
Goal: Focus more closely on scalable parallel techniques, both
computation and data

 Notice on the calendar that next week’s class
(normally 5/4) is rescheduled for Thursday
(5/6), same time, same place

4/27/2010 © 2010 Larry Snyder, CSE 2

 Are there any further comments on the
Red/Blue thread program?

 How was the Peril-L sample sort exercise?

 Randomizing

 Finding Cut-points

 Global Exchange

 Scooch

4/27/2010 © 2010 Larry Snyder, CSE 3

 Recall from last week … the balanced () code

6 for (i=start; i<start+len_per_th; i++) {

7 if (symb[i] == "(")

8 o++;

9 if (symb[i] == ")") {

10 o--;

11 if (o < 0) {

12 c++; o = 0;

13 }

14 }

 The question was raised, could we move
symb[i] into a local variable before the if’s

4/27/2010 © 2010 Larry Snyder, CSE 4

temp = symb[i];

7 if (temp == "(")

8 o++;

9 if (temp == ")") {

10 o--;

 The answer was ‘yes, though a modern
compiler could do this for us’

 That answer’s correct, but I missed the
opportunity to say why

 This move would not be legal in our assumed
sequentially consistent shared memory model
UNLESS the compiler could establish the global
fact that the array is read only

 It is legal in the Peril-L model, which has no
coherency commitments at all

4/27/2010 © 2010 Larry Snyder, CSE 5

6

 Good parallel solutions result from rethinking
a computation …

 Sometimes that amounts to reordering scalar
operations

 Sometimes it requires starting from scratch

 The SUMMA matrix multiplication algorithm
is the poster computation for rethinking!

This computation is part of homework assignment

4/27/2010 © 2010 Larry Snyder, CSE

7

 Matrix Multiplication on Processor Grid

 Matrices A and B producing

n x n result C where

Crs = 1≤k≤n Ark*Bks

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

Temp

P0

4/27/2010 © 2010 Larry Snyder, CSE

8

 Assume each processor stores block of C, A,
B; assume “can’t” store all of any matrix

 To compute crs a processor needs all of row r
of A and column s of B

 Consider strategies for minimizing data
movement, because that is
the greatest cost -- what are
they? Temp

P0

+*
1

1

= +*
2

2

*
n

n

… +

4/27/2010 © 2010 Larry Snyder, CSE

9

 If all rows/columns are present, it’s local
A BC

•Each element requires O(n) operations
•Modern pipelined processors benefit
from large blocks of work
•But memory space and BW are issues

4/27/2010 © 2010 Larry Snyder, CSE

10

for (r=0; r < t; r++){

for (s=0; s < t; s++){

c[r][s] = 0.0;

for (k=0; k < n; k++){

c[r][s] += a[r][k]*b[k][s];

}

}

}

 Use that solution, but incrementally
 Referring to local storage

A BC

Sweeter caching

Only move a t x t block at a time

4/27/2010 © 2010 Larry Snyder, CSE

11

 Don’t think of row-times-column
A BC

b11 b12

a11

a21

a11b11

a21b11

a11b12

a21b1

2

Switch orientation -- by

using a column of A

and a row of B

compute all 1st terms

of the dot products

+*
1

1

= +*
2

2

*
n

n

… +

4/27/2010 © 2010 Larry Snyder, CSE

12

 Scalable Universal Matrix Multiplication Alg

 Invented by van de Geijn & Watts of UT Austin

 Claimed to be the best machine independent MM

 Whereas MM is usually A row x B column,
SUMMA is A column x B row because
computation switches sense

 Normal: Compute all terms of a dot product

 SUMMA: Computer a term of all dot products

Strange. But fast!

4/27/2010 © 2010 Larry Snyder, CSE

13

 Threads have two indices, handle t x t block
 Let p = P1/2, then thread u,v

 reads all columns of A for indices u*t:(u+1)*t-1,j

 reads all rows of B for indices i,v*t:(v+1)*t-1

 The arrays will be in “global” memory and
referenced as needed

A BC

4/27/2010 © 2010 Larry Snyder, CSE

14

 See SUMMA as an iteration multicasting columns and
rows

 Each processor is responsible for sending/recving its
column/row portion at proper time

 Followed by a step of computing next term locally

A BC

www.cs.utexas.edu/users/rvdg/abstracts/SUMMA.html

4/27/2010 © 2010 Larry Snyder, CSE

15

 Facts:

 vdG & W advocate blocking for msg passing

 Works for A being m x n and B being n x p

 Works fine when local region is not square

 Load is balanced esp. of Ceiling/Floor is used

Fastest machine independent MM algorithm!

