region is allocated to processor grid in
the “most balanced” way possible

▪ Regions inherit their position from their position in the
bounding region

▪ Array elements inherit their positions from their index’s
position in the region, and hence their allocation



P0 P1

P3P2

50

 1D is segmented;
 2D is panels, strips or blocks;

 3D ...

P2P1 P3P0

P1P0

P2 P3

P2P1 P3P0

P1

P0

P2

P3

ZPL uses Ceiling/Floor and includes fluff

51

Such allocations are mostly standard, but one fact makes
ZPL performance clear:

ZPL has the property that for any arrays A, B of the same rank
and having an element [i, …, k], that element of each will
be stored on the same processor

Corollary: Element-wise operations do not require any
communication: [R] … A+B …

=

52

program Life;
config var n : integer = 512;
region R = [1..n, 1..n];

BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; NE = [-1, 1];

E = [0, 1]; SE = [1, 1];
S = [1, 0]; SW = [1,-1];
W = [0,-1]; NW = [-1,-1];

var NN : [R] ubyte; TW : [BigR] boolean;
procedure Life();

[R] begin
TW := (Index1 * Index2) % 2; -- Make data
repeat
NN := (TW@N + TW@NE + TW@E + TW@SE

+ TW@S + TW@SW + TW@W + TW@NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
end;

Code for performance costs implied by WYSIWYG

53

Blue: Effectively no time … each processor does set-
up and scalar computation locally
Pink: Element-wise computation perfectly parallel …
Indexi constants are generated

How is TW allocated on 4 procs? Three basic choices...

Delay is cl

54

Purple: Element-wise computation with
@ operations … expect l delay for @ (all
at once if synch’ed) and then full parallel
speed-up for local operations
Red: Reduce uses Ladner/Fischer parallel
prefix, with local combining and log(P) tree
to communicate … potentially the most
complex operation in Life

Knowing the relative costs of the program allows us to
optimize it for some purpose … count generations

55

 Compute count of generations before life dies out
program Life;
config var n : integer = 512;
region R = [1..n, 1..n];
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1];

W = [0,-1]; E = [0, 1];
SW = [1,-1]; S = [1, 0]; SE = [1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;

Add a counter to previous program

56

Testing on each generation my be excessive -- analyze
program Life;
config var n : integer = 512;
region R = [1..n, 1..n];
direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1];

W = [0,-1]; E = [0, 1];
SW = [1,-1]; S = [1, 0]; SE = [1, 1];

var NN:[R] ubyte; TW:[R] boolean; count:integer = 0;
procedure Life();

[R] begin read(TW); -- Input
repeat

count += 1;
NN := (TW@^N + TW@^NE + TW@^E + TW@^SE

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (NN=2 & TW) | NN=3;

until !|<<TW;
writeln(count, " generations");

end;

57

config var n : integer = 512; epoch : integer = 50;
...
var NN:[R] ubyte; TW,TWo:[R] boolean; count:integer = 0;
procedure Live(integer:gens);

begin var i : integer;
for i := 1 to gens do

NN := (TW@^N + TW@^NE + TW@^E + TW@^SE
+ TW@^S + TW@^SW + TW@^W + TW@^NW);

TW := (NN=2 & TW) | NN=3;
end;

end;
procedure Life();

[R] begin read(TW);
while |<<TW do
TWo:=TW; Live(epoch); count += epoch;

end;
count -= epoch; TW := TWo; -- Roll back
repeat
Live(1); count += 1;

until ! |<<TW;
writeln(count, " generations");
end;

Analyze Costs

Do Epochs

Recover State

Redo World End

Report

58

WYSIWYG, a key tool for parallel algorithm design …
work through the logic of balancing costs

 There are dozens (hundreds?) of matrix product
algorithms … which do you want?

MM is a common building block, so someone else should have done this
(vdG&W did!) but we use it as an example of process

 Two popular choices are
▪ Cannon’s algorithm

▪ SUMMA

 Which is better as a ZPL program, i.e. better for the
CTA model

59

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41

Compute: C = AB as follows ...

