
Libraries and languages make parallel programming possible,
but rarely easy

 What was your experience with formulating a
parallel prefix computation as an infix
operation?

5/6/2010 (c) 2010 Larry Snyder 2

3

 Trees are an important component of
computing

 The “Schwartz tree” has been logical

 Trees as data structures are complicated because
they are typically more dynamic

 Pointers are generally not available

 Work well with work queue approach

 As usual, we try to exploit locality and minimize
communication

5/6/2010 (c) 2010 Larry Snyder

4

 Common in games, searching, etc

 Split: Pass 1/2 to other processor, continue
 Stop when processors exhausted

 Responsible for tree that remains

 Ideal when work is localized

5/6/2010 (c) 2010 Larry Snyder

5

 Common in graph algorithms

 Get descendants, take one and assign others
to the task queue

Key issue is managing the algorithm’s progress
5/6/2010 (c) 2010 Larry Snyder

6

 Tree algorithms often need to know how
others are progressing

 Interrupt works if it is just a search: Eureka!!

 Record - cut-offs in global variable

 Other pruning data, e.g. best so far, also global

 Classic error is to consult global too frequently

 Rethink: What is tree data structure’s role?

Write essay: Dijkstra’s algorithm is not a good… :)

5/6/2010 (c) 2010 Larry Snyder

7

 If coordination becomes too involved,
consider alternate strategies:
Graph traverse => local traverse of partitioned graph

 Local computation uses sequential tree algorithms
directly … stitch together

5/6/2010 (c) 2010 Larry Snyder

8

 Trees are a useful data structure for recording
spatial relationships: K-D trees

 Generally, decomposition is unnecessary “all
the way down” -- but this optimization
implies two different regimes

5/6/2010 (c) 2010 Larry Snyder

9

 The nodes near root can be stored
redundantly

 Processors consult local copy -- alert others to
changes

Each process

keeps copy of “cap”

nodes

5/6/2010 (c) 2010 Larry Snyder

10

 Reconceptualizing is often most effective
 Focus has not been on ||ism, but on other

stuff
 Exploiting locality

 Balancing work

 Reducing inter-thread dependences
 We produced general purpose solution

mechanisms: UD-reduce and UD-scan
 We like trees, but recognize that direct

application is not likely
5/6/2010 (c) 2010 Larry Snyder

“I don’t know what the technical characteristics
of the standard language for scientific and

engineering computation will be in the year
2000 . . . but I know it will be called Fortran.”

John Backus, c. 1980

 I have argued that a key property of a ||
programming system is that it embody an
accurate (CTA) model of computation

 Recall why:

 Wrong model leads to picking wrong algorithm

 Communication costs -- they cannot be ignored

 || programs must port, so pick universal model

 So, which of our present languages do that?
Today, we’ll see.

5/6/2010 12(c) 2010 Larry Snyder

 At least 100 serious parallel programming
languages have been developed in the last 2
decades … why isn’t the problem solved?
 Generalizing …

▪ Most languages focused on a “silver bullet” solution, but
the problem is more complex

▪ Just a few of the languages were fully implemented

▪ To be taken seriously, a language must
▪ Run serious applications fast

▪ Run on “all” parallel machines

▪ Have substantial support (docs, compilers with libraries, tools
such as debuggers and IDEs, 1-800 #)

Industry Backing

5/6/2010 13(c) 2010 Larry Snyder

 No new languages crossed the bar
 Performance challenge …

▪ Serious applications programs are huge -- it is time consuming
to write an equivalent program in any language, and it may
require domain knowledge

▪ Production programs are often well optimized -- competing
on performance implies an effective compiler and
performance debugging tools

▪ “Linear speedup” goal (P processors will yield a P-fold speed-
up) is naïve, but widely assumed

▪ Doing well on one program is not persuasive

 Portability challenges are similar

 Will any programmer learn a new language?

