
Libraries and languages make parallel programming possible,
but rarely easy

 What was your experience with formulating a
parallel prefix computation as an infix
operation?

5/6/2010 (c) 2010 Larry Snyder 2

3

 Trees are an important component of
computing

 The “Schwartz tree” has been logical

 Trees as data structures are complicated because
they are typically more dynamic

 Pointers are generally not available

 Work well with work queue approach

 As usual, we try to exploit locality and minimize
communication

5/6/2010 (c) 2010 Larry Snyder

4

 Common in games, searching, etc

 Split: Pass 1/2 to other processor, continue
 Stop when processors exhausted

 Responsible for tree that remains

 Ideal when work is localized

5/6/2010 (c) 2010 Larry Snyder

5

 Common in graph algorithms

 Get descendants, take one and assign others
to the task queue

Key issue is managing the algorithm’s progress
5/6/2010 (c) 2010 Larry Snyder

6

 Tree algorithms often need to know how
others are progressing

 Interrupt works if it is just a search: Eureka!!

 Record - cut-offs in global variable

 Other pruning data, e.g. best so far, also global

 Classic error is to consult global too frequently

 Rethink: What is tree data structure’s role?

Write essay: Dijkstra’s algorithm is not a good… :)

5/6/2010 (c) 2010 Larry Snyder

7

 If coordination becomes too involved,
consider alternate strategies:
Graph traverse => local traverse of partitioned graph

 Local computation uses sequential tree algorithms
directly … stitch together

5/6/2010 (c) 2010 Larry Snyder

8

 Trees are a useful data structure for recording
spatial relationships: K-D trees

 Generally, decomposition is unnecessary “all
the way down” -- but this optimization
implies two different regimes

5/6/2010 (c) 2010 Larry Snyder

9

 The nodes near root can be stored
redundantly

 Processors consult local copy -- alert others to
changes

Each process

keeps copy of “cap”

nodes

5/6/2010 (c) 2010 Larry Snyder

10

 Reconceptualizing is often most effective
 Focus has not been on ||ism, but on other

stuff
 Exploiting locality

 Balancing work

 Reducing inter-thread dependences
 We produced general purpose solution

mechanisms: UD-reduce and UD-scan
 We like trees, but recognize that direct

application is not likely
5/6/2010 (c) 2010 Larry Snyder

“I don’t know what the technical characteristics
of the standard language for scientific and

engineering computation will be in the year
2000 . . . but I know it will be called Fortran.”

John Backus, c. 1980

 I have argued that a key property of a ||
programming system is that it embody an
accurate (CTA) model of computation

 Recall why:

 Wrong model leads to picking wrong algorithm

 Communication costs -- they cannot be ignored

 || programs must port, so pick universal model

 So, which of our present languages do that?
Today, we’ll see.

5/6/2010 12(c) 2010 Larry Snyder

 At least 100 serious parallel programming
languages have been developed in the last 2
decades … why isn’t the problem solved?
 Generalizing …

▪ Most languages focused on a “silver bullet” solution, but
the problem is more complex

▪ Just a few of the languages were fully implemented

▪ To be taken seriously, a language must
▪ Run serious applications fast

▪ Run on “all” parallel machines

▪ Have substantial support (docs, compilers with libraries, tools
such as debuggers and IDEs, 1-800 #)

Industry Backing

5/6/2010 13(c) 2010 Larry Snyder

 No new languages crossed the bar
 Performance challenge …

▪ Serious applications programs are huge -- it is time consuming
to write an equivalent program in any language, and it may
require domain knowledge

▪ Production programs are often well optimized -- competing
on performance implies an effective compiler and
performance debugging tools

▪ “Linear speedup” goal (P processors will yield a P-fold speed-
up) is naïve, but widely assumed

▪ Doing well on one program is not persuasive

 Portability challenges are similar

 Will any programmer learn a new language?

