
Libraries and languages  make parallel programming possible, 
but rarely easy



 What was your experience with formulating a 
parallel prefix computation as an infix 
operation?
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 Trees are an important component of 
computing

 The “Schwartz tree” has been logical

 Trees as data structures are complicated because 
they are typically more dynamic

 Pointers are generally not available

 Work well with work queue approach

 As usual, we try to exploit locality and minimize 
communication
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 Common in games, searching, etc

 Split: Pass 1/2 to other processor, continue
 Stop when processors exhausted

 Responsible for tree that remains

 Ideal when work is localized
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 Common in graph algorithms

 Get descendants, take one and assign others 
to the task queue

Key issue is managing the algorithm’s progress
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 Tree algorithms often need to know how 
others are progressing

 Interrupt works if it is just a search: Eureka!!

 Record - cut-offs in global variable

 Other pruning data, e.g. best so far, also global

 Classic error is to consult global too frequently

 Rethink: What is tree data structure’s role?

Write essay: Dijkstra’s algorithm is not a good… :) 
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 If coordination becomes too involved, 
consider alternate strategies:
Graph traverse => local traverse of partitioned graph

 Local computation uses sequential tree algorithms 
directly … stitch together
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 Trees are a useful data structure for recording 
spatial relationships: K-D trees

 Generally, decomposition is unnecessary “all 
the way down” -- but this optimization 
implies two different regimes 
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 The nodes near root can be stored 
redundantly

 Processors consult local copy -- alert others to 
changes

Each process 

keeps copy of “cap” 

nodes
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 Reconceptualizing is often most effective
 Focus has not been on ||ism, but on other 

stuff
 Exploiting locality

 Balancing work

 Reducing inter-thread dependences
 We produced general purpose solution 

mechanisms: UD-reduce and UD-scan
 We like trees, but recognize that direct 

application is not likely
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“I don’t know what the technical characteristics 
of the standard language for scientific and 

engineering computation will be in the year 
2000 . . . but I know it will be called Fortran.”

John Backus, c. 1980



 I have argued that a key property of a || 
programming system is that it embody an 
accurate (CTA) model of computation

 Recall why:

 Wrong model leads to picking wrong algorithm

 Communication costs -- they cannot be ignored

 || programs must port, so pick universal model

 So, which of our present languages do that? 
Today, we’ll see.
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 At least 100 serious parallel programming 
languages have been developed in the last 2 
decades … why isn’t the problem solved?
 Generalizing …

▪ Most languages focused on a “silver bullet” solution, but 
the problem is more complex

▪ Just a few of the languages were fully implemented

▪ To be taken seriously, a language must  
▪ Run serious applications fast

▪ Run on “all” parallel machines

▪ Have substantial support (docs, compilers with libraries, tools 
such as debuggers and IDEs, 1-800 #)

Industry Backing
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 No new languages crossed the bar
 Performance challenge … 

▪ Serious applications programs are huge -- it is time consuming 
to write an equivalent program in any language, and it may 
require domain knowledge

▪ Production programs are often well optimized -- competing 
on performance implies an effective compiler and 
performance debugging tools 

▪ “Linear speedup” goal (P processors will yield a P-fold speed-
up) is naïve, but widely assumed

▪ Doing well on one program is not persuasive

 Portability challenges are similar

 Will any programmer learn a new language?
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 Today, with few exceptions, we program 
using library-based facilities rather than 
languages
 Sequential language + message passing in MPI 

or PVM

 Sequential language + thread packages such as 
P-threads, or equivalently, Java-threads

 OpenMP with a pragma-aware compiler for a 
sequential programming language

 Consider each briefly before discussing new 
developments
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 Message passing is “the lowest of the low”, 
but remains in widespread use because …
 It works -- embodies the CTA || model

 It is required for clusters, supercomputers, etc.