5/6/2010 14(c) 2010 Larry Snyder

 Today, with few exceptions, we program
using library-based facilities rather than
languages
 Sequential language + message passing in MPI

or PVM

 Sequential language + thread packages such as
P-threads, or equivalently, Java-threads

 OpenMP with a pragma-aware compiler for a
sequential programming language

 Consider each briefly before discussing new
developments

5/6/2010 15(c) 2010 Larry Snyder

 Message passing is “the lowest of the low”,
but remains in widespread use because …
 It works -- embodies the CTA || model

 It is required for clusters, supercomputers, etc.

 Achieving performance is definitely possible

 Portability is essential for long-lived programs
 What is it?
 Variations on primitive send/receive

 Process spawning, broadcast, etc.

 Programming goodies: reduce, scan, processor
groups

5/6/2010 16(c) 2010 Larry Snyder

 In message passing
 There are few abstractions to simplify the work

 Programmers must do everything except the
physical layer

 Experiments show that compared to “designed
from first principles” parallel languages, MPI
programs are 6 times larger … the extra code is
the subtle, difficult to get right, and timing-
sensitive

 Consider dense matrix multiplication

5/6/2010 17(c) 2010 Larry Snyder

MPI_Status status;
main(int argc, char **argv) {
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize, /* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rows, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine rows sent to each worker */
i, j, k, /* misc */
count;

double a[NRA][NCA], /* matrix A to be multiplied */
b[NCA][NCB], /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

A “master--slave” solution

5/6/2010 18(c) 2010 Larry Snyder

intsize = sizeof(int);
dbsize = sizeof(double);

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;

/**************************** master task ************************************/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)

b[i][j]= i*j;

Create test data --

actually inputting data is

harder

5/6/2010 19(c) 2010 Larry Snyder

/* send matrix data to the worker tasks */
averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;
for (dest=1; dest<=numworkers; dest++) {

rows = (dest <= extra) ? averow+1 : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
count = rows*NCA;
MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

offset = offset + rows;
}

5/6/2010 20(c) 2010 Larry Snyder

/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {

source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD,&status);

}
/**************************** worker task ************************************/
if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCA;
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

5/6/2010 21(c) 2010 Larry Snyder

count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {

c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

} /* end of worker */

Actual Multiply

91 “Net” Lines

5/6/2010 22(c) 2010 Larry Snyder

 Reduce and scan are called collective operations
 Reduce/scan apply to nodes, not values
 Basic operations +, *, min, max, &&, ||
 Processor groups simplify collective ops on logical

structures like “rows”, “leaves”, etc
 MPI allows user-defined scans … these have probably

never been used!
 Bottom Line: Message passing is painful to use but it

works … which makes it a solution of choice

5/6/2010 23(c) 2010 Larry Snyder

 The P-threads library, designed for concurrency, is now
also used for parallelism

 Sharing is implemented by referencing shared memory
 As mentioned, the memory not sequentially consistent

 Not CTA; P-threads use RAM performance model, a greater
concern as latencies have increased

 Tends to promote very fine-grain sharing (recall count_3s
example), which limits the work that can be used to amortize
the overhead costs such as thread creation, scheduling, etc.

 Scaling potential is limited

Writing threaded code using CTA
principles usually gives good results

5/6/2010 24(c) 2010 Larry Snyder

 It is difficult to get threaded programs right

 Programmers are responsible for protecting all
data references

 Avoiding deadlock requires discipline and care --
and mistakes are easy to make, especially when
optimizing

 Timing errors can remain latent for a very long
time before emerging

Main difficulties: Lots of work for small ||ism; poor scaling prospects

5/6/2010 25(c) 2010 Larry Snyder

define NUMTHRDS 4
double sum;
double a[256], b[256];
int status;
int n = 256;
pthread_t thds[NUMTHRDS];
pthread_mutex_t mutex_sum;

int main (int argc, char *argv[]);

void *dotprod (void *arg);
int main (int argc, char *argv[]) {
int i;
pthread_attr_t attr;
for (i = 0; i < n; i++) {

a[i] = i * 0.5;
b[i] = i * 2.0;