5/6/2010 14(c) 2010 Larry Snyder

 Today, with few exceptions, we program
using library-based facilities rather than
languages
 Sequential language + message passing in MPI

or PVM

 Sequential language + thread packages such as
P-threads, or equivalently, Java-threads

 OpenMP with a pragma-aware compiler for a
sequential programming language

 Consider each briefly before discussing new
developments

5/6/2010 15(c) 2010 Larry Snyder

 Message passing is “the lowest of the low”,
but remains in widespread use because …
 It works -- embodies the CTA || model

 It is required for clusters, supercomputers, etc.

 Achieving performance is definitely possible

 Portability is essential for long-lived programs
 What is it?
 Variations on primitive send/receive

 Process spawning, broadcast, etc.

 Programming goodies: reduce, scan, processor
groups

5/6/2010 16(c) 2010 Larry Snyder

 In message passing
 There are few abstractions to simplify the work

 Programmers must do everything except the
physical layer

 Experiments show that compared to “designed
from first principles” parallel languages, MPI
programs are 6 times larger … the extra code is
the subtle, difficult to get right, and timing-
sensitive

 Consider dense matrix multiplication

5/6/2010 17(c) 2010 Larry Snyder

MPI_Status status;
main(int argc, char **argv) {
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize, /* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rows, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine rows sent to each worker */
i, j, k, /* misc */
count;

double a[NRA][NCA], /* matrix A to be multiplied */
b[NCA][NCB], /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

A “master--slave” solution

5/6/2010 18(c) 2010 Larry Snyder

intsize = sizeof(int);
dbsize = sizeof(double);

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;

/**************************** master task ************************************/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)

b[i][j]= i*j;

Create test data --

actually inputting data is

harder

5/6/2010 19(c) 2010 Larry Snyder

/* send matrix data to the worker tasks */
averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;
for (dest=1; dest<=numworkers; dest++) {

rows = (dest <= extra) ? averow+1 : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
count = rows*NCA;
MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

offset = offset + rows;
}

5/6/2010 20(c) 2010 Larry Snyder

/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {

source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD,&status);

}
/**************************** worker task ************************************/
if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCA;
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

5/6/2010 21(c) 2010 Larry Snyder

count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {

c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

} /* end of worker */

Actual Multiply

91 “Net” Lines

5/6/2010 22(c) 2010 Larry Snyder

 Reduce and scan are called collective operations
 Reduce/scan apply to nodes, not values
 Basic operations +, *, min, max, &&, ||
 Processor groups simplify collective ops on logical

structures like “rows”, “leaves”, etc
 MPI allows user-defined scans … these have probably

never been used!
 Bottom Line: Message passing is painful to use but it

works … which makes it a solution of choice

5/6/2010 23(c) 2010 Larry Snyder

 The P-threads library, designed for concurrency, is now
also used for parallelism

 Sharing is implemented by referencing shared memory
 As mentioned, the memory not sequentially consistent

 Not CTA; P-threads use RAM performance model, a greater
concern as latencies have increased

 Tends to promote very fine-grain sharing (recall count_3s
example), which limits the work that can be used to amortize
the overhead costs such as thread creation, scheduling, etc.

 Scaling potential is limited

Writing threaded code using CTA
principles usually gives good results

5/6/2010 24(c) 2010 Larry Snyder

 It is difficult to get threaded programs right

 Programmers are responsible for protecting all
data references

 Avoiding deadlock requires discipline and care --
and mistakes are easy to make, especially when
optimizing

 Timing errors can remain latent for a very long
time before emerging

Main difficulties: Lots of work for small ||ism; poor scaling prospects

5/6/2010 25(c) 2010 Larry Snyder

define NUMTHRDS 4
double sum;
double a[256], b[256];
int status;
int n = 256;
pthread_t thds[NUMTHRDS];
pthread_mutex_t mutex_sum;

int main (int argc, char *argv[]);

void *dotprod (void *arg);
int main (int argc, char *argv[]) {
int i;
pthread_attr_t attr;
for (i = 0; i < n; i++) {

a[i] = i * 0.5;
b[i] = i * 2.0;

