Part V: Algorithms & Data Structs

Goal: Focus more closely on scalable parallel techniques, both computation and data

Announcement

 Notice on the calendar that next week's class (normally 5/4) is rescheduled for Thursday (5/6), same time, same place

Commentary on Homework

- Are there any further comments on the Red/Blue thread program?
- How was the Peril-L sample sort exercise?
 - Randomizing
 - Finding Cut-points
 - Global Exchange
 - Scooch

Recovering A Missed Chance

Recall from last week ... the balanced () code

```
for (i=start; i<start+len_per_th; i++) {

   temp = symb[i];
   if (temp == "("))
        o++;
        if (temp == ")") {
        o--;

        if (o < 0) {
            c++; o = 0;
            }
        }
        }
}</pre>
```

 The question was raised, could we move symb[i] into a local variable before the if's

Can it?

- The answer was 'yes, though a modern compiler could do this for us'
- That answer's correct, but I missed the opportunity to say why
 - This move would not be legal in our assumed sequentially consistent shared memory model UNLESS the compiler could establish the global fact that the array is read only
 - It is legal in the Peril-L model, which has no coherency commitments at all

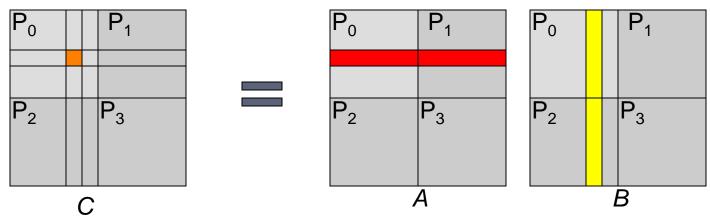
Reconceptualizing a Computation

- Good parallel solutions result from rethinking a computation ...
 - Sometimes that amounts to reordering scalar operations
 - Sometimes it requires starting from scratch
- The SUMMA matrix multiplication algorithm is the poster computation for rethinking!

This computation is part of homework assignment

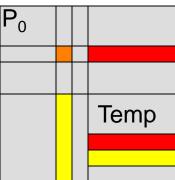
Return To A Lecture 1 Computation

Matrix Multiplication on Processor Grid



Matrices A and B producing
 n x n result C where

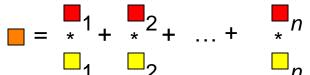
$$C_{rs} = \sum_{1 \le k \le n} A_{rk}^* B_{ks}$$



Applying Scalable Techniques

- Assume each processor stores block of C, A,
 B; assume "can't" store all of any matrix
- To compute c_{rs} a processor needs all of row r
 of A and column s of B
- Consider strategies for minimizing data

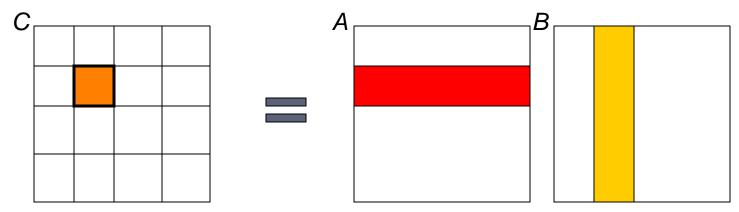
movement, because that is the greatest cost -- what are they?



Temp

Grab All Rows/Columns At Once

If all rows/columns are present, it's local



- Each element requires O(n) operations
- Modern pipelined processors benefit from large blocks of work
- But memory space and BW are issues

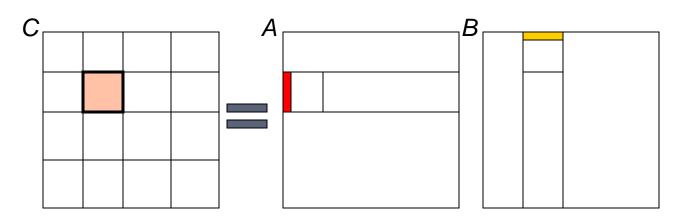
Process t x t Blocks

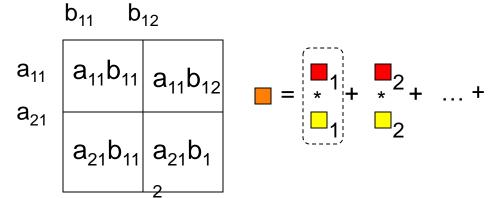
- Use that solution, but incrementally
- Referring to local storage

```
for (r=0; r < t; r++) {
                              Only move a t \times t block at a time
  for (s=0; s < t; s++) {
      c[r][s] = 0.0;
      for (k=0; k < n; k++) {
           c[r][s] += a[r][k]*b[k][s];
                                             Sweeter caching
```

Change Of View Point

Don't think of row-times-column





Switch orientation -- by using a *column* of *A* and a *row* of *B* compute all 1st terms of the dot products