}
Creating Data

5/6/2010 26(c) 2010 Larry Snyder

pthread_mutex_init (&mutex_sum, NULL);
pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE);

for (i = 0; i < NUMTHRDS; i++) {
pthread_create (&thds[i], &attr, dotprod, (void *) i);

}
pthread_attr_destroy (&attr);
for (i = 0; i < NUMTHRDS; i++) {

pthread_join (thds[i], (void **) &status);
}

printf (" Sum = %f\n", sum);
pthread_mutex_destroy (&mutex_sum);
pthread_exit (NULL);
return 0;

}

5/6/2010 27(c) 2010 Larry Snyder

void *dotprod (void *arg) {
int i, my_first, my_last, myid;
double sum_local;
myid = (int) arg;
my_first = myid * n / NUMTHRDS;
my_last = (myid + 1) * n / NUMTHRDS;

sum_local = 0;
for (i = my_first; i <= my_last; i++) {

sum_local = sum_local + a[i] * b[i];
}

pthread_mutex_lock (&mutex_sum);
sum = sum + sum_local;
pthread_mutex_unlock (&mutex_sum);

pthread_exit ((void *) 0);
}

Actual Multiply

5/6/2010 28(c) 2010 Larry Snyder

 Developed as easy access to multi-threading
 Has second life with multi-core (Intel and others push)
 Approach

 Add pragmas to C or Fortran code

 Pragma-aware compiler links in appropriate library calls

 Pragma-unaware compiler -- no change from sequential

 All responsibility for parallel == sequential left to programmer

 Main benefit: little effort, some benefit
 Main liability: tight binding to sequential semantics

5/6/2010 29(c) 2010 Larry Snyder

 The program is sequential
▪ When there is no compiler to interpret the pragmas, the

code is sequential

▪ When there is no parallelism available, the sequential
code runs

▪ When there is a compiler AND parallel processors the
sequential code runs

 But, we often observe that there IS usually a
conceptual difference between sequential
and parallel algorithms

5/6/2010 30(c) 2010 Larry Snyder

double dotProduct() {
int I; double sum_p;
double result = 0;
#pragma omp parallel shared(a, b, result) private(sum_p)
{

sum_p=0;
#pragma omp parallel for private(i)

for(i=0; i<n; i++) {
sum_p += a[i]*b[i];

}
#pragma omp critical

{
result += sum_p;
}

}
return result;

}

5/6/2010 31(c) 2010 Larry Snyder

 4 Processor Sun
Enterprise running
the NAS PB written
in C with OpenMP

Block Tridiagonal

Conjugate Gradient

Embarrassingly ||

Fast Fourier Trans

Integer Sort

LU Decomposition

Multigrid Iteration

Sparse Matrix-Vector

5/6/2010 32(c) 2010 Larry Snyder

 The easy cases work well; harder cases are
probably much harder

 Requires that the semantics of sequential
computation be preserved

 Directly opposite of our thesis in this course that
algorithms must be rethought

 Compilers must enforce the sequentially
consistent memory model

 Limited abstractions

5/6/2010 (c) 2010 Larry Snyder 33

5/6/2010 34

 Philosophy

 Automatic parallelization won’t work

 For data parallelism, what’s important is data placement
and data motion

 Give the compiler help:

▪ Extends Fortran with directives to guide data distribution

 Allow slow migration from legacy codes

▪ The directives are only hints

 Basic idea

 Processors operate on only part of overall data

 Directives say which processor operates on which data

 Much higher level than message passing
(c) 2010 Larry Snyder

5/6/2010 35

The beginning

 Designed by large consortium in the early 90’s

 Participation by academia, industry, and national
labs

▪ All major vendors represented
▪ Convex, Cray, DEC, Fujitsu, HP, IBM, Intel, Meiko, Sun, Thinking

Machines

 Heavily influenced by Fortran-D from Rice

▪ D stands for “Data” or “Distributed”