}
Creating Data

5/6/2010 26(c) 2010 Larry Snyder

pthread_mutex_init (&mutex_sum, NULL);
pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE);

for (i = 0; i < NUMTHRDS; i++) {
pthread_create (&thds[i], &attr, dotprod, (void *) i);

}
pthread_attr_destroy (&attr);
for (i = 0; i < NUMTHRDS; i++) {

pthread_join (thds[i], (void **) &status);
}

printf (" Sum = %f\n", sum);
pthread_mutex_destroy (&mutex_sum);
pthread_exit (NULL);
return 0;

}

5/6/2010 27(c) 2010 Larry Snyder

void *dotprod (void *arg) {
int i, my_first, my_last, myid;
double sum_local;
myid = (int) arg;
my_first = myid * n / NUMTHRDS;
my_last = (myid + 1) * n / NUMTHRDS;

sum_local = 0;
for (i = my_first; i <= my_last; i++) {

sum_local = sum_local + a[i] * b[i];
}

pthread_mutex_lock (&mutex_sum);
sum = sum + sum_local;
pthread_mutex_unlock (&mutex_sum);

pthread_exit ((void *) 0);
}

Actual Multiply

5/6/2010 28(c) 2010 Larry Snyder

 Developed as easy access to multi-threading
 Has second life with multi-core (Intel and others push)
 Approach

 Add pragmas to C or Fortran code

 Pragma-aware compiler links in appropriate library calls

 Pragma-unaware compiler -- no change from sequential

 All responsibility for parallel == sequential left to programmer

 Main benefit: little effort, some benefit
 Main liability: tight binding to sequential semantics

5/6/2010 29(c) 2010 Larry Snyder

 The program is sequential
▪ When there is no compiler to interpret the pragmas, the

code is sequential

▪ When there is no parallelism available, the sequential
code runs

▪ When there is a compiler AND parallel processors the
sequential code runs

 But, we often observe that there IS usually a
conceptual difference between sequential
and parallel algorithms

5/6/2010 30(c) 2010 Larry Snyder

double dotProduct() {
int I; double sum_p;
double result = 0;
#pragma omp parallel shared(a, b, result) private(sum_p)
{

sum_p=0;
#pragma omp parallel for private(i)

for(i=0; i<n; i++) {
sum_p += a[i]*b[i];

}
#pragma omp critical

{
result += sum_p;
}

}
return result;

}

5/6/2010 31(c) 2010 Larry Snyder

 4 Processor Sun
Enterprise running
the NAS PB written
in C with OpenMP

Block Tridiagonal

Conjugate Gradient

Embarrassingly ||

Fast Fourier Trans

Integer Sort

LU Decomposition

Multigrid Iteration

Sparse Matrix-Vector

5/6/2010 32(c) 2010 Larry Snyder

 The easy cases work well; harder cases are
probably much harder

 Requires that the semantics of sequential
computation be preserved

 Directly opposite of our thesis in this course that
algorithms must be rethought

 Compilers must enforce the sequentially
consistent memory model

 Limited abstractions

5/6/2010 (c) 2010 Larry Snyder 33

5/6/2010 34

 Philosophy

 Automatic parallelization won’t work

 For data parallelism, what’s important is data placement
and data motion

 Give the compiler help:

▪ Extends Fortran with directives to guide data distribution

 Allow slow migration from legacy codes

▪ The directives are only hints

 Basic idea

 Processors operate on only part of overall data

 Directives say which processor operates on which data

 Much higher level than message passing
(c) 2010 Larry Snyder

5/6/2010 35

The beginning

 Designed by large consortium in the early 90’s

 Participation by academia, industry, and national
labs

▪ All major vendors represented
▪ Convex, Cray, DEC, Fujitsu, HP, IBM, Intel, Meiko, Sun, Thinking

Machines

 Heavily influenced by Fortran-D from Rice

▪ D stands for “Data” or “Distributed”

 HPF 2.0 specified in 1996

(c) 2010 Larry Snyder

5/6/2010 36

 Context

 Part of early 90’s trend towards consolidating
supercomputing research

 To reduce risk, fund a few large projects rather
than a lot of small risky projects

 Buoyed by the success of MPI

 Aware of the lessons of vectorizing compilers

▪ Compilers can train programmers by providing feedback

(c) 2010 Larry Snyder

5/6/2010 37

 Basic idea

 Instead of looping over elements of a vector,
perform a single vector instruction

 Example
for (i=0; i<100; i++)

A[i] = B[i] + C[i];

 Scalar code

 Execute 4 insts 100 times, 2 Loads, 1 Add, 1 Store

 Advantages?