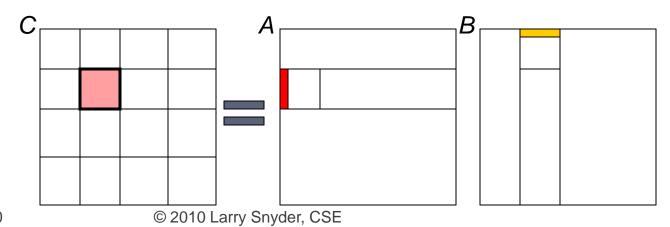
SUMMA

- Scalable Universal Matrix Multiplication Alg
 - Invented by van de Geijn & Watts of UT Austin
 - Claimed to be the best machine independent MM
- Whereas MM is usually A row x B column,
 SUMMA is A column x B row because
 computation switches sense
 - Normal: Compute all terms of a dot product
 - SUMMA: Computer a term of all dot products

Strange. But fast!

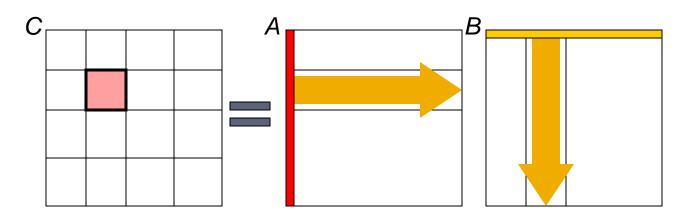
SUMMA Assumptions

- Threads have two indices, handle t x t block
- Let $p = P^{1/2}$, then thread u,v
 - reads all columns of A for indices υ*t:(υ+1)*t-1,j
 - reads all rows of B for indices i,v*t:(v+1)*t-1
 - The arrays will be in "global" memory and referenced as needed



Higher Level SUMMA View

- See SUMMA as an iteration multicasting columns and rows
- Each processor is responsible for sending/recving its column/row portion at proper time
- Followed by a step of computing next term locally



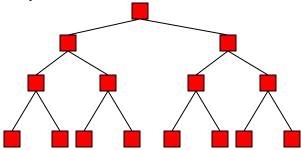
www.cs.utexas.edu/users/rvdg/abstracts/SUMMA.html

Summary of SUMMA

- Facts:
 - vdG & W advocate blocking for msg passing
 - Works for **A** being $m \times n$ and **B** being $n \times p$
 - Works fine when local region is not square
 - Load is balanced esp. of Ceiling/Floor is used
- Fastest machine independent MM algorithm!
- Key algorithm for 524: Reconceptualizes MM to handle high λ, balance work, use BW well, exploit efficiencies like multicast, ...

Schwartz's Algorithm

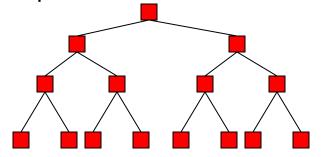
- Jack Schwartz (NYU) asked: What is the optimal number of processors to combine n values?
 - Reasonable Answer: binary tree w/ values at leaves has O(log n) complexity
 - To this solution add log n values into each leaf
 - Same complexity (O(log n)), but nlog n values!
 - Asymptotically, the advantage is small, but the tree edges require communication



Schwartz' Algorithm

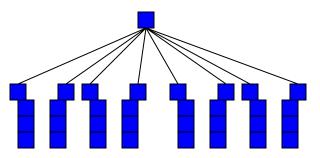
- Jack Schwartz (NYU) asked: What is optimal number of processors to combine n values?
 - Reasonable Answer: binary tree w/ values at leaves has O(log n) complexity
 - To this solution add log n values into each leaf
 - Same complexity (O(log n)), but nlog n values!

 Asymptotically, the advantage is small, but the tree edges require communication



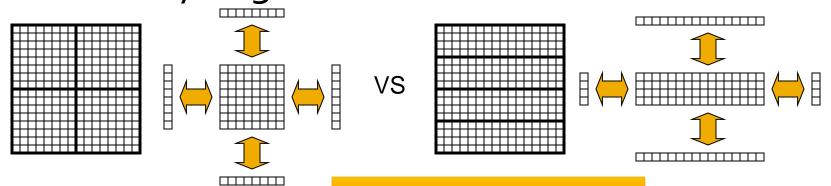
Schwartz

- Generally P is not a variable, and P << n
- Use Schwartz as heuristic: Prefer to work at leaves (no matter how much smaller n is than P) rather than enlarge (make a deeper) tree, implying tree will have no more than log₂ P height
- Also, consider higher degree tree -- in cases of parallel communication (CTA) some of the communication may overlap



Block Allocations

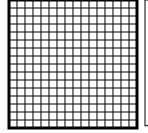
- The Red/Blue computation illustrated a 2Dblock data parallel allocation of the problem
- Generally block allocations are better for data transmission: surface to volume advantage ... since only edges are x-mitted