 HPF 2.0 specified in 1996

(c) 2010 Larry Snyder

5/6/2010 36

 Context

 Part of early 90’s trend towards consolidating
supercomputing research

 To reduce risk, fund a few large projects rather
than a lot of small risky projects

 Buoyed by the success of MPI

 Aware of the lessons of vectorizing compilers

▪ Compilers can train programmers by providing feedback

(c) 2010 Larry Snyder

5/6/2010 37

 Basic idea

 Instead of looping over elements of a vector,
perform a single vector instruction

 Example
for (i=0; i<100; i++)

A[i] = B[i] + C[i];

 Scalar code

 Execute 4 insts 100 times, 2 Loads, 1 Add, 1 Store

 Advantages?

Vector code

– Execute 4 instructions once

– 2 vector Loads

– 1 vector Add

– 1 vector Store

(c) 2010 Larry Snyder

5/6/2010 38

 1. Avoid conditionals in loops
for (i=0; i<100; i++)

if (A[i] > MaxFloat)

A[i] = MaxFloat;

 2. Promote scalar functions
for (i=0; i<100; i++)

foo (A[i], B[i]);

 Lots of function calls inside a tight loop

 Function call boundaries inhibit vectorization

for (i=0; i<100; i++)

A[i] = min(A[i],MaxFloat)

Foo(A, B);

– One function call

– Body of this function

call can be easily
vectorized

(c) 2010 Larry Snyder

5/6/2010 39

 3. Avoid recursion
 4. Choose appropriate memory layout

 Depending on the compiler and the hardware,
some strides are vectorizable while others are not

 Other guidelines?
 The point

 These are simple guidelines that programmers
can learn

 The concept of a vector operation is simple

(c) 2010 Larry Snyder

5/6/2010 40

 A community project

 Compiler directives don’t change the program’s
semantics

 They only affect performance

 Allows different groups to conduct research on
different aspects of the problem

 Even the “little guy” can contribute

(c) 2010 Larry Snyder

5/6/2010 41

 An array language

 Can operate with entire arrays as operands

▪ Pairwise operators

▪ Reduction operators

 Uses slice notation

▪ array1d(low: high: stride) represents the elements of
array1 starting at low, ending at high, and skipping every
stride-1 elements

▪ The stride is an optional operand

 Converts many loops into array statements

(c) 2010 Larry Snyder

5/6/2010 42

 Jacobi Iteration

 The elements of an array, initialized to 0.0 except
for 1.0’s along its southern border, are iteratively
replaced with the average of their 4 nearest
neighbors until the greatest change between two
iterations is less than some epsilon.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

0

0

0

0

0

0

0

(c) 2010 Larry Snyder

5/6/2010 43

 Example

 The following statement computes the averaging
step in the Jacobi iteration

 Assume that next and curr are 2D arraysnext(2:n, 2:n) = (curr(1:n-1, 2:n) +

curr(3:n+1, 2:n) +

curr(2:n, 1:n-1)+

curr(2:n, 3:n+1)) / 4

=

next curr

(c) 2010 Larry Snyder

5/6/2010 44

 Block distribution of 1D array

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE array1D(BLOCK) ONTO PROCS

Block distribution of 2D array

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE array2D(BLOCK,BLOCK) ONTO PROCS

Number of virtual processors

Name of array

Keywords in caps

(c) 2010 Larry Snyder

5/6/2010 45

 Block-cyclic distribution

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE array2D(BLOCK, CYCLIC) ONTO PROCS

Block-cyclic distribution

!HPF$ DISTRIBUTE array2D(CYCLIC, BLOCK) ONTO PROCS

(c) 2010 Larry Snyder

5/6/2010 46

 Arrays can be aligned with one another

 Aligned elements will reside on the same physical
processor

 Alignment can reduce communication

 Can align arrays of different dimensions

!HPF$ ALIGN a (i) WITH b(i-1)

a

b

(c) 2010 Larry Snyder

5/6/2010
47

This alignment and assignment require all elements
to be communicated to a different processor

The following induces no communication

!HPF$ ALIGN a(i) WITH b(i-1)

a(1:n) = b(1:n)

!HPF$ ALIGN a(i) WITH b(i)

a

b

a

b

(c) 2010 Larry Snyder

5/6/2010 (c) 2010 Larry Snyder 48

5/6/2010 50

Fortran90 equivalent?

