
Goal: Introduce scalable algorithms and strategies for developing scalable
solutions

 Regarding the Red/Blue computation

 How did you allocate the array? Why?

 How was the work assigned?

 How do the threads communicate?

 Many definitions … parallelize the data or work?
 In a data parallel computation the parallelism is applied

by performing the same (or similar) operations to
different items of data at the same time; the parallelism
grows with the size of the data

 In a task parallel computation the parallelism is applied
by performing distinct computations -- or tasks -- at the
same time; with the number of tasks fixed, the
parallelism is not scalable

Contrast solutions to preparing a banquet

 A pseudo-language to assist in discussing
algorithms and languages

 Don’t panic--the name is just a joke
 Goals:

 Be a minimal notation to describe parallelism

 Be universal, unbiased towards languages or
machines

 Allow reasoning about performance (using the
CTA)

I’m interested how well this works

 Peril-L uses C as its notation for scalar
computation, but any scalar language is OK

 Advantages

 Well known and familiar

 Capable of standard operations & bit twiddling

 Disadvantages

 Low level

 No goodies like OO

This is not the way to design a || language

 The basic form of parallelism is a thread
 Threads are specified by

 Semantics: spawn k threads running body

forall

<int var> in (<index range spec>) {<body> }

forall thID in (1..12) {

printf("Hello, World, from thread %i\n", thID);

}

<index range spec> is any reasonable (ordered) naming

 Threads execute at their own rate
 The execution relationships among threads

are not known or predictable
 To cause threads to synchronize, we have

 Threads arriving at barriers suspend
execution until all threads in its forall
arrive there; then they’re all released

 Reference to the forall index identifies
the thread

barrier;

 Two kinds of memory: local and global
 All variables declared in a thread are local

 Any variable w/ underlined_name is global
 Names (usually indexed) work as usual
 Local variables use local indexing

 Global variables use global indexing
 Memory is based on CTA, so performance:
 Local memory references are unit time

 Global memory references take  time

Notice that the default vars are local vars

 Local Memory behaves like the RAM model
 Global memory

 Reads are concurrent, so multiple processors can
read a memory location at the same time

 Writes must be exclusive, so only one processor
can write a location at a time; the possibility of
multiple processors writing to a location is not
checked and if it happens the result is
unpredictable

In PRAM terminology, this is CREW, but it’s not a PRAM

 Shared memory programs are expressible
 The first (erroneous) Count 3s program is

 Variable usage is now obvious

int *array, length, count, t;

... initalize globals here ...

forall thID in (0..t-1) {

int i, length_per=length/t;

int start=thID*length_per;

for (i=start; i<start+length_per; i++) {

if (array[i] == 3)

count++;

}

}

 Peril-L is not a shared memory model
because:

 It distinguishes between local and global memory
costs … that’s why it’s called “global”

 Peril-L is not a PRAM because

 It is founded on the CTA

 By distinguishing between local and global
memory, it distinguishes their costs

 It is asynchronous

These may seem subtle but they matter

 To insure the exclusive write Peril-L has

 The semantics are that a thread can execute
<body> only if no other thread is doing so; if
some thread is executing, then it must wait
for access; sequencing through exclusive
may not be fair

exclusive { <body> }

Exclusive gives behavior, not mechanism

 The final (correct) Count 3s program

int *array, length, count, t;

forall thID in (0..t-1) {

int i, priv_count=0; len_per_th=length/t;

int start=thID * len_per_th;

for (i=start; i<start+len_per_th; i++) {

if (array[i] == 3)

priv_count++;

}

exclusive {count += priv_count; }

}

Padding is irrelevant … it’s implementation

 Memory usually works like information:
 Reading is repeatable w/o “emptying” location

 Writing is repeatable w/o “filling up” location
 Matter works differently
 Taking something from location leaves vacuum

 Placing something requires the location be empty
 Full/Empty: Applies matter idea to memory

… F/E variables help serializing

Use the apostrophe’ suffix to identify F/E

 A location can be read only if it’s filled
 A location can be written only it’s empty

 Scheduling stalled threads may not be fair

Location contents Variable Read Variable Write

Empty Stall Fill w/value

Full Empty of value Stall

We’ll find uses for this next week

 Aggregate operations use APL syntax

 Reduce: <op>/<operand> for <op> in {+, *, &&, ||,
max, min}; as in +/priv_sum

 Scan: <op>\<operand> for <op> in {+, *, &&, ||,
max, min}; as in +\local_finds

 To be portable, use reduce & scan rather
than programming them

exclusive {count += priv_count; } “WRONG”

count = +/priv_count; “RIGHT”