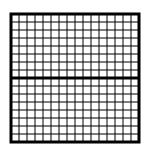
Now scale problem 4x

Different Regimens

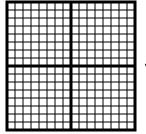
Though block is generally a good allocation it's not absolute:



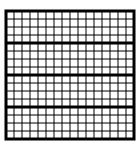
P=1, all comm wasted



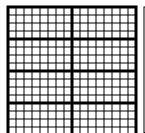
P=2, row-wise saves column comm



VS



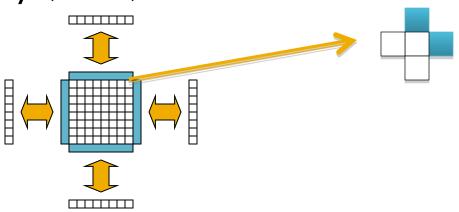
P=4, rows and blocks are a wash



Where is the point of dim. return?

Shadow Regions/Fluff

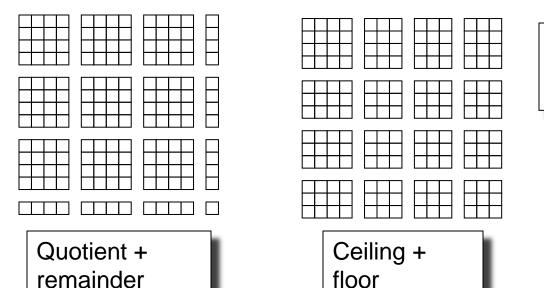
 To simplify local computation in cases where nearest neighbor's values x-mitted, allocate in-place memory (fluff) to store values:



Array can be referenced as if it's all local

Aspect Ratio

- Generally P and n do not allow for a perfectly balanced allocation ...
- Several ways to assign arrays to processors



13x13 on 4x4 process array

Generally a small effect

Assigning Processor o Work

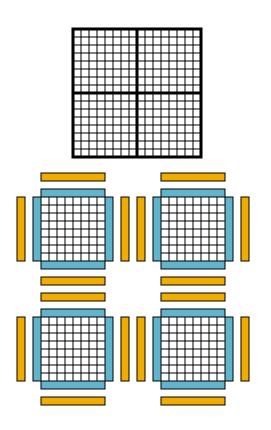
- p_o is often assigned "other duties", such as
 - Orchestrate I/O
 - Root node for combining trees
 - Work Queue Manager ...
- Assigning p_o the smallest quantum of work helps it avoid becoming a bottleneck
 - For either quotient + remainder or ceiling/floor p_o should be the last processor

This is a late-stage tuning matter

Locality Always Matters

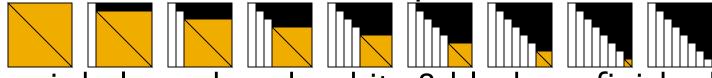
- Array computations on CMPs
 - Dense Allocation vs Fluff
 - Issue is cache invalidation
 - Keeping MM managed intermediate buffers keeps array and fluff local (L1)
 - Sharing causes elements at edge to repeatedly invalidate harming locality

False sharing an issue, too



Load Balancing

 Certain computations are inherently imbalanced ... LU Decomposition is one



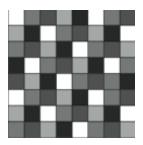
gray is balanced work, white & black are finished

 Standard block decomposition quickly becomes very biased

Cyclic and block cyclic allocation are one fix

Cyclic & Block Cyclic

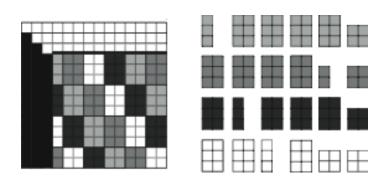
- Cyclic allocation means "to deal" the elements to the processes like cards
 - Allocating 64 elements to five processes: black, white, three shades of gray

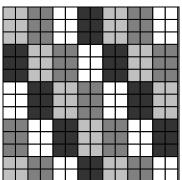


 Block cyclic is the same idea, but rather with regular shaped blocks

Block Cyclic

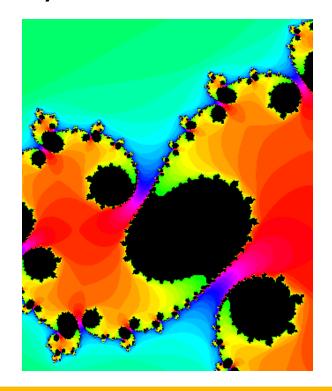
- Consider the LU matrix allocated in 3x2 blocks to four processes:
- Then check it midway in the computation





Opportunities To Apply Cyclic

 The technique applies to work allocation as well as memory allocation



Break

Generalized Reduce and Scan

- The importance of reduce/scan has been repeated so often, it is by now our mantra
- In nearly all languages the only available operators are +, *, min, max, &&, | |
- The concepts apply much more broadly
- Goal: Understand how to make user-defined variants of reduce/scan specialized to specific situations