 Achieving performance is definitely possible

 Portability is essential for long-lived programs
 What is it?
 Variations on primitive send/receive

 Process spawning, broadcast, etc.

 Programming goodies: reduce, scan, processor 
groups
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 In message passing
 There are few abstractions to simplify the work

 Programmers must do everything except the 
physical layer

 Experiments show that compared to “designed 
from first principles” parallel languages, MPI 
programs are 6 times larger … the extra code is 
the subtle, difficult to get right, and timing-
sensitive

 Consider dense matrix multiplication

5/6/2010 17(c) 2010 Larry Snyder



MPI_Status status;
main(int argc, char **argv) {
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize, /* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rows,                      /* rows of matrix A sent to each worker */
averow, extra, offset,     /* used to determine rows sent to each worker */
i, j, k, /* misc */
count;

double a[NRA][NCA], /* matrix A to be multiplied */
b[NCA][NCB],      /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

A “master--slave” solution
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intsize = sizeof(int);
dbsize = sizeof(double);

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;

/**************************** master task ************************************/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)

b[i][j]= i*j;

Create test data --

actually inputting data is 

harder
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/* send matrix data to the worker tasks */
averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;
for (dest=1; dest<=numworkers; dest++) {

rows = (dest <= extra) ? averow+1 : averow;   
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
count = rows*NCA;
MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

offset = offset + rows;
}
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/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {

source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD,&status);

}
/**************************** worker task ************************************/
if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCA;
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);
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count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {

c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

}  /* end of worker */

Actual Multiply

91 “Net” Lines
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 Reduce and scan are called collective operations
 Reduce/scan apply to nodes, not values
 Basic operations +, *, min, max, &&, ||
 Processor groups simplify collective ops on logical 

structures like “rows”, “leaves”, etc
 MPI allows user-defined scans … these have probably 

never been used! 
 Bottom Line: Message passing is painful to use but it 

works … which makes it a solution of choice
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 The P-threads library, designed for concurrency, is now 
also used for parallelism

 Sharing is implemented by referencing shared memory 
 As mentioned, the memory not sequentially consistent

 Not CTA; P-threads use RAM performance model, a greater 
concern as latencies have increased

 Tends to promote very fine-grain sharing (recall count_3s
example), which limits the work that can be used to amortize 
the overhead costs such as thread creation, scheduling, etc.

 Scaling potential is limited

Writing threaded code using CTA 
principles usually gives good results
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 It is difficult to get threaded programs right

 Programmers are responsible for protecting all 
data references

 Avoiding deadlock requires discipline and care --
and mistakes are easy to make, especially when 
optimizing

 Timing errors can remain latent for a very long 
time before emerging 

Main difficulties: Lots of work for small ||ism; poor scaling prospects
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# define NUMTHRDS 4
double sum;
double a[256], b[256];
int status;
int n = 256;
pthread_t thds[NUMTHRDS];
pthread_mutex_t mutex_sum;

int main ( int argc, char *argv[] );

void *dotprod ( void *arg );
int main ( int argc, char *argv[] ) {
int i;
pthread_attr_t attr;
for ( i = 0; i < n; i++ ) {

a[i] = i * 0.5;
b[i] = i * 2.0;

}
Creating Data
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pthread_mutex_init ( &mutex_sum, NULL );
pthread_attr_init ( &attr );
pthread_attr_setdetachstate ( &attr, PTHREAD_CREATE_JOINABLE );

for ( i = 0; i < NUMTHRDS; i++ ) {
pthread_create ( &thds[i], &attr, dotprod, ( void * ) i );

}
pthread_attr_destroy ( &attr );
for ( i = 0; i < NUMTHRDS; i++ ) {

pthread_join ( thds[i], ( void ** ) &status );
}

printf ( "  Sum = %f\n", sum );
pthread_mutex_destroy ( &mutex_sum );
pthread_exit ( NULL );
return 0;