Reduce/Scan Imply Synchronization

 When reduce/scan involve local memory

 The local is assigned the global sum

 This is an implied broadcast

 The local is assigned the prefix sum to that pt

 No implied broadcast
 Assigning a reduce/scan value to a local

forces a barrier, but assigning reduce value
to a global does not

priv_count= +/priv_count;

priv_count= +\priv_count;

 Peril-L is a pseudo-language
 No implementation is implied, though

performance is
 Discuss: How efficiently could Peril-L run on

previously discussed architectures?

 CMP, SMPbus, SMPx-bar, Cluster, BlueGeneL

 Features: C, Threads, Memory (G/L/f/e), /, \

 The point of a pseudocode is to allow detailed
discussion of subtle programming points
without being buried by the extraneous detail

 To illustrate, consider some parallel
computations …

 Tree accumulate

 Balanced parens

4/20/2010 © 2010 Larry Snyder, CSE 19

Idea: Let values percolate up

based on availability in F/E

memory

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 4 4 4 4 4 4 4

8 8 8 8

16 16

32

0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {
3 int val2accum; int stride = 1; val2accum: locally computed val
4 nodeval'[index] = val2accum; Assign initially to tree node
5 while (stride < P) { Begin logic for tree
6 if (index % (2*stride) == 0) {
7 nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
8 stride = 2*stride;
9 }
10 else {
11 break; Exit, if not now a parent
12 }
13 }

14 }

Caution: This implementation is wrong …

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {
3 int val2accum; int stride = 1; val2accum: locally computed val
4 nodeval'[index] = val2accum; Assign initially to tree node
5 while (stride < P) { Begin logic for tree
6 if (index % (2*stride) == 0) {
7 nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
8 stride = 2*stride;
9 }
10 else {
11 break; Exit, if not now a parent
12 }
13 }

14 }

Caution: This implementation is wrong …

8 9

0 1

3 1

4 1

index

Odd?

time

nodeval’

0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]

Caution: This implementation is wrong …

0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

7 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]

Caution: This implementation is wrong …

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {
3 int val2accum; int stride = 1; val2accum: locally computed val
4 nodeval'[index] = val2accum; Assign initially to tree node
5 while (stride < P) { Begin logic for tree
6 if (index % (2*stride) == 0) {
7 nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
8 stride = 2*stride;
9 }
10 else {
11 break; Exit, if not now a parent
12 }
12.5 barrier;

13 }

14 }

0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]

 In many places barriers are essential to the
logic of a computation, but …

 In many cases they are just an
implementational device to overcome (for
example) false dependences

 Avoid them when possible

 They force the ||-ism to drop to zero

 Often costly even when all threads arrive at once

4/20/2010 © 2010 Larry Snyder, CSE 27

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {
3 int val2accum; int stride = 1;
4 while (stride < P) { Begin logic for tree
5 if (index % (2*stride) == 0) {
6 val2accum=val2accum+nodeval'[index+stride];
7 stride = 2*stride;
8 }
9 else {
10 nodeval'[index]=val2accum; Assign val to F/E memory
11 break; Exit, if not now a parent
12 }
13 }
14 }

3 1 2 2 2 2 3 1 2 2 3 1 3 1 2 2

0 1 2 3 4 5 6 7 8 9 a b c d e f

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]

 Both the synchronous and asynchronous
accumulates are available to us, but we
usually prefer the asynch solution

 Notice that the asynch solution uses data
availability as its form of synchronization

4/20/2010 © 2010 Larry Snyder, CSE 30

1 char *symb[n];

2 forall pID in (0..P-1) {

3 int i, len_per_th=length/t;

4 int start=pID * len_per_th;

5 int o=0, c=0;

6 for (i=start; i<start+len_per_th; i++) {

7 if (symb[i] == "(")

8 o++;

9 if (symb[i] == ")") {

10 o--;

11 if (o < 0) {

12 c++; o = 0;