Seemingly sequential looping code can be UD-scan

An Important Detail

Recall scan specifics

```
+ scan of: 1 2 3 4 5 6 7 8
is either: 1 3 6 10 15 21 28 36 [inclusive]
or it is: 0 1 3 6 10 15 21 28 [exclusive]
```

Important fact about standard scans

$$\alpha$$
-scan_{inclusive}(x) = α -scan_{exclusive}(x) α x

 For technical reasons prefer exclusive, for today, think inclusive

Examples Applicable Computations

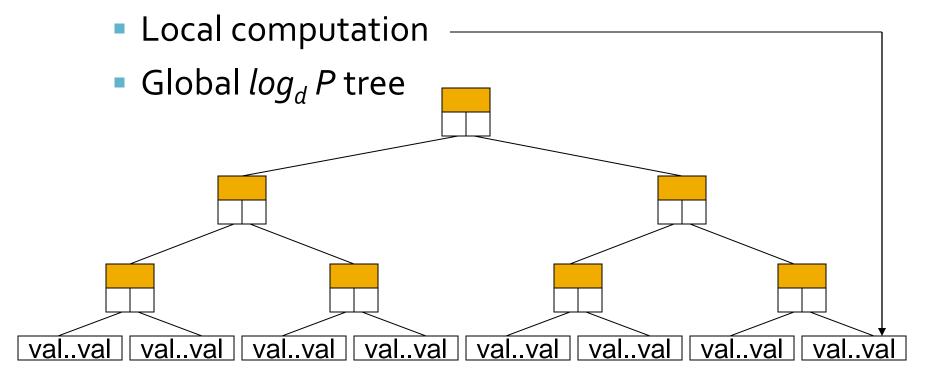
Reduce

- Second smallest, or generally, kth smallest
- Histogram, counts items in k buckets
- Length of longest run of value 1s
- Index of first occurrence of x
- Scan
 - Team standings
 - Find the longest sequence of 1s
 - Index of most recent occurrence