}
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void *dotprod ( void *arg ) {
int i, my_first, my_last, myid;
double sum_local;
myid = ( int ) arg;
my_first = myid * n / NUMTHRDS;
my_last = ( myid + 1 ) * n / NUMTHRDS;

sum_local = 0;
for ( i = my_first; i <= my_last; i++ ) {

sum_local = sum_local + a[i] * b[i];
}

pthread_mutex_lock ( &mutex_sum );
sum = sum + sum_local;
pthread_mutex_unlock ( &mutex_sum );

pthread_exit ( ( void * ) 0 );
}

Actual Multiply
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 Developed as easy access to multi-threading
 Has second life with multi-core (Intel and others push)
 Approach

 Add pragmas to C or Fortran code

 Pragma-aware compiler links in appropriate library calls

 Pragma-unaware compiler -- no change from sequential

 All responsibility for parallel == sequential left to programmer

 Main benefit: little effort, some benefit
 Main liability: tight binding to sequential semantics
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 The program is sequential
▪ When there is no compiler to interpret the pragmas, the 

code is sequential 

▪ When there is no parallelism available, the sequential 
code runs

▪ When there is a compiler AND parallel processors the 
sequential code runs

 But, we often observe that there IS usually a 
conceptual difference between sequential 
and parallel algorithms

5/6/2010 30(c) 2010 Larry Snyder



double dotProduct()  { 
int I; double sum_p; 
double result = 0; 
#pragma omp parallel shared(a, b, result) private(sum_p) 
{ 

sum_p=0; 
#pragma omp parallel for private(i) 

for(i=0; i<n; i++) { 
sum_p += a[i]*b[i]; 

} 
#pragma omp critical 

{ 
result += sum_p; 
} 

} 
return result; 

}
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 4 Processor Sun 
Enterprise running 
the NAS PB written 
in C with OpenMP

Block Tridiagonal

Conjugate Gradient

Embarrassingly ||

Fast Fourier Trans

Integer Sort

LU Decomposition

Multigrid Iteration

Sparse Matrix-Vector
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 The easy cases work well; harder cases are 
probably much harder

 Requires that the semantics of sequential 
computation be preserved

 Directly opposite of our thesis in this course that 
algorithms must be rethought

 Compilers must enforce the sequentially 
consistent memory model

 Limited abstractions 
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 Philosophy

 Automatic parallelization won’t work

 For data parallelism, what’s important is data placement 
and data motion

 Give the compiler help:

▪ Extends Fortran with directives to guide data distribution

 Allow slow migration from legacy codes

▪ The directives are only hints

 Basic idea

 Processors operate on only part of overall data

 Directives say which processor operates on which data

 Much higher level than message passing
(c) 2010 Larry Snyder
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The beginning

 Designed by large consortium in the early 90’s

 Participation by academia, industry, and national 
labs

▪ All major vendors represented
▪ Convex, Cray, DEC, Fujitsu, HP, IBM, Intel, Meiko, Sun, Thinking 

Machines

 Heavily influenced by Fortran-D from Rice

▪ D stands for “Data” or “Distributed”

 HPF 2.0 specified in 1996
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 Context

 Part of early 90’s trend towards consolidating 
supercomputing research

 To reduce risk, fund a few large projects rather 
than a lot of small risky projects

 Buoyed by the success of MPI

 Aware of the lessons of vectorizing compilers

▪ Compilers can train programmers by providing feedback
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 Basic idea

 Instead of looping over elements of a vector, 
perform a single vector instruction

 Example
for (i=0; i<100; i++)

A[i] = B[i] + C[i];

 Scalar code

 Execute 4 insts 100 times, 2 Loads, 1 Add, 1 Store

 Advantages?

