
Goal: Focus more closely on scalable parallel techniques, both 
computation and data 



 Notice on the calendar that next week’s class 
(normally 5/4) is rescheduled for Thursday 
(5/6), same time, same place
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 Are there any further comments on the 
Red/Blue thread program?

 How was the Peril-L sample sort exercise?

 Randomizing

 Finding Cut-points

 Global Exchange

 Scooch
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 Recall from last week … the balanced ( ) code

6 for (i=start; i<start+len_per_th; i++) { 

7 if (symb[i] == "(" ) 

8 o++; 

9 if (symb[i] == ")" ) { 

10 o--; 

11 if (o < 0) { 

12 c++; o = 0; 

13 } 

14 }

 The question was raised, could we move 
symb[i] into a local variable before the if’s
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temp = symb[i];

7 if (temp == "(" ) 

8 o++; 

9 if (temp == ")" ) { 

10 o--; 



 The answer was ‘yes, though a modern 
compiler could do this for us’

 That answer’s correct, but I missed the 
opportunity to say why

 This move would not be legal in our assumed 
sequentially consistent shared memory model 
UNLESS the compiler could establish the global 
fact that the array is read only

 It is legal in the Peril-L model, which has no 
coherency commitments at all
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 Good parallel solutions result from rethinking 
a computation …

 Sometimes that amounts to reordering scalar 
operations

 Sometimes it requires starting from scratch

 The SUMMA matrix multiplication algorithm 
is the poster computation for rethinking!

This computation is part of homework assignment
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 Matrix Multiplication on Processor Grid

 Matrices A and B producing 

n x n result C where 

Crs = 1≤k≤n Ark*Bks

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

Temp

P0
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 Assume each processor stores block of C, A, 
B; assume “can’t” store all of any matrix

 To compute crs a processor needs all of row r
of A and column s of B

 Consider strategies for minimizing data 
movement, because that is
the greatest cost -- what are 
they? Temp

P0

+*
1

1

= +*
2

2

*
n

n

… +
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 If all rows/columns are present, it’s local
A BC

•Each element requires O(n) operations
•Modern pipelined processors benefit  
from large blocks of work
•But memory space and BW are issues
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for (r=0; r < t; r++){

for (s=0; s < t; s++){

c[r][s] = 0.0;

for (k=0; k < n; k++){

c[r][s] += a[r][k]*b[k][s];

}

}

} 

 Use that solution, but incrementally
 Referring to local storage

A BC

Sweeter caching

Only move a t x t block at a time
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 Don’t think of row-times-column
A BC

b11 b12

a11

a21

a11b11

a21b11

a11b12

a21b1

2

Switch orientation -- by 

using a column of A

and a row of B

compute all 1st terms 

of the dot products

+*
1

1

= +*
2

2

*
n

n

… +
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 Scalable Universal Matrix Multiplication Alg

 Invented by van de Geijn & Watts of UT Austin

 Claimed to be the best machine independent MM

 Whereas MM is usually A row x B column, 
SUMMA is A column x B row because 
computation switches sense

 Normal: Compute all terms of a dot product

 SUMMA: Computer a term of all dot products

Strange. But fast!
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 Threads have two indices, handle t x t block
 Let p = P1/2, then thread u,v

 reads all columns of A for indices u*t:(u+1)*t-1,j

 reads all rows of B for indices i,v*t:(v+1)*t-1

 The arrays will be in “global” memory and 
referenced as needed

A BC
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 See SUMMA as an iteration multicasting columns and 
rows

 Each processor is responsible for sending/recving its 
column/row portion at proper time

 Followed by a step of computing next term locally

A BC

www.cs.utexas.edu/users/rvdg/abstracts/SUMMA.html
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 Facts:

 vdG & W advocate blocking for msg passing

 Works for A being m x n and B being n x p

 Works fine when local region is not square

 Load is balanced esp. of Ceiling/Floor is used

Fastest machine independent MM algorithm!

 Key algorithm for 524: Reconceptualizes MM 
to handle high , balance work, use BW well, 
exploit efficiencies like multicast, …
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 Jack Schwartz (NYU) asked: What is the optimal number 
of processors to combine n values?
 Reasonable Answer: binary tree w/ values at leaves has O(log n) 

complexity

 To this solution add log n values into each leaf

 Same complexity (O(log n)), but nlog n values!