Vector code

– Execute 4 instructions once

– 2 vector Loads

– 1 vector Add

– 1 vector Store

(c) 2010 Larry Snyder

5/6/2010 38

 1. Avoid conditionals in loops
for (i=0; i<100; i++)

if (A[i] > MaxFloat)

A[i] = MaxFloat;

 2. Promote scalar functions
for (i=0; i<100; i++)

foo (A[i], B[i]);

 Lots of function calls inside a tight loop

 Function call boundaries inhibit vectorization

for (i=0; i<100; i++)

A[i] = min(A[i],MaxFloat)

Foo(A, B);

– One function call

– Body of this function

call can be easily
vectorized

(c) 2010 Larry Snyder

5/6/2010 39

 3. Avoid recursion
 4. Choose appropriate memory layout

 Depending on the compiler and the hardware,
some strides are vectorizable while others are not

 Other guidelines?
 The point

 These are simple guidelines that programmers
can learn

 The concept of a vector operation is simple

(c) 2010 Larry Snyder

5/6/2010 40

 A community project

 Compiler directives don’t change the program’s
semantics

 They only affect performance

 Allows different groups to conduct research on
different aspects of the problem

 Even the “little guy” can contribute

(c) 2010 Larry Snyder

5/6/2010 41

 An array language

 Can operate with entire arrays as operands

▪ Pairwise operators

▪ Reduction operators

 Uses slice notation

▪ array1d(low: high: stride) represents the elements of
array1 starting at low, ending at high, and skipping every
stride-1 elements

▪ The stride is an optional operand

 Converts many loops into array statements

(c) 2010 Larry Snyder

5/6/2010 42

 Jacobi Iteration

 The elements of an array, initialized to 0.0 except
for 1.0’s along its southern border, are iteratively
replaced with the average of their 4 nearest
neighbors until the greatest change between two
iterations is less than some epsilon.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

0

0

0

0

0

0

0

(c) 2010 Larry Snyder

5/6/2010 43

 Example

 The following statement computes the averaging
step in the Jacobi iteration

 Assume that next and curr are 2D arraysnext(2:n, 2:n) = (curr(1:n-1, 2:n) +

curr(3:n+1, 2:n) +

curr(2:n, 1:n-1)+

curr(2:n, 3:n+1)) / 4

=

next curr

(c) 2010 Larry Snyder

5/6/2010 44

 Block distribution of 1D array

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE array1D(BLOCK) ONTO PROCS

Block distribution of 2D array

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE array2D(BLOCK,BLOCK) ONTO PROCS

Number of virtual processors

Name of array

Keywords in caps

(c) 2010 Larry Snyder

5/6/2010 45

 Block-cyclic distribution

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE array2D(BLOCK, CYCLIC) ONTO PROCS

Block-cyclic distribution

!HPF$ DISTRIBUTE array2D(CYCLIC, BLOCK) ONTO PROCS

(c) 2010 Larry Snyder

5/6/2010 46

 Arrays can be aligned with one another

 Aligned elements will reside on the same physical
processor

 Alignment can reduce communication

 Can align arrays of different dimensions

!HPF$ ALIGN a (i) WITH b(i-1)

a

b

(c) 2010 Larry Snyder

5/6/2010
47

This alignment and assignment require all elements
to be communicated to a different processor

The following induces no communication

!HPF$ ALIGN a(i) WITH b(i-1)

a(1:n) = b(1:n)

!HPF$ ALIGN a(i) WITH b(i)

a

b

a

b

(c) 2010 Larry Snyder

5/6/2010 (c) 2010 Larry Snyder 48

5/6/2010 50

Fortran90 equivalent?