– None

 INDEPENDENT directive

 Loop iterations are independent

 No implied barriers Dependence graph

!HPF$ INDEPENDENT

DO (i = 1:3)

a(i) = b(i)

c(i) = d(i)

END DO

b(3)b(2)b(1)

a(3)a(2)a(1)

d(3)d(2)d(1)

c(3)c(2)c(1)

a(i) = b(i)

c(i) = d(i)

(c) 2010 Larry Snyder

5/6/2010 51

 Is there a difference?
FORALL INDEPENDENT

b(3)
b(2)b(1)

a(3)a(1)

d(3)d(2)

c(3)c(2)c(1)

d(1)

a(2)

b(3)
b(2)b(1)

a(3)

a(1)

d(3)
d(2)

c(3)
c(2)

c(1)

a(2)

d(1)

barrier

barrier

barrier

(c) 2010 Larry Snyder

5/6/2010 52

 Your thoughts on HPF?

 Is this a convenient language to use?

 Can programmers get good performance?

 No performance model

 To understand locality and communication, need
to understand complex interactions among
distributions

▪ Procedure calls are particularly bad

 Many hidden costs

 Small changes in distribution can have large
performance impact

a(i) = b(i)
Does the following code induce communication?

(c) 2010 Larry Snyder

5/6/2010 53

 No performance model

 Complex language Difficult language to
compile

▪ Large variability among compilers

▪ Kernel HPF: A subset of HPF “guaranteed” to be fast

 An accurate performance model is essential

 Witness our experience with the PRAM

 Common user experience

 Play with random different distribution in an
attempt try to get good performance

(c) 2010 Larry Snyder

5/6/2010 54

 Language is too general

 Difficult to obey an important system design
principle:

“Optimize the common case”

▪ What is the common case?

 Sequential constructs inherited from Fortran77
and Fortran90 cause problems

▪ For example, the following code forces compiler to
perform matrix transpose FORALL (i=1:n, j=1:n)

a(i, j) = a(j, i)

END FORALL

(c) 2010 Larry Snyder

CS380P Lecture 17 Introduction to ZPL 55

 Philosophy

 Provide performance portability for data-parallel
programs

 Allow users to reason about performance

 Start from scratch

▪ Parallel is fundamentally different from sequential

▪ Be willing to throw out conveniences familiar to
sequential programmers

 Basic idea
▪ An array language

▪ Implicitly parallel

CS380P Lecture 17 Introduction to ZPL 56

The beginning

 Designed by a small team beginning in 1993

 Compiler and runtime released in 1997

 Claims

 Portable to any MIMD parallel computer

 Performance comparable to C with message
passing

 Generally outperforms HPF

 Convenient and intuitive

CS380P Lecture 17 Introduction to ZPL 57

 Jacobi Iteration

 The elements of an array, initialized to 0.0 except
for 1.0’s along its southern border, are iteratively
replaced with the average of their 4 nearest
neighbors until the greatest change between two
iterations is less than some epsilon.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

0

0

0

0

0

0

0

CS380P Lecture 17 Introduction to ZPL 58

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

Naming Convention:
Arrays begin with upper case letters
Scalars begin with lower case letters

Reductions:
max<< returns the maximum
of an array expression

Lecture 20

CS380P Lecture 17 Introduction to ZPL 59

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

end;

CS380P Lecture 17 Introduction to ZPL 60

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

+

+

CS380P Lecture 17 Introduction to ZPL 61

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

[north of R] A := 0.0; [west of R] A := 1.0;

[south of R] A := 0.0; [east of R] A := 0.0;