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step at a time

Elements arriving at a place are
multiplied, added in





60

c43 = c43 + a41b13





Second steps ...

c43 = c43 + a42b23

c33 = c33 + a31b13

c42 = c42 + a41b12

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a42 a43 a44

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41

61

Pack skewed arrays into dense
arrays by rotation; process all
n2 elements at once

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13 c11 c12 c13 a11 a12 a13 a14

b12 b23 c21 c22 c23 a22 a23 a24 a21

b11 b22 b33 c31 c32 c33 a33 a34 a31 a32

b21 b32 b43 c41 c42 c43 a44 a41 a42 a43

b31 b42 b11 b22 b33

b41 b21 b32 b43

b31 b42 b13

b41 b12 b23

62

for i := 2 to m do

[i..m, 1..n] A := A@^right; -- Shift last m-i rows left

end;

a11 a12 a13 a14 a11 a12 a13 a14

a21 a22 a23 a24 a22 a23 a24 a21

a31 a32 a33 a34 a32 a33 a34 a31

a41 a42 a43 a44 a42 a43 a44 a41

Initial i = 2 step

a11 a12 a13 a14 a11 a12 a13 a14

a22 a23 a24 a21 a22 a23 a24 a21

a33 a34 a31 a32 a33 a34 a31 a32

a43 a44 a41 a42 a44 a41 a42 a43

i = 3 step i = 4 step

… And Skew B vertically

63

For completeness, when A is mn, B is np,
and the declarations are …

region Lop = [1..m, 1..n];

Rop = [1..n, 1..p];

Res = [1..m, 1..p];

direction right = [0, 1];

below = [1, 0];

var A : [Lop] double;

B : [Rop] double;

C : [Res] double;

64

Skew A, Skew B, {Multiply, Accum, Rotate}

for i := 2 to m do -- Skew A

[i..m, 1..n] A := A@^right;

end;

for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;

end;

[Res] C := 0.0; -- Initialize C

for i := 1 to n do -- For common dim

[Res] C := C + A*B; -- For product

[Lop] A := A@^right; -- Rotate A

[Rop] B := B@^below; -- Rotate B

end;

65

var Col : [1..m,*] double; -- Col flood array

Row : [*,1..p] double; -- Row flood array

A : [1..m,1..n] double;

B : [1..n,1..p] double;

C : [1..m,1..p] double;

...

[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end;

66

 Analyze the choices with WYSIWYG …

 SUMMA has shortest code [so what?]

 Cannon’s uses only local communication

 The two algorithms abstractly:

Cannon’s
Declare
Skew A
Skew B
Initialize
loop til n
C+=A*B
Rotate A,B

SUMMA
Declare
Initialize
loop til n
Flood A
Flood B
C+=A*B

67

 Step one is to cancel out the equivalent parts of the two
solutions … they’ll work the same

 For MM the comparison reduces to whether the initial
skews and the iterated rotates are more/less expensive
than iterated floods

Cannon’s
Declare
Skew A
Skew B
Initialize
loop til n
C+=A*B
Rotate A,B

SUMMA
Declare
Initialize
loop til n
Flood A
Flood B
C+=A*B

68

Skew A, Skew B, {Multiply, Accum, Rotate}

for i := 2 to m do -- Skew A

[i..m, 1..n] A := A@^right;

end;

for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;

end;

[Res] C := 0.0; -- Initialize C

for i := 1 to n do -- For common dim

[Res] C := C + A*B; -- For product

[Lop] A := A@^right; -- Rotate A
[Rop] B := B@^below; -- Rotate B
end;

Comms have l latency,
but much data motion

69

The flood is (likely) more expensive than l time,
but less that l(log P) ... probably much less,
and there are fewer of them

[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end;

SUMMA does not require as much
comm or data motion as Cannon’s, nor
does it “touch” the array as much

70

 We assert that SUMMA is the better algorithm
 Though it does “potentially more expensive”

communication, it does less of it

 It’s “nonredundant” flood arrays cache well

 There is less data motion
 Analytically ...

 Test the assertion experimentally…
Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin,

Lawrence Snyder, and W. Derrick Weathersby. ZPL's WYSIWYG performance model.

In Proceedings of the IEEE Workshop on High-Level Parallel Programming Models and

Supportive Environments, 1998.