Associativity, but not commutativity, is key

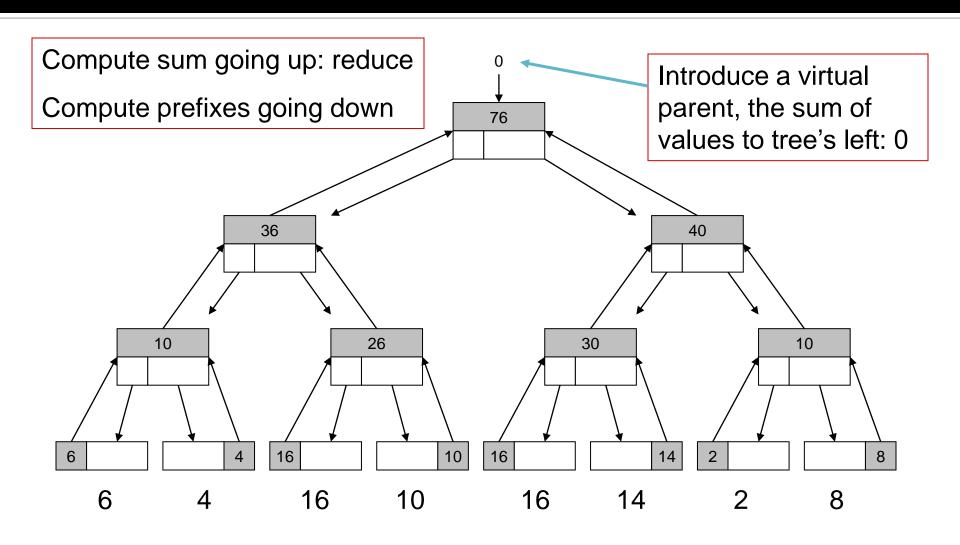
Structure of Computation

Begin by applying Schwartz idea to problem

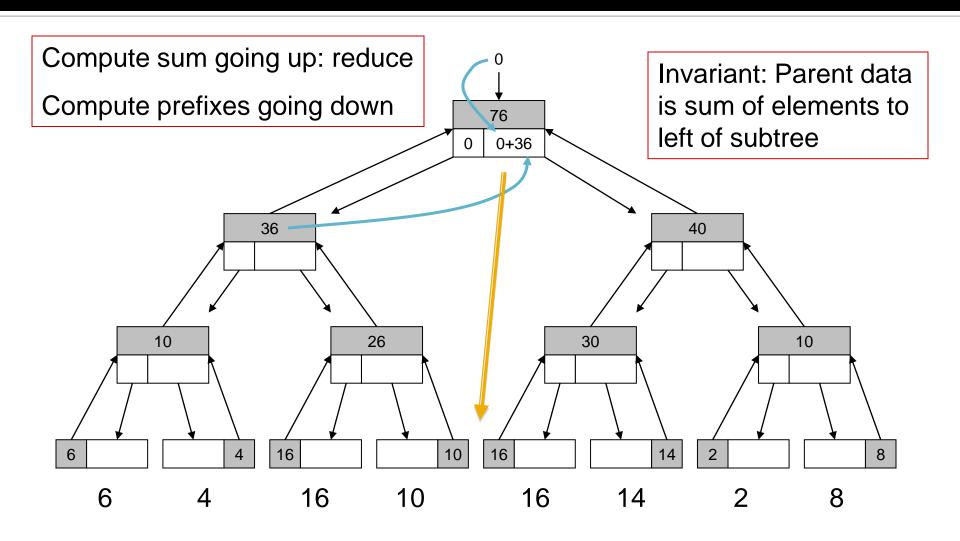


More computation at nodes is OK

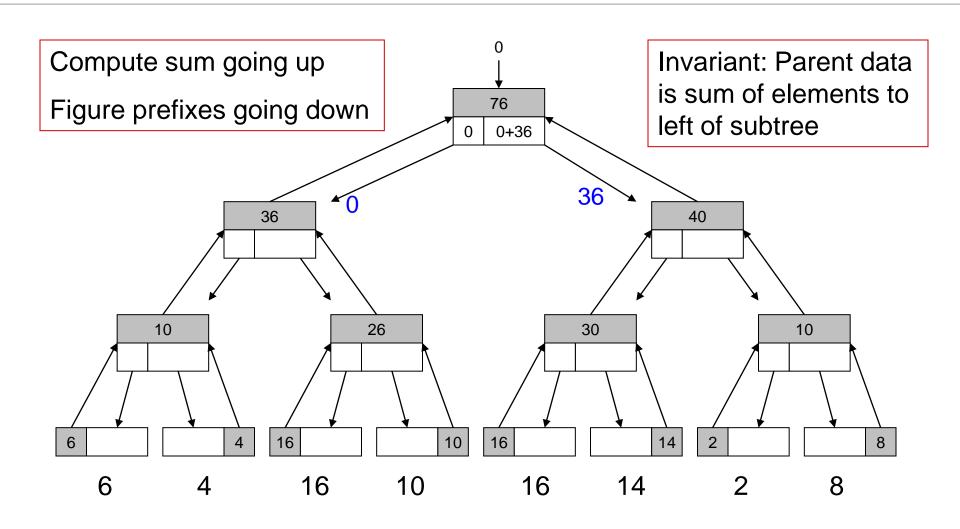
Recall Parallel Prefix Algorithm



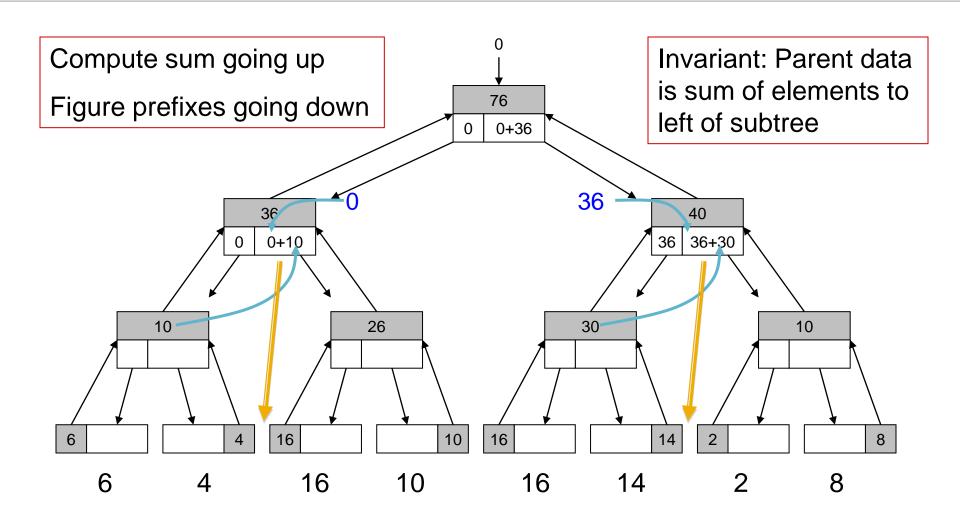
Parallel Prefix Algorithm



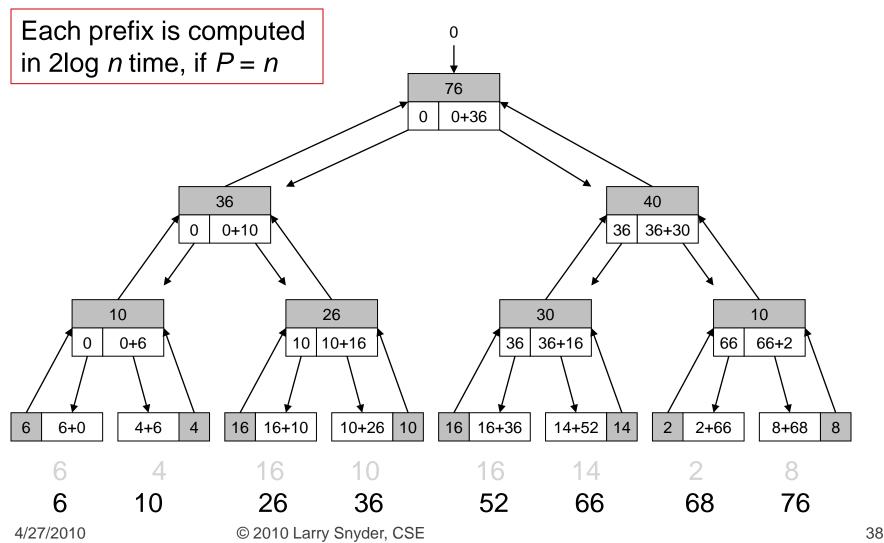
Parallel Prefix Algorithm



Parallel Prefix Algorithm



Parallel Prefix Algorithm



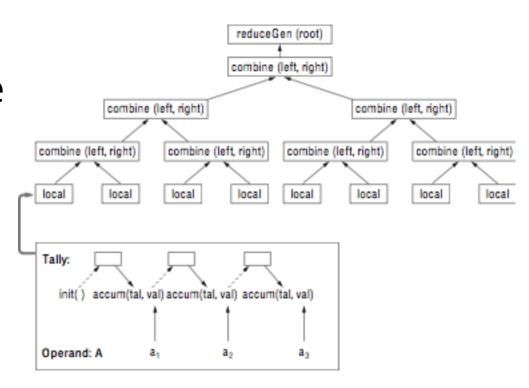
Introduce Four Functions

- Make four non-communication operations
 - init() initialize the reduce/scan
 - accum() perform local computation
 - combine () perform tree combining
 - x_gen() produce the final result for either op
 - x = reduce
 - x = scan
- Incorporate into Schwartz-type logic

Think of: reduce (fi, fa, fc, fg)

Assignment of Functions

- Init: Each leaf
- Accum: Aggregate each array value
- Combine: Each tree node
- reduceGen: Root



Example: +<<A Definitions

- Sum reduce uses a temporary value, called a tally, to hold items during processing
- Four reduce functions:

```
tally init() {tal = new tally; tal=0;
    return tal;}

tally accum(int op_val, tally tal)
    {tal += op_val; return tal; }

tally combine(tally left, tally right)
    {return left + right; }

int reduce gen(tally ans) {return ans;}
```

More Involved Case

- Consider Second Smallest -- useful, perhaps for finding smallest nonzero among non-negative values