– None

 INDEPENDENT directive

 Loop iterations are independent

 No implied barriers Dependence graph

!HPF$ INDEPENDENT

DO (i = 1:3)

a(i) = b(i)

c(i) = d(i)

END DO

b(3)b(2)b(1)

a(3)a(2)a(1)

d(3)d(2)d(1)

c(3)c(2)c(1)

a(i) = b(i)

c(i) = d(i)

(c) 2010 Larry Snyder

5/6/2010 51

 Is there a difference?
FORALL INDEPENDENT

b(3)
b(2)b(1)

a(3)a(1)

d(3)d(2)

c(3)c(2)c(1)

d(1)

a(2)

b(3)
b(2)b(1)

a(3)

a(1)

d(3)
d(2)

c(3)
c(2)

c(1)

a(2)

d(1)

barrier

barrier

barrier

(c) 2010 Larry Snyder

5/6/2010 52

 Your thoughts on HPF?

 Is this a convenient language to use?

 Can programmers get good performance?

 No performance model

 To understand locality and communication, need
to understand complex interactions among
distributions

▪ Procedure calls are particularly bad

 Many hidden costs

 Small changes in distribution can have large
performance impact

a(i) = b(i)
Does the following code induce communication?

(c) 2010 Larry Snyder

5/6/2010 53

 No performance model

 Complex language  Difficult language to
compile

▪ Large variability among compilers

▪ Kernel HPF: A subset of HPF “guaranteed” to be fast

 An accurate performance model is essential

 Witness our experience with the PRAM

 Common user experience

 Play with random different distribution in an
attempt try to get good performance

(c) 2010 Larry Snyder

5/6/2010 54

 Language is too general

 Difficult to obey an important system design
principle:

“Optimize the common case”

▪ What is the common case?

 Sequential constructs inherited from Fortran77
and Fortran90 cause problems

▪ For example, the following code forces compiler to
perform matrix transpose FORALL (i=1:n, j=1:n)

a(i, j) = a(j, i)

END FORALL

(c) 2010 Larry Snyder

CS380P Lecture 17 Introduction to ZPL 55

 Philosophy

 Provide performance portability for data-parallel
programs

 Allow users to reason about performance

 Start from scratch

▪ Parallel is fundamentally different from sequential

▪ Be willing to throw out conveniences familiar to
sequential programmers

 Basic idea
▪ An array language

▪ Implicitly parallel

CS380P Lecture 17 Introduction to ZPL 56

The beginning

 Designed by a small team beginning in 1993

 Compiler and runtime released in 1997

 Claims

 Portable to any MIMD parallel computer

 Performance comparable to C with message
passing

 Generally outperforms HPF

 Convenient and intuitive

CS380P Lecture 17 Introduction to ZPL 57

 Jacobi Iteration

 The elements of an array, initialized to 0.0 except
for 1.0’s along its southern border, are iteratively
replaced with the average of their 4 nearest
neighbors until the greatest change between two
iterations is less than some epsilon.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

0

0

0

0

0

0

0

CS380P Lecture 17 Introduction to ZPL 58

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

Naming Convention:
Arrays begin with upper case letters
Scalars begin with lower case letters

Reductions:
max<< returns the maximum
of an array expression

Lecture 20

CS380P Lecture 17 Introduction to ZPL 59

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

end;

CS380P Lecture 17 Introduction to ZPL 60

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

+

+

CS380P Lecture 17 Introduction to ZPL 61

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

[north of R] A := 0.0; [west of R] A := 1.0;

[south of R] A := 0.0; [east of R] A := 0.0;

+ + +) / 4.0:= (

CS380P Lecture 17 Introduction to ZPL 62

program Jacobi;
config var n : integer = 512;

epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;

err : float;
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0, -1];
procedure Jacobi();

[R] begin
A := 0.0;