+ + +) / 4.0:= (

CS380P Lecture 17 Introduction to ZPL 62

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

 Greatest potential to assist programmer
comes from hiding communication calls

 Compilers can generate the calls

 Need interface to specify which are local/global

 Concept: Partitioned Global Address Space
▪ Overlay global addressing on separate memories

▪ PGAS tends to use 1-sided comm as simplification

P0 P1 P2 P3 P4 P5 P6 P7

5/6/2010 63(c) 2010 Larry Snyder

 Three PGAS languages

 Developed around 2000 +/- & Implemented

 Similarities: GAS, comm handled by compiler/rt,
programmer controls work/data assignment

 Differences: Most everything else

Co-Array Fortran

Numrich & Reed

Extends Fortran

Universal Parallel C

El Ghazawi, Carlson & Draper

Extends C

Titanium

Yelick

Extends Java

CAF UPC Ti

5/6/2010 64(c) 2010 Larry Snyder

 Incredibly elegant (for Fortran) extension

real, dimension(n,n)[p,*]:: a,b,c

...

do k=1,n

do q=1,p

c(i,j)[myP,myQ]=c(i,j)[myP,myQ]+a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo

enddo
myP

myQ

a bc

*=

Co-array

5/6/2010 65(c) 2010 Larry Snyder

 Data can be allocated either shared or
private; shared is assigned cyclically or BC

 Pointers are an issue

Private Shared

Private Private-Private, p1 Private-Shared, p2

Shared Shared-Private, p3 Shared-Shared, p4

int *p1; /* private ptr pointing locally */

shared int *p2; /* private ptr pointing into shared space */

int *shared p3; /* shared ptr pointing locally */

shared int *shared p4; /* shared ptr pointing into shared space */

Property of pointer

Property of

reference

5/6/2010 66(c) 2010 Larry Snyder

shared int v1[N], v2[N], v1v2sum[N];

void main()

{

int i;

shared int *p1, *p2;

p1=v1;

p2=v2;

upc_forall(i=0; i<N; i++, p1++, p2++;i)

{

v1v2sum[i] = *p1 + *p2;

}

}

Affinity

5/6/2010 67(c) 2010 Larry Snyder

 Java extensions including
 “regions, which support safe, performance-

oriented memory management as an alternative to
garbage collection.”

 foreach is an unordered iteration, which logically
raises the concurrency:
foreach (…) { }

 Used with the concept of a point, tuple of
integers that range over a domain

5/6/2010 68(c) 2010 Larry Snyder

public static void matMul(double [2d] a,

double [2d] b,

double [2d] c)

{

foreach (ij in c.domain())

{

double [1d] aRowi = a.slice(1, ij[1]);

double [1d] bColj = b.slice(2, ij[2]);

foreach (k in aRowi.domain())

{

c[ij] += aRowi[k] * bColj[k];

}

}

}

5/6/2010 69(c) 2010 Larry Snyder

 The languages improve on the alternative--
base language + MPI

 Compiler provides significant help, but the
need to be attuned to subtle detail remains

 Deep issues

 Global address space+private are good, but how
they “play together” remains unclear

 Better abstractions to reduce detail

5/6/2010 70(c) 2010 Larry Snyder

 DARPA has supported three new “high
productivity” parallel languages
 Is productivity really the issue?

 Project coupled with design of a new machine
 The final competitors:
 Cray’s Cascade High Productivity Language,

Chapel

 IBM’s X10

 Sun’s Fortress

5/6/2010 71(c) 2010 Larry Snyder

 Chapel is a multithreaded language
supporting
 Data ||ism, task ||ism, nested ||ism