- tally is a struct of the smallest and next smallest found so far {float sm, nsm}
- Four functions:

```
tally init() {
   pair = new tally;
   pair.sm = maxFloat;
   pair.nsm = maxFloat;
   return pair; }
```

Second Smallest (Continued)

Accumulate

```
tally accum(float op_val, tally tal) {
   if (op_val < tal.sm) {
      tal.nsm = tal.sm;
      tal.sm = op_val;
   } else {
      if (op_val > tal.sm && op_val < tal.nsm)
        tal.nsm = op_val;
   }
   return tal;
}</pre>
```

Finds 2nd smallest *distinct* value

Second Smallest (Continued)

```
tally combine(tally left, tally right) {
   return
   accum(left.nsm, accum(left.sm, right));}
int reduce_gen(tally ans) {return ans.nsm;}
```

- Notice that the signatures are all different
- Conceptually easy to write equivalent code, but reduction abstraction clarifies

Custom Use of Parallel Prefix

- PoPP presents the state of the art of userdefined scans
- The conclusion must be, that generally it is
 - inconvenient, cumbersome, difficult
 - requires low-level knowledge and interface
- But, custom scan has wide application
- Take a moment to think "outside the box" on adding UD Scan to a programmer's tool belt

Essential Feature of | Prefix

- Because the definition of the computation is in terms of prefixes we usually see scan as a sequential left to right operation
- But studying the implementational or compiler view of the computation, we notice ...