Vector code

– Execute 4 instructions once

– 2 vector Loads

– 1 vector Add

– 1 vector Store
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 1. Avoid conditionals in loops
for (i=0; i<100; i++)

if (A[i] > MaxFloat)

A[i] = MaxFloat;

 2. Promote scalar functions
for (i=0; i<100; i++)

foo (A[i], B[i]);

 Lots of function calls inside a tight loop

 Function call boundaries inhibit vectorization

for (i=0; i<100; i++)

A[i] = min(A[i],MaxFloat)

Foo(A, B);

– One function call

– Body of this function 

call can be easily 
vectorized
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 3. Avoid recursion
 4. Choose appropriate memory layout

 Depending on the compiler and the hardware, 
some strides are vectorizable while others are not

 Other guidelines?
 The point

 These are simple guidelines that programmers 
can learn

 The concept of a vector operation is simple
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 A community project

 Compiler directives don’t change the program’s 
semantics

 They only affect performance

 Allows different groups to conduct research on 
different aspects of the problem

 Even the “little guy” can contribute
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 An array language

 Can operate with entire arrays as operands

▪ Pairwise operators

▪ Reduction operators

 Uses slice notation

▪ array1d(low: high: stride) represents the elements of
array1 starting at low, ending at high, and skipping every 
stride-1 elements

▪ The stride is an optional operand

 Converts many loops into array statements
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 Jacobi Iteration

 The elements of an array, initialized to 0.0 except 
for 1.0’s along its southern border, are iteratively 
replaced with the average of their 4 nearest 
neighbors until the greatest change between two 
iterations is less than some epsilon.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

0

0

0

0

0

0

0
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 Example

 The following statement computes the averaging 
step in the Jacobi iteration

 Assume that next and curr are 2D arraysnext(2:n, 2:n) = (curr(1:n-1, 2:n) + 

curr(3:n+1, 2:n) +

curr(2:n,  1:n-1)+

curr(2:n,  3:n+1)) / 4

=

next curr
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 Block distribution of 1D array

!HPF$  PROCESSORS PROCS(4)

!HPF$  DISTRIBUTE array1D(BLOCK) ONTO PROCS

Block distribution of 2D array

!HPF$  PROCESSORS PROCS(4)

!HPF$  DISTRIBUTE array2D(BLOCK,BLOCK) ONTO PROCS

Number of virtual processors

Name of array

Keywords in caps
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 Block-cyclic distribution

!HPF$  PROCESSORS PROCS(4)

!HPF$  DISTRIBUTE array2D(BLOCK, CYCLIC) ONTO PROCS

Block-cyclic distribution

!HPF$  DISTRIBUTE array2D(CYCLIC, BLOCK) ONTO PROCS
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 Arrays can be aligned with one another

 Aligned elements will reside on the same physical 
processor

 Alignment can reduce communication

 Can align arrays of different dimensions

!HPF$  ALIGN a (i) WITH b(i-1)

a

b
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This alignment and assignment require all elements 
to be communicated to a different processor

The following induces no communication

!HPF$  ALIGN a(i) WITH b(i-1)

a(1:n) = b(1:n)

!HPF$  ALIGN a(i) WITH b(i)

a

b

a

b
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Fortran90 equivalent?

– None

 INDEPENDENT directive 

 Loop iterations are independent

 No implied barriers Dependence graph

!HPF$ INDEPENDENT

DO (i = 1:3)

a(i) = b(i)

c(i) = d(i)

END DO

b(3)b(2)b(1)

a(3)a(2)a(1)

d(3)d(2)d(1)

c(3)c(2)c(1)

a(i) = b(i)

c(i) = d(i)
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 Is there a difference?
FORALL INDEPENDENT 

b(3)
b(2)b(1)

a(3)a(1)

d(3)d(2)

c(3)c(2)c(1)

d(1)

a(2)

b(3)
b(2)b(1)

a(3)

a(1)

d(3)
d(2)

c(3)
c(2)

c(1)

a(2)

d(1)

barrier

barrier

barrier
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 Your thoughts on HPF?

 Is this a convenient language to use?

 Can programmers get good performance?