 Asymptotically, the advantage is small, but the tree edges 
require communication
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 Jack Schwartz (NYU) asked: What is optimal number of 
processors to combine n values?
 Reasonable Answer: binary tree w/ values at leaves has O(log n) 

complexity

 To this solution add log n values into each leaf

 Same complexity (O(log n)), but nlog n values!

 Asymptotically, the advantage is small, but the tree edges 
require communication
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 Generally P is not a variable, and P << n
 Use Schwartz as heuristic: Prefer to work at leaves (no 

matter how much smaller n is than P) rather than 
enlarge (make a deeper) tree, implying tree will have no 
more than log2 P height

 Also, consider higher degree tree -- in cases of parallel 
communication (CTA) some of the communication may 
overlap
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 The Red/Blue computation illustrated a 2D-
block data parallel allocation of the problem

 Generally block allocations are better for data 
transmission: surface to volume advantage … 
since only edges are x-mitted

VS

Now scale problem 4x
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 Though block is generally a good allocation 
it’s not absolute:

P=1, all 

comm 

wasted

P=2, row-wise saves 

column comm

vs

P=4, rows and 

blocks are a 

wash

Where is the 

point of dim. 

return?
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 To simplify local computation in cases where 
nearest neighbor’s values x-mitted, allocate 
in-place memory (fluff) to store values:

 Array can be referenced as if it’s all local
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 Generally P and n do not allow for a perfectly 
balanced allocation … 

 Several ways to assign arrays to processors

Quotient + 

remainder

Ceiling + 

floor

Generally a small 

effect

13x13 on 4x4 

process array
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 p0 is often assigned “other duties”, such as

 Orchestrate I/O

 Root node for combining trees

 Work Queue Manager … 

 Assigning p0 the smallest quantum of work 
helps it avoid becoming a bottleneck

 For either quotient + remainder or ceiling/floor p0

should be the last processor

This is a late-stage tuning matter
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 Array computations on CMPs
 Dense Allocation vs Fluff

 Issue is cache invalidation

 Keeping MM managed 

intermediate buffers keeps

array and fluff local (L1)

 Sharing causes elements

at edge to repeatedly 

invalidate harming locality

False sharing an issue, too
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 Certain computations are inherently 
imbalanced … LU Decomposition is one

gray is balanced work, white & black are finished

 Standard block decomposition quickly 
becomes very biased

 Cyclic and block cyclic allocation are one fix
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 Cyclic allocation means “to deal” the 
elements to the processes like cards

 Allocating 64 elements to five processes: black, 
white, three shades of gray

 Block cyclic is the same idea, but rather with 
regular shaped blocks
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 Consider the LU matrix allocated in 3x2 
blocks to four processes:

 Then check it midway in
the computation
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 The technique applies to work allocation as 
well as memory allocation

Julia Set from http://aleph0.clarku.edu/~djoyce/
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 The importance of reduce/scan has been 
repeated so often, it is by now our mantra 

 In nearly all languages the only available 
operators are +, *, min, max, &&, ||

 The concepts apply much more broadly
 Goal: Understand how to make user-defined 

variants of reduce/scan specialized to specific 
situations

Seemingly sequential looping code can be UD-scan
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 Recall scan specifics

+ scan of:  1    2    3    4     5    6     7    8

is   either:  1    3    6  10  15  21  28  36 [inclusive]

or it is:  0    1    3    6  10  15  21  28 [exclusive]

 Important fact about standard scans

a-scaninclusive(x) = a-scanexclusive(x) a x

 For technical reasons prefer exclusive, for 
today, think inclusive
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 Reduce
 Second smallest, or generally, kth smallest

 Histogram, counts items in k buckets

 Length of longest run of value 1s

 Index of first occurrence of x
 Scan
 Team standings

 Find the longest sequence of 1s

 Index of most recent occurrence

Associativity, but not commutativity, is key
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 Begin by applying Schwartz idea to problem

 Local computation

 Global logd P tree

val..val val..val val..val val..val val..val val..val val..val val..val

More computation at nodes is OK
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46 16 10 16 14 2 8

26 30 10

36 40

76

0

6 4            16         10             16         14            2           8 

Introduce a virtual 

parent, the sum of 

values to tree’s left: 0

Compute sum going up: reduce

Compute prefixes going down
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46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