From the backbone logic of the tree evaluation that the crux is combining adjacent sequences

The Main Idea

```
Add scan to languages with semantics of a user defined INFIX operator rather than as a LEFT ASSOCIATIVE operator, i.e. prefer  ((\oplus) \oplus (\oplus)) \oplus ((\oplus) \oplus (\oplus)) to  (((((((\oplus) \oplus) \oplus)
```

Rethinking Scan As Combining

- Accordingly, think of the operation as
- $\mathbf{x}_r \dots \mathbf{x}_s \oplus \mathbf{x}_{s+1} \dots \mathbf{x}_t$
 - where
 - the sequences are contiguous
 - begin anywhere, end anywhere
 - any nonzero length
- Additionally, think about
 - The data to be merged from the two halves
 - The basis case starting with initial data
 - The completion processing

Consequences of \oplus view

- To make the new view concrete, notice that
 - The substrings need a descriptor for state: tally
 - The basis case is an initial tally value: Initial(inval_i) in each position i
 - The result of $x_1 ext{...} x_s \oplus x_{s+1} ext{...} x_n$ is the root value of the implementation tree, but the computation may not be finished [down sweep] implying that there is a finalize step: outval_i=Final()
- Defining the tally, Initial(), Itally⊕rtally and Finalize() suffices

Three Parts of + reduce

The tally is a single float Initialize:

• float tally = inval;

Complete:

outval = tally;

Combine: Itally ⊕ rtally

• float tally = Itally + rtally;

//initialize

//final output from root

//sum is left+right

Three Parts of + Scan

Initialize [each item in sequence]:

```
pair tally = new Pair() //descriptor is a pair
```

• float tally.pre = o; float tally.sum = inval; //initialize

Complete [each item in sequence]:

```
outval = tally.pre + tally.sum //final output
```

Combine: Itally ⊕ rtally

```
    pair tally = new Pair() //describe combin'n
    float tally.pre = Itally.pre; //prefix is left prefix
    float tally.sum=Itally.sum+rtally.sum; //sum is left+right
    THEN: Itally.pre = tally.pre; //left prefix is prefix
    rtally.pre = tally.pre+left.sum //right is prefix+l.sum
```

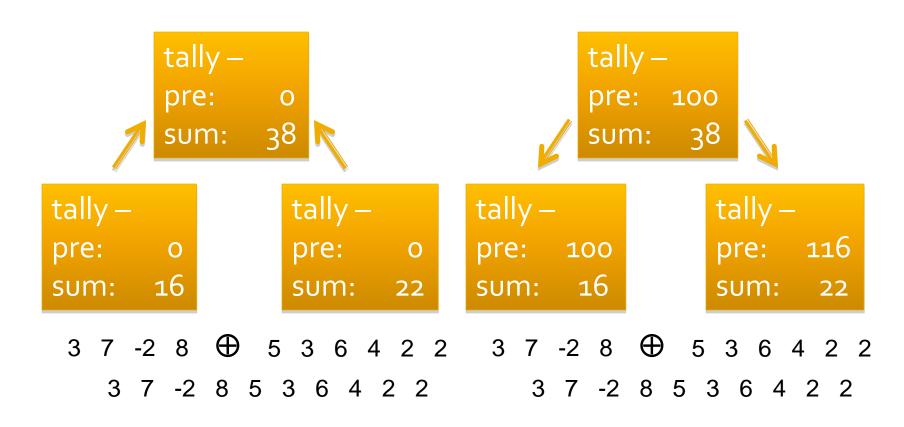
Three Parts of +scan [cartoon]

tally – pre: o sum: inval

Three Parts of +scan [combine]

```
tally –
pre:
sum: inval
              tally –
              sum:
     tally –
                       tally –
      pre:
                                0
                        pre:
             16
      sum:
                        sum:
                               22
       3 7 -2 8 🕀 5 3 6 4 2 2
          3 7 -2 8 5 3 6 4 2 2
```

Three Parts of +scan [downsweep]



Three Parts of +scan [final]

```
tally --
pre: 103
sum: 7

3 7 -2 8 ⊕ 5 3 6 4 2 2
103 110 108 116 121 124 130 134 136 138
```

Parts of + Scan

Initialize [each item in sequence]:

- pair tally = new Pair() //descriptor is a pair
- float tally.pre = o; float tally.sum = inval; //initialize
 Complete [each item in sequence]:
 - outval = tally.pre + tally.sum //final output

Parts of + Scan

Initialize [each item in sequence]:

```
pair tally = new Pair() //descriptor is a pair
```

float tally.pre = o; float tally.sum = inval; //initialize

Complete [each item in sequence]:

```
outval = tally.pre + tally.sum //final output
```

Combine: Itally ⊕ rtally

```
pair tally = new Pair() //describe combin'n
```

- float tally.pre = Itally.pre; //prefix is left prefix
- float tally.sum=ltally.sum+rtally.sum; //sum is left+right
- THEN: ltally.pre = tally.pre; //left prefix is prefix
- rtally.pre = tally.pre+left.sum //right is prefix+l.sum