 Key algorithm for 524: Reconceptualizes MM
to handle high , balance work, use BW well,
exploit efficiencies like multicast, …

4/27/2010 © 2010 Larry Snyder, CSE

16

 Jack Schwartz (NYU) asked: What is the optimal number
of processors to combine n values?
 Reasonable Answer: binary tree w/ values at leaves has O(log n)

complexity

 To this solution add log n values into each leaf

 Same complexity (O(log n)), but nlog n values!

 Asymptotically, the advantage is small, but the tree edges
require communication

4/27/2010 © 2010 Larry Snyder, CSE

17

 Jack Schwartz (NYU) asked: What is optimal number of
processors to combine n values?
 Reasonable Answer: binary tree w/ values at leaves has O(log n)

complexity

 To this solution add log n values into each leaf

 Same complexity (O(log n)), but nlog n values!

 Asymptotically, the advantage is small, but the tree edges
require communication

4/27/2010 © 2010 Larry Snyder, CSE

18

 Generally P is not a variable, and P << n
 Use Schwartz as heuristic: Prefer to work at leaves (no

matter how much smaller n is than P) rather than
enlarge (make a deeper) tree, implying tree will have no
more than log2 P height

 Also, consider higher degree tree -- in cases of parallel
communication (CTA) some of the communication may
overlap

4/27/2010 © 2010 Larry Snyder, CSE

19

 The Red/Blue computation illustrated a 2D-
block data parallel allocation of the problem

 Generally block allocations are better for data
transmission: surface to volume advantage …
since only edges are x-mitted

VS

Now scale problem 4x

4/27/2010 © 2010 Larry Snyder, CSE

20

 Though block is generally a good allocation
it’s not absolute:

P=1, all

comm

wasted

P=2, row-wise saves

column comm

vs

P=4, rows and

blocks are a

wash

Where is the

point of dim.

return?

4/27/2010 © 2010 Larry Snyder, CSE

21

 To simplify local computation in cases where
nearest neighbor’s values x-mitted, allocate
in-place memory (fluff) to store values:

 Array can be referenced as if it’s all local

4/27/2010 © 2010 Larry Snyder, CSE

22

 Generally P and n do not allow for a perfectly
balanced allocation …

 Several ways to assign arrays to processors

Quotient +

remainder

Ceiling +

floor

Generally a small

effect

13x13 on 4x4

process array

4/27/2010 © 2010 Larry Snyder, CSE

23

 p0 is often assigned “other duties”, such as

 Orchestrate I/O

 Root node for combining trees

 Work Queue Manager …

 Assigning p0 the smallest quantum of work
helps it avoid becoming a bottleneck

 For either quotient + remainder or ceiling/floor p0

should be the last processor

This is a late-stage tuning matter

4/27/2010 © 2010 Larry Snyder, CSE

24

 Array computations on CMPs
 Dense Allocation vs Fluff

 Issue is cache invalidation

 Keeping MM managed

intermediate buffers keeps

array and fluff local (L1)

 Sharing causes elements

at edge to repeatedly

invalidate harming locality

False sharing an issue, too

4/27/2010 © 2010 Larry Snyder, CSE

25

 Certain computations are inherently
imbalanced … LU Decomposition is one

gray is balanced work, white & black are finished

 Standard block decomposition quickly
becomes very biased

 Cyclic and block cyclic allocation are one fix

4/27/2010 © 2010 Larry Snyder, CSE

26

 Cyclic allocation means “to deal” the
elements to the processes like cards

 Allocating 64 elements to five processes: black,
white, three shades of gray

 Block cyclic is the same idea, but rather with
regular shaped blocks

4/27/2010 © 2010 Larry Snyder, CSE

27

 Consider the LU matrix allocated in 3x2
blocks to four processes:

 Then check it midway in
the computation

4/27/2010 © 2010 Larry Snyder, CSE

28

 The technique applies to work allocation as
well as memory allocation

Julia Set from http://aleph0.clarku.edu/~djoyce/
4/27/2010 © 2010 Larry Snyder, CSE

4/27/2010 © 2010 Larry Snyder, CSE 29

30

 The importance of reduce/scan has been
repeated so often, it is by now our mantra

 In nearly all languages the only available
operators are +, *, min, max, &&, ||

 The concepts apply much more broadly
 Goal: Understand how to make user-defined

variants of reduce/scan specialized to specific
situations

Seemingly sequential looping code can be UD-scan

4/27/2010 © 2010 Larry Snyder, CSE

 Recall scan specifics

+ scan of: 1 2 3 4 5 6 7 8

is either: 1 3 6 10 15 21 28 36 [inclusive]

or it is: 0 1 3 6 10 15 21 28 [exclusive]

 Important fact about standard scans

a-scaninclusive(x) = a-scanexclusive(x) a x

 For technical reasons prefer exclusive, for
today, think inclusive

4/27/2010 © 2010 Larry Snyder, CSE 31

32

 Reduce
 Second smallest, or generally, kth smallest

 Histogram, counts items in k buckets

 Length of longest run of value 1s

 Index of first occurrence of x
 Scan
 Team standings

 Find the longest sequence of 1s

 Index of most recent occurrence

Associativity, but not commutativity, is key

4/27/2010 © 2010 Larry Snyder, CSE

33

 Begin by applying Schwartz idea to problem

 Local computation

 Global logd P tree

val..val val..val val..val val..val val..val val..val val..val val..val

More computation at nodes is OK

4/27/2010 © 2010 Larry Snyder, CSE

10

46 16 10 16 14 2 8

26 30 10

36 40

76

0

6 4 16 10 16 14 2 8

Introduce a virtual

parent, the sum of

values to tree’s left: 0

Compute sum going up: reduce

Compute prefixes going down

4/27/2010 34© 2010 Larry Snyder, CSE

10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

6 4 16 10 16 14 2 8

Invariant: Parent data

is sum of elements to

left of subtree

Compute sum going up: reduce

Compute prefixes going down

4/27/2010 35© 2010 Larry Snyder, CSE

10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

6 4 16 10 16 14 2 8

Compute sum going up

Figure prefixes going down

Invariant: Parent data

is sum of elements to

left of subtree

0 36

4/27/2010 36© 2010 Larry Snyder, CSE

10

46 16 10 16 14 2 8

26 30 10

36

0+100

40

36+3036

76

0+360

0

6 4 16 10 16 14 2 8

Compute sum going up

Figure prefixes going down

Invariant: Parent data

is sum of elements to

left of subtree

0 36

4/27/2010 37© 2010 Larry Snyder, CSE

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Each prefix is computed

in 2log n time, if P = n

4/27/2010 38© 2010 Larry Snyder, CSE

39

 Make four non-communication operations

 init() initialize the reduce/scan

 accum() perform local computation

 combine() perform tree combining

 x_gen() produce the final result for either op

▪ x = reduce

▪ x = scan

 Incorporate into Schwartz-type logic

Think of: reduce(fi, fa, fc, fg)

4/27/2010 © 2010 Larry Snyder, CSE

40

 Init: Each leaf
 Accum: Aggregate

each array value
 Combine: Each

tree node
 reduceGen: Root

4/27/2010 © 2010 Larry Snyder, CSE

41

 Sum reduce uses a temporary value, called a
tally, to hold items during processing

 Four reduce functions:
 tally init() {tal = new tally; tal=0;

return tal;}

 tally accum(int op_val, tally tal)

{tal += op_val; return tal; }

 tally combine(tally left, tally right)

{return left + right; }

 int reduce_gen(tally ans) {return ans;}

4/27/2010 © 2010 Larry Snyder, CSE

42

 Consider Second Smallest -- useful, perhaps for finding
smallest nonzero among non-negative values

 tally is a struct of the smallest and next smallest
found so far {float sm, nsm}

 Four functions:
tally init() {

pair = new tally;

pair.sm = maxFloat;

pair.nsm = maxFloat;

return pair; }

4/27/2010 © 2010 Larry Snyder, CSE

43

 Accumulate
tally accum(float op_val, tally tal) {

if (op_val < tal.sm) {

tal.nsm = tal.sm;

tal.sm = op_val;