6 4            16         10             16         14            2           8 

Invariant: Parent data 

is sum of elements to 

left of subtree 

Compute sum going up: reduce

Compute prefixes going down

4/27/2010 35© 2010 Larry Snyder, CSE



10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

6 4            16         10             16         14            2           8 

Compute sum going up

Figure prefixes going down 

Invariant: Parent data 

is sum of elements to 

left of subtree 

0 36
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46 16 10 16 14 2 8

26 30 10

36

0+100

40

36+3036

76

0+360

0

6 4            16         10             16         14            2           8 

Compute sum going up

Figure prefixes going down 

Invariant: Parent data 

is sum of elements to 

left of subtree 

0 36
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0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

6 4            16         10             16         14            2           8 

6         10             26         36             52         66           68         76

Each prefix is computed 

in 2log n time, if P = n
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 Make four non-communication operations

 init() initialize the reduce/scan

 accum() perform local computation

 combine() perform tree combining

 x_gen() produce the final result for either op

▪ x = reduce

▪ x = scan

 Incorporate into Schwartz-type logic

Think of: reduce(fi, fa, fc, fg)
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 Init: Each leaf
 Accum: Aggregate 

each array value
 Combine: Each 

tree node
 reduceGen: Root
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 Sum reduce uses a temporary value, called a 
tally, to hold items during processing

 Four reduce functions:
 tally init() {tal = new tally; tal=0;     

return tal;}

 tally accum(int op_val, tally tal) 

{tal += op_val; return tal; }

 tally combine(tally left, tally right) 

{return left + right; }

 int reduce_gen(tally ans) {return ans;}
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 Consider Second Smallest -- useful, perhaps for finding 
smallest nonzero among non-negative values

 tally is a struct of the smallest and next smallest 
found so far  {float sm, nsm}

 Four functions:
tally init() {

pair = new tally; 

pair.sm = maxFloat; 

pair.nsm = maxFloat; 

return pair; }
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 Accumulate
tally accum(float op_val, tally tal) {

if (op_val < tal.sm) {

tal.nsm = tal.sm;

tal.sm = op_val;

} else {

if (op_val > tal.sm && op_val < tal.nsm)

tal.nsm = op_val;

}

return tal;

}

Finds 2nd smallest distinct value
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tally combine(tally left, tally right){

return 

accum(left.nsm, accum(left.sm, right));}

int reduce_gen(tally ans) {return ans.nsm;}

 Notice that the signatures are all different
 Conceptually easy to write equivalent code, 

but reduction abstraction clarifies
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 PoPP presents the state of the art of user-
defined scans

 The conclusion must be, that generally it is

 inconvenient, cumbersome, difficult

 requires low-level knowledge and interface

 But, custom scan has wide application

 Take a moment to think “outside the box” on 
adding UD Scan to a programmer’s tool belt
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 Because the definition of the computation is in 
terms of prefixes we usually see scan as a 
sequential left to right operation

 But studying the implementational or compiler 
view of the computation, we notice …

From the backbone logic of the tree evaluation 
that the crux is combining adjacent sequences
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Add scan to languages with semantics of 
a user defined INFIX operator rather than 
as a LEFT ASSOCIATIVE operator, i.e. 
prefer

( (  )  (  ) )  ( (  )  (  ) )      
to

((((((((  )  )  )  )  )  )  )  )




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 Accordingly, think of the operation as

 xr … xs xs+1 … xt

 where 
▪ the sequences are contiguous

▪ begin anywhere, end anywhere

▪ any nonzero length

 Additionally, think about

 The data to be merged from the two halves

 The basis case starting with initial data

 The completion processing



 To make the new view concrete, notice that 
 The substrings need a descriptor for state: tally

 The basis case is an initial tally value: Initial(invali )
in each position i

 The result of x1 … xs xs+1 … xn is the root value of 
the implementation tree, but the computation 
may not be finished [down sweep] implying that 
there is a finalize step: outvali=Final( )

 Defining the tally, Initial( ), ltallyrtally
and Finalize() suffices
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 The tally is a single float
Initialize:

▪ float tally = inval; //initialize

Complete:

▪ outval = tally; //final output from root

Combine: ltally  rtally
▪ float tally = ltally + rtally; //sum is left+right
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Initialize [each item in sequence]:

▪ pair tally = new Pair() //descriptor is a pair

▪ float tally.pre = 0; float tally.sum = inval; //initialize

Complete [each item in sequence]:

▪ outval = tally.pre + tally.sum //final output

Combine: ltally  rtally
▪ pair tally = new Pair() //describe combin’n

▪ float tally.pre = ltally.pre; //prefix is left prefix

▪ float tally.sum=ltally.sum+rtally.sum;       //sum is left+right

▪ THEN: ltally.pre = tally.pre; //left prefix is prefix

▪ rtally.pre = tally.pre+left.sum //right is prefix+l.sum
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tally –
pre:          0
sum: inval
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3   7   -2   8     5   3   6   4   2   2

3   7   -2   8   5   3   6   4   2   2

tally –
pre:          0
sum: inval

tally –
pre:          0
sum:      16

tally –
pre:          0
sum:      22

tally –
pre:          0
sum:      38
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3   7   -2   8     5   3   6   4   2   2

3   7   -2   8   5   3   6   4   2   2

tally –
pre:          0
sum:      16

tally –
pre:          0
sum:      22

tally –
pre:          0
sum:      38

3   7   -2   8     5   3   6   4   2   2

3   7   -2   8   5   3   6   4   2   2

tally –
pre:      100
sum:      16

tally –
pre:      116
sum:      22

tally –
pre:     100
sum:      38
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3      7      -2       8   5      3       6       4       2      2

103   110   108   116   121   124   130   134   136  138

tally –
pre:      103
sum:         7

outval=pre+sum



Initialize [each item in sequence]:

▪ pair tally = new Pair() //descriptor is a pair

▪ float tally.pre = 0; float tally.sum = inval; //initialize

Complete [each item in sequence]:

▪ outval = tally.pre + tally.sum //final output
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Initialize [each item in sequence]:

▪ pair tally = new Pair() //descriptor is a pair

▪ float tally.pre = 0; float tally.sum = inval; //initialize

Complete [each item in sequence]:

▪ outval = tally.pre + tally.sum //final output

Combine: ltally  rtally
▪ pair tally = new Pair() //describe combin’n

▪ float tally.pre = ltally.pre; //prefix is left prefix

▪ float tally.sum=ltally.sum+rtally.sum;       //sum is left+right

▪ THEN: ltally.pre = tally.pre; //left prefix is prefix

▪ rtally.pre = tally.pre+left.sum //right is prefix+l.sum
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 How do we think of this computation as 
combining two subcomputations

 Obviously

 x runs can be at the start, interior, or end

 Combining will merge a start and end run

 … Making it an interior run

 The tally needs to keep this information 
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xx0000x0xxxx    x0xxxxxx000
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tally – in == x
from start:  1
inside:          0
from end:    1

tally – in != x
from start:  0
inside:           0
from end:    0

xx0000x0xxxx    x0xxxxxx000

xx0000x0xxxxx0xxxxxx000
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tally --
from start: 2
inside:          1
from end:   4

tally --
from start: 1
inside:         6
from end:   0

tally --
from start: 2
inside:          6
from end:   0

tally – in == x
from start:  1
inside:          0
from end:    1

tally – in != x
from start:  0
inside:           0
from end:    0

xx0000x0xxxx    x0xxxxxx000

xx0000x0xxxxx0xxxxxx000
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tally --
from start: 2
inside:          1
from end:   4

tally --
from start: 1
inside:         6
from end:   0

tally --
from start: 2
inside:          6
from end:   0

xx0000x0xxxx    x0xxxxxx000

xx0000x0xxxxx0xxxxxx000
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tally --
from start: 2
inside:          1
from end:   4

tally --
from start: 1
inside:         6
from end:   0

tally --
from start: 2
inside:          6
from end:   0

xx0000x0xxxx    x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

4 + 1 < 6
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tally --
from start: 2
inside:          6
from end:   0

outval

xx0000x0xxxx     x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

max



 Illustrate for the matching parentheses
 Carry along the count of excess of opens/closes

 Cancel if matched, else record the excess

 Output “yes” if excess is 0

 Descriptor for “balanced parens” is two ints, 
excess open parens opCount and excess closed 
parents clCount
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 Visualize a processor per point (not really)

 Each point is initialized to its data structure

 Pairs are combined in some way

 Process continues until there is one descriptor

 Compute the final result

 Illustrate on this problem:

a - f ( c ) * ( d + f ( e ) )

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a-f(c)*(d+f(e))
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Combine two tallies:
tally.clCount = ltally.clCount; 
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)

tally.clCount += abs(temp);
else

tally.opCount += temp;