71

Y-axis is time …

SUMMA

Cannon

72

 WYSIWYG is the worst case … optimizations are
possible …

 Sequential Optimizations e.g. stencil opts

Sum of orange items performed once

 Parallel Optimizations e.g. communication motion --
prefetching to overlap communication with
computation

7 additions are
used for each
element, but
fewer adds are
sufficient

 

73

ZPL uses a different approach to performance than
other parallel languages

 Historically, performance came from compiler
optimizations that might/might not fire …

 WYSIWYG guarantees (it’s a contract) that ZPL
programs will work a certain way …

 It may be better … WYSIWYG is a worst case that often
doesn’t materialize

 Aggressive optimizations help a lot

If there are any surprises, they’ll be pleasant

74

 Data and processing allocations are given
 All constructs of the language are explained in terms

of the allocations and the CTA
 Result: relative, worst-case statement of how the

computation runs anywhere … rely on it
 Optimizations can improve on the times, but if they

don’t fire, nothing is lost

The best use of the WYSIWYG model is to
make comparative programming decisions

75

 The reason we learned ZPL was because it
illustrates how a high level parallel language can
give access to the CTA machine model, allowing
programmers to write intelligent parallel
programs easily and portably

 You want your programming language to have
that property, too!

 If it doesn’t, dump it and use a library that lets you
apply the CTA model yourself

76

 ZPL Classic (the portion we learned) is a
global view language, meaning it’s

 P-independent, all executions of the program
produce the same result regardless of the number
or arrangement of the processors

 Functional languages tend to be P-independent

 P-independent is a very desirable property from a
programmers view

 Another is NESL

77

 NESL was developed by Guy Belloch at CMU
 Key structure is a sequence
 [2 14 -5 0 7]

 "sequences can be composed of characters"

 ["sequence" "elements" "can be sequences"]

provided all are composed of the same atomic type

 Basic operation is apply to each, written with set notation
{a+1: a in [2 13 0 4 8]} producing [3 14 1 5 9]
{a+b: a in [1 2 3]; b in [8 7 6]} producing [9 9 9]

78

 Compare NESL dot product with UPC
function dotprod(a,b) = sum({x*y: x in a; y in b});

dotprod([2, 3, 1], [6, 1, 4]);

producing [19]

 “Nested” in NESL refers to nested

parallelism:

 Applying parallelism and within each parallel

operation, applying more parallelism

 In NESL, apply to each ops in apply to each

 Consider NESL’s matrix multiplication algorithm

79

 The function is defined
function matrix_multiply(A,B)=

{{sum({x*y : x in rowA; y in columnB})

: columnB in transpose(B)}

: rowA in A}

 Three apply to each braces

 Outer brace applied to rowA, in ||

 Next brace applied to columnB, transposed, in ||

 Inner brace applied to each of n2 row/col pairs

80

 NESL researchers identify two types of
complexity in a program:
 Work, which is the number of basic operations

▪ MM has O(n3) work; dotproduct has O(n) work

 Depth, which is the longest chain of dependences;
e.g. sum has O(log2 n) depth
▪ Both MM and dotproduct have O(log2 n) depth

 Like the PRAM, these metrics do not yield a
performance model as they are not
conditioned on P, l, locality, etc.

 Parallel programming will be convenient and
non-disruptive when languages provide the
kinds of abstractions programmers need

 ZPL abstracts above the HW, but not so far
that we loose track of the underlying (logical)
machine

▪ ZPL achieves performance-portability

▪ ZPL “works” because it has a built-in performance
model: WYSIWYG

▪ You use a performance model – it might as well be one
that the compiler-writers target

5/11/2010 © 2010 Larry Snyder, CSE 81

 Write a ZPL program to solve the Red/Blue
simulation using a new termination criterion,
and analyze its performance w.r.t. WYSIWYG
model

 Terminate if any row or column outside the range
[toofew, toomany] (N.B. This is different from the
earlier assignment.)

 Classify the statements in terms of their
approximate cost using the WYSIWYG model

 Submit a document with program & analysis

5/11/2010 © 2010 Larry Snyder, CSE 82