} else {

if (op_val > tal.sm && op_val < tal.nsm)

tal.nsm = op_val;

}

return tal;

}

Finds 2nd smallest distinct value

4/27/2010 © 2010 Larry Snyder, CSE

44

tally combine(tally left, tally right){

return

accum(left.nsm, accum(left.sm, right));}

int reduce_gen(tally ans) {return ans.nsm;}

 Notice that the signatures are all different
 Conceptually easy to write equivalent code,

but reduction abstraction clarifies

4/27/2010 © 2010 Larry Snyder, CSE

 PoPP presents the state of the art of user-
defined scans

 The conclusion must be, that generally it is

 inconvenient, cumbersome, difficult

 requires low-level knowledge and interface

 But, custom scan has wide application

 Take a moment to think “outside the box” on
adding UD Scan to a programmer’s tool belt

4/27/2010 © 2010 Larry Snyder, CSE 45

 Because the definition of the computation is in
terms of prefixes we usually see scan as a
sequential left to right operation

 But studying the implementational or compiler
view of the computation, we notice …

From the backbone logic of the tree evaluation
that the crux is combining adjacent sequences

4/27/2010 © 2010 Larry Snyder, CSE 46

4/27/2010 © 2010 Larry Snyder, CSE 47

Add scan to languages with semantics of
a user defined INFIX operator rather than
as a LEFT ASSOCIATIVE operator, i.e.
prefer

(()  ())  (()  ())
to

(((((((() ) ) ) ) ) ) )



4/27/2010 © 2010 Larry Snyder, CSE 48

 Accordingly, think of the operation as

 xr … xs xs+1 … xt

 where
▪ the sequences are contiguous

▪ begin anywhere, end anywhere

▪ any nonzero length

 Additionally, think about

 The data to be merged from the two halves

 The basis case starting with initial data

 The completion processing

 To make the new view concrete, notice that
 The substrings need a descriptor for state: tally

 The basis case is an initial tally value: Initial(invali)
in each position i

 The result of x1 … xs xs+1 … xn is the root value of
the implementation tree, but the computation
may not be finished [down sweep] implying that
there is a finalize step: outvali=Final()

 Defining the tally, Initial(), ltallyrtally
and Finalize() suffices

4/27/2010 © 2010 Larry Snyder, CSE 49

 The tally is a single float
Initialize:

▪ float tally = inval; //initialize

Complete:

▪ outval = tally; //final output from root

Combine: ltally  rtally
▪ float tally = ltally + rtally; //sum is left+right

4/27/2010 © 2010 Larry Snyder, CSE 50

Initialize [each item in sequence]:

▪ pair tally = new Pair() //descriptor is a pair

▪ float tally.pre = 0; float tally.sum = inval; //initialize

Complete [each item in sequence]:

▪ outval = tally.pre + tally.sum //final output

Combine: ltally  rtally
▪ pair tally = new Pair() //describe combin’n

▪ float tally.pre = ltally.pre; //prefix is left prefix

▪ float tally.sum=ltally.sum+rtally.sum; //sum is left+right

▪ THEN: ltally.pre = tally.pre; //left prefix is prefix

▪ rtally.pre = tally.pre+left.sum //right is prefix+l.sum

4/27/2010 © 2010 Larry Snyder, CSE 51

4/27/2010 © 2010 Larry Snyder, CSE 52

tally –
pre: 0
sum: inval

4/27/2010 © 2010 Larry Snyder, CSE 53

3 7 -2 8  5 3 6 4 2 2

3 7 -2 8 5 3 6 4 2 2

tally –
pre: 0
sum: inval

tally –
pre: 0
sum: 16

tally –
pre: 0
sum: 22

tally –
pre: 0
sum: 38

4/27/2010 © 2010 Larry Snyder, CSE 54

3 7 -2 8  5 3 6 4 2 2

3 7 -2 8 5 3 6 4 2 2

tally –
pre: 0
sum: 16

tally –
pre: 0
sum: 22

tally –
pre: 0
sum: 38

3 7 -2 8  5 3 6 4 2 2

3 7 -2 8 5 3 6 4 2 2

tally –
pre: 100
sum: 16

tally –
pre: 116
sum: 22

tally –
pre: 100
sum: 38

4/27/2010 © 2010 Larry Snyder, CSE 55

3 7 -2 8  5 3 6 4 2 2

103 110 108 116 121 124 130 134 136 138

tally –
pre: 103
sum: 7

outval=pre+sum

Initialize [each item in sequence]:

▪ pair tally = new Pair() //descriptor is a pair

▪ float tally.pre = 0; float tally.sum = inval; //initialize

Complete [each item in sequence]:

▪ outval = tally.pre + tally.sum //final output

4/27/2010 © 2010 Larry Snyder, CSE 56

Initialize [each item in sequence]:

▪ pair tally = new Pair() //descriptor is a pair

▪ float tally.pre = 0; float tally.sum = inval; //initialize

Complete [each item in sequence]:

▪ outval = tally.pre + tally.sum //final output

Combine: ltally  rtally
▪ pair tally = new Pair() //describe combin’n

▪ float tally.pre = ltally.pre; //prefix is left prefix

▪ float tally.sum=ltally.sum+rtally.sum; //sum is left+right

▪ THEN: ltally.pre = tally.pre; //left prefix is prefix

▪ rtally.pre = tally.pre+left.sum //right is prefix+l.sum

4/27/2010 © 2010 Larry Snyder, CSE 57

 How do we think of this computation as
combining two subcomputations

 Obviously

 x runs can be at the start, interior, or end

 Combining will merge a start and end run

 … Making it an interior run

 The tally needs to keep this information

4/27/2010 © 2010 Larry Snyder, CSE 58

xx0000x0xxxx  x0xxxxxx000

4/27/2010 © 2010 Larry Snyder, CSE 59

tally – in == x
from start: 1
inside: 0
from end: 1

tally – in != x
from start: 0
inside: 0
from end: 0

xx0000x0xxxx  x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

4/27/2010 © 2010 Larry Snyder, CSE 60

tally --
from start: 2
inside: 1
from end: 4

tally --
from start: 1
inside: 6
from end: 0

tally --
from start: 2
inside: 6
from end: 0

tally – in == x
from start: 1
inside: 0
from end: 1

tally – in != x
from start: 0
inside: 0
from end: 0

xx0000x0xxxx  x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

4/27/2010 © 2010 Larry Snyder, CSE 61

tally --
from start: 2
inside: 1
from end: 4

tally --
from start: 1
inside: 6
from end: 0

tally --
from start: 2
inside: 6
from end: 0

xx0000x0xxxx  x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

4/27/2010 © 2010 Larry Snyder, CSE 62

tally --
from start: 2
inside: 1
from end: 4

tally --
from start: 1
inside: 6
from end: 0

tally --
from start: 2
inside: 6
from end: 0

xx0000x0xxxx  x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

4 + 1 < 6

4/27/2010 © 2010 Larry Snyder, CSE 63

tally --
from start: 2
inside: 6
from end: 0

outval

xx0000x0xxxx  x0xxxxxx000

xx0000x0xxxxx0xxxxxx000

max

 Illustrate for the matching parentheses
 Carry along the count of excess of opens/closes

 Cancel if matched, else record the excess

 Output “yes” if excess is 0

 Descriptor for “balanced parens” is two ints,
excess open parens opCount and excess closed
parents clCount

4/27/2010 64© 2010 Larry Snyder, CSE

 Visualize a processor per point (not really)

 Each point is initialized to its data structure

 Pairs are combined in some way

 Process continues until there is one descriptor

 Compute the final result

 Illustrate on this problem:

a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a-f(c)*(d+f(e))

4/27/2010 65© 2010 Larry Snyder, CSE

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)

tally.clCount += abs(temp);
else

tally.opCount += temp;

Create a tally:
if (inval == '(')

int tally.opCount = 1;
else

int tally.opCount = 0;
if (inval == ')') {

int tally.clCount = 1;
else

int tally.clCount = 0;

Finalize result from tally:

outval = (tally.opCount == 0) && (tally.clCount == 0);

4/27/2010 66© 2010 Larry Snyder, CSE

 Working out
the details
Matching

a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

4/27/2010 67© 2010 Larry Snyder, CSE

 Working out
the details
Matching

a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(c) *(d+ f(e))