13 }

14 }

15 }

4/20/2010 © 2010 Larry Snyder, CSE 31

4/20/2010 © 2010 Larry Snyder, CSE 32

 Computations need to be reconceptualized
to be effective parallel computations

 Three cases to consider
 Unlimited parallelism -- issue is grain

 Fixed ||ism -- issue is performance

 Scalable parallelism -- get all performance that
is realistic and build in flexibility

 Consider the three as an exercise in
 Learning Peril-L

 Thinking in parallel and discussing choices

 Assume a linear sequence of records to be
alphabetized

 Technically, this is parallel sorting, but the full
discussion on sorting must wait

 Solutions

 Unlimited: Odd/Even

 Fixed: Local Alphabetize

 Scalable: Batcher’s Sort

1 bool continue = true;

2 rec L[n]; The data is global

3 while (continue) do {

4 forall (i in (1:n-2:2)){ Stride by 2

5 rec temp;

6 if (strcmp(L[i].x,L[i+1].x)>0){ Is o/even pair misordered?

7 temp = L[i]; Yes,fix

8 L[i] = L[i+1];

9 L[i+1] = temp;

10 }

11 }

Data is referenced globally

12 forall (i in (0:n-2:2)) { Stride by 2
13 rec temp;
14 bool done = true; Set up for termination test
15 if (strcmp(L[i].x,L[i+1].x)>0){ Is e/odd pair misordered?
16 temp = L[i]; Yes, interchange
17 L[i] = L[i+1];
18 L[i+1] = temp;
19 done = false; Not done yet
20 }
21 continue= !(&&/ done); Were any changes made?
22 }
23 }

 Is solution correct … are writes exclusive?
 What’s the effect of process spawning

overhead?
 How might this algorithm be executed for

n=10,000, P=1000
 What is the performance?
 Are the properties of this solution clear from

the Peril-L code?

 The criticism of fine-grain logical processes is
they will usually be emulated; it’s much
slower than doing the work directly.

 Can we compile logical threads to tight code?
 Possibly, but consider this model

 Imagine data shifts left one item … what’s the
cost for 100,000 local values?

Generalizing “trivialized” operations is hard

P0 P1 P2 P3 P4 P5 P6 P7

 We are illustrating the Peril-L notation for
writing machine/language independent
parallel programs

 The “unlimited parallel solution” is O/E Sort

▪ All data references were to global data

▪ Threads spawned for each half step

▪ Ineffective use of parallelism requiring threads to be
created and implemented literally

 Now consider a “fixed parallel solution”

 Postulate a process for handling each letter of
the alphabet -- 26 Latin letters

 Logic

 Processes scan records counting how many
records start w/their letter handle

 Allocate storage for those records, grab & sort

 Scan to find how many records ahead precede

 Move locally

 Sort
 Return

��

P0 P1 P2 P3 P4 P5 P6 P7

1 rec L[n]; The data is global
2 forall (index in (0..25)) { A thread for each letter
3 int myAllo = mySize(L, 0); Number of local items
4 rec LocL[] = localize(L[]); Make data locally ref-able
5 int counts[26] = 0; Count # of each letter
6 int i, j, startPt, myLet;
7 for (i=0; i<myAllo; i++) { Count number w/each letter
8 counts[letRank(charAt(LocL[i].x,0))]++;
9 }
10 counts[index] = +/ counts[index]; Figure no. of each letter
11 myLet = counts[index]; Number of records of my letter
12 rec Temp[myLet]; Alloc local mem for records

13 j = 0; Index for local array
14 for(i=0; i<n; i++) { Grab records for local betize
15 if(index==letRank(charAt(L[i].x,0)))
16 Temp[j++]= L[i]; Save record locally
17 }
18 alphabetizeInPlace(Temp[]); Alphabetize within this letter
19 startPt=+\myLet; Scan counts # records ahead

of these; scan synchs, so
OK to overwrite L, post-sort

20 j=startPt-myLet; Find my start index in global
21 for(i=0; i<count; i++){ Return records to global mem
22 L[j++]=Temp[i];
23 }
24 }

 Is solution correct … are writes exclusive?
 Is “moving the data twice” efficient?
 How might this algorithm be executed for

n=10,000, P=1000
 What is the performance?
 Are the properties of this solution clear from

the Peril-L code?