 No performance model

 To understand locality and communication, need 
to understand complex interactions among 
distributions

▪ Procedure calls are particularly bad

 Many hidden costs

 Small changes in distribution can have large 
performance impact

a(i) = b(i)
Does the following code induce communication?
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 No performance model

 Complex language  Difficult language to 
compile

▪ Large variability among compilers

▪ Kernel HPF:  A subset of HPF “guaranteed” to be fast

 An accurate performance model is essential

 Witness our experience with the PRAM

 Common user experience

 Play with random different distribution in an 
attempt try to get good performance
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 Language is too general

 Difficult to obey an important system design 
principle:

“Optimize the common case”

▪ What is the common case?

 Sequential constructs inherited from Fortran77 
and Fortran90 cause problems

▪ For example, the following code forces compiler to 
perform matrix transpose FORALL (i=1:n, j=1:n) 

a(i, j) = a(j, i) 

END FORALL   
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 Philosophy

 Provide performance portability for data-parallel 
programs

 Allow users to reason about performance

 Start from scratch

▪ Parallel is fundamentally different from sequential

▪ Be willing to throw out conveniences familiar to 
sequential programmers

 Basic idea
▪ An array language

▪ Implicitly parallel
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The beginning

 Designed by a small team beginning in 1993

 Compiler and runtime released in 1997

 Claims

 Portable to any MIMD parallel computer

 Performance comparable to C with message 
passing

 Generally outperforms HPF

 Convenient and intuitive
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 Jacobi Iteration

 The elements of an array, initialized to 0.0 except 
for 1.0’s along its southern border, are iteratively 
replaced with the average of their 4 nearest 
neighbors until the greatest change between two 
iterations is less than some epsilon.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

0

0

0

0

0

0

0
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program Jacobi;
config   var n : integer = 512;

epsilon : float = 0.00001;
region        R = [1..n, 1..n];
var     A, Temp : [R] float;

err : float;
direction north = [-1, 0];     south = [ 1,  0];

east  = [ 0, 1];     west  = [ 0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R]  A := 1.0;
[east of R]  A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err  := max<< abs(Temp – A);
A    := Temp;

until err < epsilon;
end;

end;

+ + + ) / 4.0:= (

Naming Convention:
Arrays begin with upper case letters
Scalars begin with lower case letters

Reductions:
max<< returns the maximum 
of an array expression

Lecture 20
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program Jacobi;
config   var n : integer = 512;

epsilon : float = 0.00001;
region        R = [1..n, 1..n];
var     A, Temp : [R] float;

err : float;
direction north = [-1, 0];     south = [ 1,  0];

east  = [ 0, 1];     west  = [ 0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R]  A := 1.0;
[east of R]  A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err  := max<< abs(Temp – A);
A    := Temp;

until err < epsilon;
end;

end;

+ + + ) / 4.0:= (

end;
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program Jacobi;
config   var n : integer = 512;

epsilon : float = 0.00001;
region        R = [1..n, 1..n];
var     A, Temp : [R] float;

err : float;
direction north = [-1, 0];     south = [ 1,  0];

east  = [ 0, 1];     west  = [ 0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R]  A := 1.0;
[east of R]  A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err  := max<< abs(Temp – A);
A    := Temp;

until err < epsilon;
end;

end;

+ + + ) / 4.0:= (

+

+
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program Jacobi;
config   var n : integer = 512;

epsilon : float = 0.00001;
region        R = [1..n, 1..n];
var     A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [ 1,  0];

east  = [ 0, 1];     west  = [ 0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err  := max<< abs(Temp – A);
A    := Temp;

until err < epsilon;
end;

end;

[north of R] A := 0.0; [west of R]  A := 1.0; 

[south of R] A := 0.0; [east of R]  A := 0.0; 