0 1 0 1 0 1 0 0

0 0 1 0 0 0 1 1

4/27/2010 68© 2010 Larry Snyder, CSE

 Working out
the details
Matching

a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(c) *(d+ f(e))

0 1 0 1 0 1 0 0

0 0 1 0 0 0 1 1

4/27/2010 69© 2010 Larry Snyder, CSE

 Working out
the details
Matching

a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(c) *(d+ f(e))

0 1 0 1 0 1 0 0

0 0 1 0 0 0 1 1

a-f(c)*(d+f(e))

1 1 1 0

0 1 0 2

4/27/2010 70© 2010 Larry Snyder, CSE

 Working out
the details
Matching

a - f (c) * (d + f (e))

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a- f(c) *(d+ f(e))

0 1 0 1 0 1 0 0

0 0 1 0 0 0 1 1

a-f(c)*(d+f(e))

1 1 1 0

0 1 0 2

a-f(c)*(d+f(e))

1 0

0 1

a-f(c)*(d+f(e))

0

0

4/27/2010 71© 2010 Larry Snyder, CSE

 Working out
the details
Mismatching

a - f) c) * (d + f (e))

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

4/27/2010 72© 2010 Larry Snyder, CSE

 Working out
the details
Mismatching

a - f) c) * (d + f (e))

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

a- f) c) *(d+ f(e))

0 0 0 1 0 1 0 0

0 1 1 0 0 0 1 1

4/27/2010 73© 2010 Larry Snyder, CSE

 Working out
the details
Mismatching

a - f) c) * (d + f (e))

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

a- f) c) *(d+ f(e))

0 0 0 1 0 1 0 0

0 1 1 0 0 0 1 1

a-f) c)*(d+f(e))

0 1 1 0

1 1 0 2

4/27/2010 74© 2010 Larry Snyder, CSE

 Working out
the details
Mismatching

a - f) c) * (d + f (e))

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

a- f) c) *(d+ f(e))

0 0 0 1 0 1 0 0

0 1 1 0 0 0 1 1

a-f) c)*(d+f(e))

0 1 1 0

1 1 0 2

a-f)c)*(d+f(e))

1 0

2 1

a-f)c)*(d+f(e))

0

2

4/27/2010 75© 2010 Larry Snyder, CSE

 One last question concerned how the 3 parts
of the || prefix specification fit into the tree
model shown for prefix sum & Schwartz?

 Short answer, they don’t have to

 Compilers can produce excellent code from spec
P2i P2i+1

local value

Create

Combine

4/27/2010 76© 2010 Larry Snyder, CSE

 At the start of class we cited bal-parens – the
leaf code for a Schwartz approach

 Combining required entirely different code
 The Infix approach captures the whole thing,

except for pre- and post-operations
4/27/2010 © 2010 Larry Snyder, CSE 77

6 for (i=start; i<start+len_per_th; i++) {

7 if (symb[i] == "(")

8 o++;

9 if (symb[i] == ")") {

10 o--;

11 if (o < 0) {

12 c++; o = 0;

13 }

14 }

 By thinking abstractly of carrying along
information that describes the sequence,
combining adjacent subsequences, and
finally extracting a value, it is possible to
move directly to a || prefix solution

 Using the abstraction is an intellectually
different way of thinking about sequential
computations

4/27/2010 78© 2010 Larry Snyder, CSE

 Think of a “sequential computation” that can
be expressed as a UD reduce or scan

 Examples from this lecture are off limits

 Prefer a scan; it’s often easy to convert a reduce
into a scan: A 10-bucket histogram (a reduce) is
related to a 10-team “league standings” (a scan)
that gives won/loss for game input, team t beat u

 Turn in a document giving an infix
formulation of the computation together
with a worked example

4/27/2010 © 2010 Larry Snyder, CSE 79

80

 Write an MPI program for the SUMMA alg
 Create rectangular arrays A, B, C, filling A, B

 Send portions of A, B to worker processes

 Iterate over common dimension,
▪ send columns of A, rows of B to other processes

▪ for each, multiply A elements times B elements and
accumulate into local portion of C

 Measure time, except for initialization, and
report the “usual stuff” for different numbers of
processes

4/27/2010 © 2010 Larry Snyder, CSE