[north of R] A := 0.0; [west of R] A := 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;

repeat
Temp := (A@north + A@east + A@west + A@south)/4.0;
err := max<< abs(Temp – A);
A := Temp;

until err < epsilon;
end;

end;

+ + +) / 4.0:= (

 Greatest potential to assist programmer
comes from hiding communication calls

 Compilers can generate the calls

 Need interface to specify which are local/global

 Concept: Partitioned Global Address Space
▪ Overlay global addressing on separate memories

▪ PGAS tends to use 1-sided comm as simplification

P0 P1 P2 P3 P4 P5 P6 P7

5/6/2010 63(c) 2010 Larry Snyder

 Three PGAS languages

 Developed around 2000 +/- & Implemented

 Similarities: GAS, comm handled by compiler/rt,
programmer controls work/data assignment

 Differences: Most everything else

Co-Array Fortran

Numrich & Reed

Extends Fortran

Universal Parallel C

El Ghazawi, Carlson & Draper

Extends C

Titanium

Yelick

Extends Java

CAF UPC Ti

5/6/2010 64(c) 2010 Larry Snyder

 Incredibly elegant (for Fortran) extension

real, dimension(n,n)[p,*]:: a,b,c

...

do k=1,n

do q=1,p

c(i,j)[myP,myQ]=c(i,j)[myP,myQ]+a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo

enddo
myP

myQ

a bc

*=

Co-array

5/6/2010 65(c) 2010 Larry Snyder

 Data can be allocated either shared or
private; shared is assigned cyclically or BC

 Pointers are an issue

Private Shared

Private Private-Private, p1 Private-Shared, p2

Shared Shared-Private, p3 Shared-Shared, p4

int *p1; /* private ptr pointing locally */

shared int *p2; /* private ptr pointing into shared space */

int *shared p3; /* shared ptr pointing locally */

shared int *shared p4; /* shared ptr pointing into shared space */

Property of pointer

Property of

reference

5/6/2010 66(c) 2010 Larry Snyder

shared int v1[N], v2[N], v1v2sum[N];

void main()

{

int i;

shared int *p1, *p2;

p1=v1;

p2=v2;

upc_forall(i=0; i<N; i++, p1++, p2++;i)

{

v1v2sum[i] = *p1 + *p2;

}

}

Affinity

5/6/2010 67(c) 2010 Larry Snyder

 Java extensions including
 “regions, which support safe, performance-

oriented memory management as an alternative to
garbage collection.”

 foreach is an unordered iteration, which logically
raises the concurrency:
foreach (…) { }

 Used with the concept of a point, tuple of
integers that range over a domain

5/6/2010 68(c) 2010 Larry Snyder

public static void matMul(double [2d] a,

double [2d] b,

double [2d] c)

{

foreach (ij in c.domain())

{

double [1d] aRowi = a.slice(1, ij[1]);

double [1d] bColj = b.slice(2, ij[2]);

foreach (k in aRowi.domain())

{

c[ij] += aRowi[k] * bColj[k];

}

}

}

5/6/2010 69(c) 2010 Larry Snyder

 The languages improve on the alternative--
base language + MPI

 Compiler provides significant help, but the
need to be attuned to subtle detail remains

 Deep issues

 Global address space+private are good, but how
they “play together” remains unclear

 Better abstractions to reduce detail

5/6/2010 70(c) 2010 Larry Snyder

 DARPA has supported three new “high
productivity” parallel languages
 Is productivity really the issue?

 Project coupled with design of a new machine
 The final competitors:
 Cray’s Cascade High Productivity Language,

Chapel

 IBM’s X10

 Sun’s Fortress

5/6/2010 71(c) 2010 Larry Snyder

 Chapel is a multithreaded language
supporting
 Data ||ism, task ||ism, nested ||ism