+ + + ) / 4.0:= (
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program Jacobi;
config   var n : integer = 512;

epsilon : float = 0.00001;
region        R = [1..n, 1..n];
var     A, Temp : [R] float;

err : float;
direction north = [-1, 0];     south = [ 1,  0];

east  = [ 0, 1];     west  = [ 0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R]  A := 1.0;
[east of R]  A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err  := max<< abs(Temp – A);
A    := Temp;

until err < epsilon;
end;

end;

+ + + ) / 4.0:= (



 Greatest potential to assist programmer 
comes from hiding communication calls

 Compilers can generate the calls

 Need interface to specify which are local/global

 Concept: Partitioned Global Address Space
▪ Overlay global addressing on separate memories

▪ PGAS tends to use 1-sided comm as simplification

P0 P1 P2 P3 P4 P5 P6 P7
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 Three PGAS languages

 Developed around 2000 +/- & Implemented

 Similarities: GAS, comm handled by compiler/rt, 
programmer controls work/data assignment

 Differences: Most everything else

Co-Array Fortran

Numrich & Reed

Extends Fortran

Universal Parallel C

El Ghazawi, Carlson & Draper

Extends C

Titanium

Yelick

Extends Java

CAF UPC Ti
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 Incredibly elegant (for Fortran) extension

real, dimension(n,n)[p,*]:: a,b,c 

... 

do k=1,n 

do q=1,p 

c(i,j)[myP,myQ]=c(i,j)[myP,myQ]+a(i,k)[myP, q]*b(k,j)[q,myQ] 

enddo 

enddo
myP

myQ

a bc

*=

Co-array
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 Data can be allocated either shared or 
private; shared is assigned cyclically or BC

 Pointers are an issue

Private Shared

Private Private-Private, p1 Private-Shared, p2

Shared Shared-Private, p3 Shared-Shared, p4

int *p1;               /* private ptr pointing locally */ 

shared int *p2;        /* private ptr pointing into shared space */ 

int *shared p3;        /* shared  ptr pointing locally */ 

shared int *shared p4; /* shared  ptr pointing into shared space */

Property of pointer

Property of 

reference

5/6/2010 66(c) 2010 Larry Snyder



shared int v1[N], v2[N], v1v2sum[N]; 

void main()

{ 

int i;

shared int *p1, *p2; 

p1=v1; 

p2=v2;

upc_forall(i=0; i<N; i++, p1++, p2++;i) 

{

v1v2sum[i] = *p1 + *p2;

}

}

Affinity
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 Java extensions including
 “regions, which support safe, performance-

oriented memory management as an alternative to 
garbage collection.”

 foreach is an unordered iteration, which logically 
raises the concurrency:
foreach ( … ) {   }   

 Used with the concept of a point, tuple of 
integers that range over a domain
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public static void matMul(double [2d] a, 

double [2d] b, 

double [2d] c) 

{

foreach (ij in c.domain()) 

{ 

double [1d] aRowi = a.slice(1, ij[1]);

double [1d] bColj = b.slice(2, ij[2]); 

foreach (k in aRowi.domain()) 

{

c[ij] += aRowi[k] * bColj[k]; 

}

} 

}
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 The languages improve on the alternative--
base language + MPI

 Compiler provides significant help, but the 
need to be attuned to subtle detail remains

 Deep issues

 Global address space+private are good, but how 
they “play together” remains unclear

 Better abstractions to reduce detail 
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 DARPA has supported three new “high 
productivity” parallel languages 
 Is productivity really the issue?