 Optimizations for locality of data and
computation

 Object oriented and generic programming
techniques

 Parallel implementation is nearing completion
 Designed for experts, production

programmers

5/6/2010 72(c) 2010 Larry Snyder

for(str, span) in genDFTPhases(numElements, radix) {

forall (bankStart, twidIndex) in (ADom by 2*span, 0..) {

var wk2 = W(twidIndex),

wk1 = W(2*twidIndex),

wk3 = (wk1.re - 2 * wk2.im * wk1.im,

2 * wk2.im * wk1.re - wk1.im):elemType;

forall lo in bankStart + [0..str) do

butterfly(wk1, wk2, wk3, A[[0..radix)*str + lo]);

wk1 = W(2*twidIndex+1);

wk3 = (wk1.re - 2 * wk2.re * wk1.im, 2 * wk2.re * wk1.re -

wk1.im):elemType;

wk2 *= 1.0i;

forall lo in bankStart + span + [0..str) do

butterfly(wk1, wk2, wk3, A[[0..radix]*str + lo]);

}

}

5/6/2010 73(c) 2010 Larry Snyder

 Developed at Sun, Fortress pushes the
envelop in expressivity
 Focus on new programming ideas rather than

parallel programming ideas: components and
test framework assist with powerful compiler
optimizations across libraries

 Textual presentation important -- subscripts and
superscripts -- mathematical forms

 Transactions, locality specification, implicit ||ism

 Extendibility

5/6/2010 74(c) 2010 Larry Snyder

 Conjugate
gradient
program in
Fortress

 Features

 := / =

 Sequential

 Mathematical

5/6/2010 75(c) 2010 Larry Snyder

 IBM’s X10 is a type safe, distributed object
oriented language in the PGAS family -- its
“accessible to Java programmers”

 Many goodies including regions (a la ZPL),
places (for locality), asynch, futures, foreach,
ateach, atomic blocks and global
manipulation of data structures

5/6/2010 76(c) 2010 Larry Snyder

public class Jacobi {
const int N=6;
const double epsilon = 0.002;
const double epsilon2 = 0.000000001;
const region R = [0:N+1, 0:N+1];
const region RInner= [1:N, 1:N];
const distribution D = distribution.factory.block(R);
const distribution DInner = D | RInner;
const distribution DBoundary = D - RInner;
const int EXPECTED ITERS=97;
const double EXPECTED ERR=0.0018673382039402497;
double[D] B = new double[D] (point p[i,j])

{ return DBoundary.contains(p)
? (N-1)/2 : N*(i-1)+(j-1); };

public double read(final int i, final int j) {
return future(D[i,j]) B[i,j].force(); }

public static void main(String args[]) {
boolean b= (new Jacobi()).run();
System.out.println("++++++ " + (b? "Test succeeded." :"Test failed."));
System.exit(b?0:1);

}
}

5/6/2010 77(c) 2010 Larry Snyder

public boolean run() {

int iters = 0;

double err;

while(true) {

double[.] Temp =

new double[DInner] (point [i,j])

{return (read(i+1,j)+read(i-1,j)

+read(i,j+1)+read(i,j-1))/4.0; };

if((err=((B | DInner) - Temp).abs().sum()) < epsilon)

break;

B.update(Temp);

iters++;

}

System.out.println("Error="+err);

System.out.println("Iterations="+iters);

return Math.abs(err-EXPECTED ERR) < epsilon2 && iters==EXPECTED ITERS;

}

Actual Multiply

5/6/2010 78(c) 2010 Larry Snyder

79

 Language is key tool to express parallelism
 State of the art is libraries –

 threads, message passing, OpenMP

 There has been tremendous
experimentation with alternative language
approaches

 ZPL, HPF, CAF, UPC, Titanium

 The next generation is here

 Chapel, X10, Fortress

5/6/2010 (c) 2010 Larry Snyder

 Using online research become familiar with a
parallel programming language and critique it

 NOT allowed: ZPL, Chapel, libraries

 The critique must include a small code example

 Relevant topics to discuss might include

▪ Execution model (data parallel, task, etc.), mem model

▪ Mechanisms for creating threads, communicating, etc.

▪ Brief history, if known

▪ Evidence of performance, scalability, portability, etc.

 Any length OK, but ~2 pages is intended scale; refs

5/6/2010 (c) 2010 Larry Snyder 80