Another Ex.: Longest Run of x

 How do we think of this computation as combining two subcomputations

xx00000x0xxxx \oplus x0xxxxxx000

- Obviously
 - x runs can be at the start, interior, or end
 - Combining will merge a start and end run
 - ... Making it an interior run
- The tally needs to keep this information

```
tally – in == x
from start: 1
inside: 0
from end: 1
```

```
tally – in != x
from start: o
inside: o
from end: o
```

```
tally — in == x
from start: 1
inside: 0
from end: 1
```

```
tally – in != x
from start: o
inside: o
from end: o
```

```
tally ---
       from start: 2
       inside: 6
       from end: o
tally ---
               tally --
from start: 2
              from start: 1
inside: 1 inside: 6
from end: 4
              from end: o
```

```
tally ---
           from start: 2
           inside:
           from end:
   tally ---
                   tally --
    from start: 2
                  from start: 1
    inside: 1 inside:
   from end:
                  from end:
xx00000x0xxxx ⊕
                      x0xxxxxx000
   xx0000x0xxxxx0xxxxxx0000
```

tally -from start: 2
inside: 6
from end: 0

tally ---

from start: 2

inside: 1

from end:

tally ---

from start: 1

ipside: 6

from end: o

xx00000x0xxxx ⊕ x0xxxxxx000

xx0000x0xxxxx0xxxxxx0000

tally -from start: 2
inside: 6
from end: 0

Balanced Parentheses...

- Illustrate for the matching parentheses
 - Carry along the count of excess of opens/closes
 - Cancel if matched, else record the excess
 - Output "yes" if excess is o
 - Descriptor for "balanced parens" is two ints, excess open parens opCount and excess closed parents clCount

A || Prefix Solution

- Visualize a processor per point (not really)
 - Each point is initialized to its data structure
 - Pairs are combined in some way
 - Process continues until there is one descriptor
 - Compute the final result
- Illustrate on this problem:

```
a-f(c)*(d+f(e))
```

```
a - f ( c ) * ( d + f ( e ) )
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 0 1 1
```

Tri-Partite Parallel Prefix

```
Create a tally:
if (inval == '(')
    int tally.opCount = 1;
else
    int tally.opCount = 0;
if (inval == ')' ) {
    int tally.clCount = 1;
else
    int tally.clCount = 0;
Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)
   tally.clCount += abs(temp);
else
   tally.opCount += temp;
Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);
```

```
a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(c) *(d+ f(e))

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 1
```

```
a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(c) *(d+ f(e))

0 1 0 1 0 1 0 0

0 0 1 0 0 1 1

a-f(c)*(d+f(e))

1 1 0 0 0

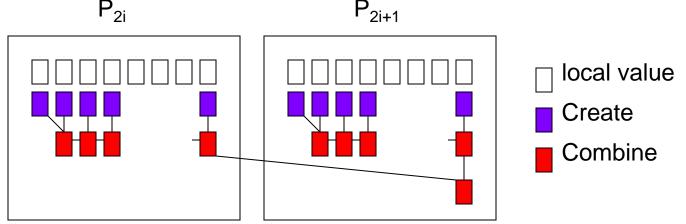
0 1 0 2
```

```
* (
    f(
                        f(
                   d+
         c)
                             e)
a-f(
         c) * (
                   d+f(
                             e))
a-f(c)*(
                   d+f(e))
a-f(c)*(d+f(e))
0
```

```
f)
               * (
                         f(
                    d+
          c)
                              e)
0
a-f)
          c) * (
                    d+f(
                              e))
a-f)c)*(
                    d+f(e))
a-f(c) * (d+f(e))
0
```

Compiling The || Prefix

- One last question concerned how the 3 parts of the || prefix specification fit into the tree model shown for prefix sum & Schwartz?
 - Short answer, they don't have to
 - Compilers can produce excellent code from spec



Emphasizing the Point

 At the start of class we cited bal-parens – the leaf code for a Schwartz approach

```
for (i=start; i<start+len_per_th; i++) {
   if (symb[i] == "(")
      o++;
   if (symb[i] == ")") {
      o--;
   if (o < 0) {
      c++; o = 0;
   }
}</pre>
```

- Combining required entirely different code
- The Infix approach captures the whole thing, except for pre- and post-operations

Summary on || Prefix

- By thinking abstractly of carrying along information that describes the sequence, combining adjacent subsequences, and finally extracting a value, it is possible to move directly to a || prefix solution
- Using the abstraction is an intellectually different way of thinking about sequential computations

HW 5, Part I ... for Tuesday

- Think of a "sequential computation" that can be expressed as a UD reduce or scan
 - Examples from this lecture are off limits
 - Prefer a scan; it's often easy to convert a reduce into a scan: A 10-bucket histogram (a reduce) is related to a 10-team "league standings" (a scan) that gives won/loss for game input, team t beat u
- Turn in a document giving an infix formulation of the computation together with a worked example

HW 5, Part II ... for Thursday

- Write an MPI program for the SUMMA alg
 - Create rectangular arrays A, B, C, filling A, B
 - Send portions of A, B to worker processes
 - Iterate over common dimension,
 - send columns of A, rows of B to other processes
 - for each, multiply A elements times B elements and accumulate into local portion of C
 - Measure time, except for initialization, and report the "usual stuff" for different numbers of processes