 Batcher’s algorithm -- not absolute best, but
illustrates a dramatic paradigm shift

 Bitonic Sort is based on a bitonic sequence:
 a sequence with increasing and decreasing

subsequences

 Merging 2 sorted sequences makes bitonic

Ascending Descending Lower Upper

Bitonic Bitonic

Skip recursive start;
start w/ local sort

Control by thread ID
of paired processes

(p,d) controls it: start
at (-,0), d counts
up, p down from d-
1

p = process pairs
d = direction is dth bit

4/20/2010 © 2010 Larry Snyder, CSE 47

 Assumption: 2x processes, ascending result
 Leave data in place globally, find position

 Reference data locally, say k items

 Create (key, input position) pairs & sort these

 Processes are asynch, though alg is synchronous

 Each process has a buffer of size k to exchange data -- write to
neighbor’s buffer

 Use F/E var to know when to write (other buffer empty) and
when to read (my buffer full)

 Merge to keep (lo or hi) half data, and insure sorted

 Go till control values end; use index to grab original rec

 Use one buffer per processor plus to F/E
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready'

BufK

Pi

free' ready'

BufK

 Use one buffer per processor plus to F/E
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready'

BufK

Pi

free' ready'

BufK

 Use one buffer per processor plus to F/E
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready'

BufK

Pi

free' ready'

BufK

 Use one buffer per processor plus to F/E
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready'

BufK

Pi

free' ready'

BufK

 Use one buffer per processor plus to F/E
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready'

BufK

Pi

free' ready'

BufK

20 alphabetizeInPlace(K[],bit(index,0)); Local sort, up or
down based on bit 0

21 for(d=1; d<=m; d++) { Main loop, m phases
22 for(p=d-1; p<0; p--) { Define p for each sub-phase
23 stall=free'[neigh(index,p)]; Stall till I can give data
24 for(i=0; i<size; i++) { Send my data to neighbor
25 BufK[neigh(index,p)][i]=K[i];
26 }
27 ready'[neigh(index,p)]=true; Release neighbor to go
28 stall=ready'[index]; Stall till my data is ready
29 … Merge two buffers, keeping half
30 }
31 }

 Details are in the book …
 Discussion Question: What, if any, is the

relationship between Bitonic Sort and Quick
Sort?

 http://www.tools-of-
computing.com/tc/CS/Sorts/bitonic_sort.htm

 The idea of sending data to where it belongs
is a good one … the Fixed Solution works out
where that is, and Batcher’s Sort uses a
general scheme

 Can we figure this out with less work?
 Estimate where the data goes by sampling

 Send a random sampling of a small number (log
n?) of values from each process to p0

 p0 sorts the values and picks the P-1 “cut points”,
sends them back to all processors

Sample size depends on the values of n and P

 After receiving the “cut points” each
process…

 Sends its values to the process responsible for
each range

 Each process sorts

 A scan of the actual counts can place the “cut
points” into the right processes

 An adjustment phase “scooches” the values into
final position

 Sample v values from all processors to p0
 p0 sorts and figures P-1 cutpoints
 Move them there

 Adjust position

��

2

1

2

3

2

3

2

1

Cut Points:P=4

white : red

blue : l-blue

brick orange :

yellow

 Is solution correct … are writes exclusive?
 If data not preassigned, how does one get it
 How might this algorithm be executed for

n=10,000, P=1000
 What is the performance?
 Are the properties of this solution clear from

the Peril-L code?

 Peril-L is a useful notation for sketching a
solution – you will probably implement it w/o
much language support

 Ideally, we should have language support

 Hopefully, it helps working out subtle points, like
synchronization behavior

 In algorithm design, maximizing parallelism
is much less important that minimizing
process-interactions

4/20/2010 © 2010 Larry Snyder, CSE 60

 Work out the basic logic of Sample Sort and
program it in Peril-L

 Focus only on finding the “cuts,” determining
where the data goes, and “adjusting” for
balanced final allocation

 Data is initially placed where you want it – but say
where that is

 Assume any “local” functions you wish, such as
loc_sort() that sorts data locally in place

 n is a multiple of P, whose values are in n and P

4/20/2010 © 2010 Larry Snyder, CSE 61

 The purpose of this assignment is

 Familiarity with Peril-L

 Understand the ideas behind Sample sort

 Turn in

 Peril-L code with “coarse grain” commenting

 Your thoughts about the usefulness of the CTA in
developing the algorithm, and any comments
about Peril-L

4/20/2010 © 2010 Larry Snyder, CSE 62