Create a tally:
if (inval == '(' )  

int tally.opCount = 1; 
else 

int tally.opCount = 0; 
if (inval == ')' ) { 

int tally.clCount = 1; 
else 

int tally.clCount = 0;

Finalize result from tally:

outval = (tally.opCount == 0) && (tally.clCount == 0); 
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 Working out
the details
Matching

a - f ( c ) * ( d + f ( e ) )

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
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 Working out
the details
Matching

a - f ( c ) * ( d + f ( e ) )

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(  c)  *(  d+  f(  e)  ) 

0   1 0   1 0   1 0   0

0   0   1 0   0   0   1 1
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 Working out
the details
Matching

a - f ( c ) * ( d + f ( e ) )

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(  c)  *(  d+  f(  e)  ) 

0   1 0   1 0   1 0   0

0   0   1 0   0   0   1 1
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 Working out
the details
Matching

a - f ( c ) * ( d + f ( e ) )

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(  c)  *(  d+  f(  e)  ) 

0   1 0   1 0   1 0   0

0   0   1 0   0   0   1 1

a-f(    c)*(    d+f(    e))

1 1 1 0

0       1 0       2
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 Working out
the details
Matching

a - f ( c ) * ( d + f ( e ) )

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(  c)  *(  d+  f(  e)  ) 

0   1 0   1 0   1 0   0

0   0   1 0   0   0   1 1

a-f(    c)*(    d+f(    e))

1 1 1 0

0       1 0       2

a-f(c)*(        d+f(e))

1 0

0               1

a-f(c)*(d+f(e))

0

0
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 Working out
the details
Mismatching

a - f ) c ) * ( d + f ( e ) )

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
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 Working out
the details
Mismatching

a - f ) c ) * ( d + f ( e ) )

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

a- f)  c)  *(  d+  f(  e)  ) 

0   0   0   1 0   1 0   0

0   1 1 0   0   0   1 1
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 Working out
the details
Mismatching

a - f ) c ) * ( d + f ( e ) )

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

a- f)  c)  *(  d+  f(  e)  ) 

0   0   0   1 0   1 0   0

0   1 1 0   0   0   1 1

a-f)    c)*(    d+f(    e))

0       1 1 0

1 1 0       2
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 Working out
the details
Mismatching

a - f ) c ) * ( d + f ( e ) )

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

a- f)  c)  *(  d+  f(  e)  ) 

0   0   0   1 0   1 0   0

0   1 1 0   0   0   1 1

a-f)    c)*(    d+f(    e))

0       1 1 0

1 1 0       2

a-f)c)*(        d+f(e))

1 0

2               1

a-f)c)*(d+f(e))

0

2
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 One last question concerned how the 3 parts 
of the || prefix specification fit into the tree 
model shown for prefix sum & Schwartz?

 Short answer, they don’t have to

 Compilers can produce excellent code from spec
P2i P2i+1

local value

Create

Combine
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 At the start of class we cited bal-parens – the 
leaf code for a Schwartz approach

 Combining required entirely different code
 The Infix approach captures the whole thing, 

except for pre- and post-operations
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6 for (i=start; i<start+len_per_th; i++) { 

7 if (symb[i] == "(" ) 

8 o++; 

9 if (symb[i] == ")" ) { 

10 o--; 

11 if (o < 0) { 

12 c++; o = 0; 

13 } 

14 }



 By thinking abstractly of carrying along 
information that describes the sequence, 
combining adjacent subsequences, and 
finally extracting a value, it is possible to 
move directly to a || prefix solution

 Using the abstraction is an intellectually 
different way of thinking about sequential 
computations
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 Think of a “sequential computation” that can 
be expressed as a UD reduce or scan

 Examples from this lecture are off limits

 Prefer a scan; it’s often easy to convert a reduce 
into a scan: A 10-bucket histogram (a reduce) is 
related to a 10-team “league standings” (a scan) 
that gives won/loss for game input, team t beat u

 Turn in a document giving an infix 
formulation of the computation together 
with a worked example
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80

 Write an MPI program for the SUMMA alg
 Create rectangular arrays A, B, C, filling A, B

 Send portions of A, B to worker processes

 Iterate over common dimension, 
▪ send columns of A, rows of B to other processes

▪ for each, multiply A elements times B elements and 
accumulate into local portion of C

 Measure time, except for initialization, and 
report the “usual stuff” for different numbers of 
processes
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