 Optimizations for locality of data and
computation

 Object oriented and generic programming
techniques

 Parallel implementation is nearing completion
 Designed for experts, production

programmers

5/6/2010 72(c) 2010 Larry Snyder

for(str, span) in genDFTPhases(numElements, radix) {

forall (bankStart, twidIndex) in (ADom by 2*span, 0..) {

var wk2 = W(twidIndex),

wk1 = W(2*twidIndex),

wk3 = (wk1.re - 2 * wk2.im * wk1.im,

2 * wk2.im * wk1.re - wk1.im):elemType;

forall lo in bankStart + [0..str) do

butterfly(wk1, wk2, wk3, A[[0..radix)*str + lo]);

wk1 = W(2*twidIndex+1);

wk3 = (wk1.re - 2 * wk2.re * wk1.im, 2 * wk2.re * wk1.re -

wk1.im):elemType;

wk2 *= 1.0i;

forall lo in bankStart + span + [0..str) do

butterfly(wk1, wk2, wk3, A[[0..radix]*str + lo]);

}

}

5/6/2010 73(c) 2010 Larry Snyder

 Developed at Sun, Fortress pushes the
envelop in expressivity
 Focus on new programming ideas rather than

parallel programming ideas: components and
test framework assist with powerful compiler
optimizations across libraries

 Textual presentation important -- subscripts and
superscripts -- mathematical forms

 Transactions, locality specification, implicit ||ism

 Extendibility

5/6/2010 74(c) 2010 Larry Snyder

 Conjugate
gradient
program in
Fortress

 Features

 := / =

 Sequential

 Mathematical

5/6/2010 75(c) 2010 Larry Snyder

 IBM’s X10 is a type safe, distributed object
oriented language in the PGAS family -- its
“accessible to Java programmers”

 Many goodies including regions (a la ZPL),
places (for locality), asynch, futures, foreach,
ateach, atomic blocks and global
manipulation of data structures

5/6/2010 76(c) 2010 Larry Snyder

public class Jacobi {
const int N=6;
const double epsilon = 0.002;
const double epsilon2 = 0.000000001;
const region R = [0:N+1, 0:N+1];
const region RInner= [1:N, 1:N];
const distribution D = distribution.factory.block(R);
const distribution DInner = D | RInner;
const distribution DBoundary = D - RInner;
const int EXPECTED ITERS=97;
const double EXPECTED ERR=0.0018673382039402497;
double[D] B = new double[D] (point p[i,j])

{ return DBoundary.contains(p)
? (N-1)/2 : N*(i-1)+(j-1); };

public double read(final int i, final int j) {
return future(D[i,j]) B[i,j].force(); }

public static void main(String args[]) {
boolean b= (new Jacobi()).run();
System.out.println("++++++ " + (b? "Test succeeded." :"Test failed."));
System.exit(b?0:1);

}
}

5/6/2010 77(c) 2010 Larry Snyder

public boolean run() {

int iters = 0;

double err;

while(true) {

double[.] Temp =

new double[DInner] (point [i,j])

{return (read(i+1,j)+read(i-1,j)

+read(i,j+1)+read(i,j-1))/4.0; };

if((err=((B | DInner) - Temp).abs().sum()) < epsilon)

break;

B.update(Temp);

iters++;

}

System.out.println("Error="+err);

System.out.println("Iterations="+iters);

return Math.abs(err-EXPECTED ERR) < epsilon2 && iters==EXPECTED ITERS;

}

Actual Multiply

5/6/2010 78(c) 2010 Larry Snyder

79

 Language is key tool to express parallelism
 State of the art is libraries –

 threads, message passing, OpenMP

 There has been tremendous
experimentation with alternative language
approaches

 ZPL, HPF, CAF, UPC, Titanium

 The next generation is here

 Chapel, X10, Fortress

5/6/2010 (c) 2010 Larry Snyder

 Using online research become familiar with a
parallel programming language and critique it

 NOT allowed: ZPL, Chapel, libraries

 The critique must include a small code example

 Relevant topics to discuss might include

▪ Execution model (data parallel, task, etc.), mem model

▪ Mechanisms for creating threads, communicating, etc.

▪ Brief history, if known

▪ Evidence of performance, scalability, portability, etc.

 Any length OK, but ~2 pages is intended scale; refs

5/6/2010 (c) 2010 Larry Snyder 80