 Project coupled with design of a new machine
 The final competitors:
 Cray’s Cascade High Productivity Language, 

Chapel

 IBM’s X10

 Sun’s Fortress
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 Chapel is a multithreaded language 
supporting
 Data ||ism, task ||ism, nested ||ism

 Optimizations for locality of data and 
computation

 Object oriented and generic programming 
techniques

 Parallel implementation is nearing completion
 Designed for experts, production 

programmers
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for(str, span) in genDFTPhases(numElements, radix) { 

forall (bankStart, twidIndex) in (ADom by 2*span, 0..) { 

var wk2 = W(twidIndex), 

wk1 = W(2*twidIndex), 

wk3 = (wk1.re - 2 * wk2.im * wk1.im, 

2 * wk2.im * wk1.re - wk1.im):elemType; 

forall lo in bankStart + [0..str) do 

butterfly(wk1, wk2, wk3, A[[0..radix)*str + lo]); 

wk1 = W(2*twidIndex+1); 

wk3 = (wk1.re - 2 * wk2.re * wk1.im, 2 * wk2.re * wk1.re -

wk1.im):elemType; 

wk2 *= 1.0i; 

forall lo in bankStart + span + [0..str) do 

butterfly(wk1, wk2, wk3, A[[0..radix]*str + lo]); 

} 

}
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 Developed at Sun, Fortress pushes the 
envelop in expressivity
 Focus on new programming ideas rather than 

parallel programming ideas: components and 
test framework assist with powerful compiler 
optimizations across libraries

 Textual presentation important -- subscripts and 
superscripts -- mathematical forms

 Transactions, locality specification, implicit ||ism

 Extendibility 
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 Conjugate 
gradient 
program in 
Fortress

 Features

 := / =

 Sequential

 Mathematical
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 IBM’s X10 is a type safe, distributed object 
oriented language in the PGAS family -- its 
“accessible to Java programmers”

 Many goodies including regions (a la ZPL), 
places (for locality), asynch, futures, foreach, 
ateach, atomic blocks and global 
manipulation of data structures
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public class Jacobi { 
const int N=6; 
const double epsilon = 0.002; 
const double epsilon2 = 0.000000001; 
const region R = [0:N+1, 0:N+1]; 
const region RInner= [1:N, 1:N]; 
const distribution D = distribution.factory.block(R); 
const distribution DInner = D | RInner; 
const distribution DBoundary = D - RInner; 
const int EXPECTED ITERS=97; 
const double EXPECTED ERR=0.0018673382039402497; 
double[D] B = new double[D] (point p[i,j]) 

{  return DBoundary.contains(p) 
? (N-1)/2 : N*(i-1)+(j-1); }; 

public double read(final int i, final int j) { 
return future(D[i,j]) B[i,j].force(); } 

public static void main(String args[]) { 
boolean b= (new Jacobi()).run(); 
System.out.println("++++++ " + (b? "Test succeeded." :"Test failed."));
System.exit(b?0:1); 

} 
} 
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public boolean run()  { 

int iters = 0; 

double err; 

while(true) { 

double[.] Temp = 

new double[DInner] (point [i,j]) 

{return (read(i+1,j)+read(i-1,j) 

+read(i,j+1)+read(i,j-1))/4.0; }; 

if((err=((B | DInner) - Temp).abs().sum()) < epsilon) 

break; 

B.update(Temp); 

iters++; 

} 

System.out.println("Error="+err); 

System.out.println("Iterations="+iters); 

return Math.abs(err-EXPECTED ERR) < epsilon2 && iters==EXPECTED ITERS; 

}

Actual Multiply
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79

 Language is key tool to express parallelism
 State of the art is libraries –

 threads, message passing, OpenMP

 There has been tremendous 
experimentation with alternative language 
approaches

 ZPL, HPF, CAF, UPC, Titanium

 The next generation is here

 Chapel, X10, Fortress
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 Using online research become familiar with a 
parallel programming language and critique it

 NOT allowed: ZPL, Chapel, libraries

 The critique must include a small code example

 Relevant topics to discuss might include

▪ Execution model (data parallel, task, etc.), mem model

▪ Mechanisms for creating threads, communicating, etc.

▪ Brief history, if known

▪ Evidence of performance, scalability, portability, etc.

 Any length OK, but ~2 pages is intended scale; refs

5/6/2010 (c) 2010 Larry Snyder 80


