
Goal: Introduce scalable algorithms and strategies for developing scalable 
solutions 



 Regarding the Red/Blue computation

 How did you allocate the array? Why?

 How was the work assigned?

 How do the threads communicate?



 Many definitions … parallelize the data or work?
 In a data parallel computation the parallelism is applied 

by performing the same (or similar) operations to 
different items of data at the same time; the parallelism 
grows with the size of the data

 In a task parallel computation the parallelism is applied 
by performing distinct computations -- or tasks -- at the 
same time; with the number of tasks fixed, the 
parallelism is not scalable

Contrast solutions to preparing a banquet



 A pseudo-language to assist in discussing 
algorithms and languages

 Don’t panic--the name is just a joke
 Goals:

 Be a minimal notation to describe parallelism

 Be universal, unbiased towards languages or 
machines

 Allow reasoning about performance (using the 
CTA)

I’m interested how well this works



 Peril-L uses C as its notation for scalar 
computation, but any scalar language is OK 

 Advantages

 Well known and familiar

 Capable of standard operations & bit twiddling

 Disadvantages

 Low level

 No goodies like OO

This is not the way to design a || language



 The basic form of parallelism is a thread
 Threads are specified by

 Semantics: spawn k threads running body

forall

<int var> in ( <index range spec> ) {<body>  }

forall thID in (1..12) {

printf("Hello, World, from thread %i\n", thID);

}

<index range spec> is any reasonable (ordered) naming



 Threads execute at their own rate
 The execution relationships among threads 

are not known or predictable 
 To cause threads to synchronize, we have

 Threads arriving at barriers suspend 
execution until all threads in its forall
arrive there; then they’re all released

 Reference to the forall index identifies 
the thread

barrier;



 Two kinds of memory: local and global 
 All variables declared in a thread are local

 Any variable w/ underlined_name is global
 Names (usually indexed) work as usual
 Local variables use local indexing

 Global variables use global indexing  
 Memory is based on CTA, so performance:
 Local memory references are unit time

 Global memory references take  time

Notice that the default vars are local vars



 Local Memory behaves like the RAM model
 Global memory

 Reads are concurrent, so multiple processors can 
read a memory location at the same time

 Writes must be exclusive, so only one processor 
can write a location at a time; the possibility of 
multiple processors writing to a location is not 
checked and if it happens the result is 
unpredictable

In PRAM terminology, this is CREW, but it’s not a PRAM



 Shared memory programs are expressible
 The first (erroneous) Count 3s program is

 Variable usage is now obvious 

int *array, length, count, t;

... initalize globals here ...

forall thID in (0..t-1) {

int i, length_per=length/t;

int start=thID*length_per;

for (i=start; i<start+length_per; i++) {

if (array[i] == 3)

count++;

}

}



 Peril-L is not a shared memory model 
because:

 It distinguishes between local and global memory 
costs … that’s why it’s called “global”

 Peril-L is not a PRAM because

 It is founded on the CTA

 By distinguishing between local and global 
memory, it distinguishes their costs

 It is asynchronous

These may seem subtle but they matter



 To insure the exclusive write Peril-L has

 The semantics are that a thread can execute 
<body> only if no other thread is doing so; if 
some thread is executing, then it must wait 
for access; sequencing through exclusive
may not be fair

exclusive { <body> }

Exclusive gives behavior, not mechanism



 The final (correct) Count 3s program

int *array, length, count, t;

forall thID in (0..t-1) {

int i, priv_count=0; len_per_th=length/t;

int start=thID * len_per_th;

for (i=start; i<start+len_per_th; i++) {

if (array[i] == 3)

priv_count++;

}

exclusive {count += priv_count; }

}

Padding is irrelevant … it’s implementation



 Memory usually works like information:
 Reading is repeatable w/o “emptying” location 

 Writing is repeatable w/o “filling up” location
 Matter works differently
 Taking something from location leaves vacuum

 Placing something requires the location be empty
 Full/Empty: Applies matter idea to memory 

… F/E variables help serializing

Use the apostrophe’ suffix to identify F/E



 A location can be read only if it’s filled
 A location can be written only it’s empty

 Scheduling stalled threads may not be fair 

Location contents Variable Read Variable Write

Empty Stall Fill w/value

Full Empty of value Stall

We’ll find uses for this next week



 Aggregate operations use APL syntax

 Reduce: <op>/<operand> for <op> in {+, *, &&, ||, 
max, min}; as in +/priv_sum

 Scan: <op>\<operand> for <op> in {+, *, &&, ||, 
max, min}; as in +\local_finds

 To be portable, use reduce & scan rather 
than programming them

exclusive {count += priv_count; } “WRONG”

count = +/priv_count; “RIGHT”

Reduce/Scan Imply Synchronization



 When reduce/scan involve local memory

 The local is assigned the global sum 

 This is an implied broadcast

 The local is assigned the prefix sum to that pt

 No implied broadcast
 Assigning a reduce/scan value to a local 

forces a barrier, but assigning reduce value 
to a global does not

priv_count= +/priv_count;

priv_count= +\priv_count;



 Peril-L is a pseudo-language
 No implementation is implied, though 

performance is
 Discuss: How efficiently could Peril-L run on 

previously discussed architectures?

 CMP, SMPbus, SMPx-bar, Cluster, BlueGeneL

 Features: C, Threads, Memory (G/L/f/e), /, \



 The point of a pseudocode is to allow detailed 
discussion of subtle programming points 
without being buried by the extraneous detail

 To illustrate, consider some parallel 
computations …

 Tree accumulate

 Balanced parens
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Idea: Let values percolate up 

based on availability in F/E 

memory

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 4 4 4 4 4 4 4

8 8 8 8

16 16

32

0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)



1  int nodeval'[P]; Global full/empty vars to save right child val
2  forall ( index in (0..P-1) ) {
3    int val2accum; int stride = 1; val2accum: locally computed val
4    nodeval'[index] = val2accum; Assign initially to tree node
5    while (stride < P) { Begin logic for tree
6      if (index % (2*stride) == 0) {
7         nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
8         stride = 2*stride;
9      }
10    else {
11       break; Exit, if not now a parent
12    }
13  }

14 }

Caution: This implementation is wrong …



1  int nodeval'[P]; Global full/empty vars to save right child val
2  forall ( index in (0..P-1) ) {
3    int val2accum; int stride = 1; val2accum: locally computed val
4    nodeval'[index] = val2accum; Assign initially to tree node
5    while (stride < P) { Begin logic for tree
6      if (index % (2*stride) == 0) {
7         nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
8         stride = 2*stride;
9      }
10    else {
11       break; Exit, if not now a parent
12    }
13  }

14 }

Caution: This implementation is wrong …

8 9   

0 1

3 1

4 1

index

Odd?

time   

nodeval’  



0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]

Caution: This implementation is wrong …



0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

7 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]

Caution: This implementation is wrong …



1  int nodeval'[P]; Global full/empty vars to save right child val
2  forall ( index in (0..P-1) ) {
3    int val2accum; int stride = 1; val2accum: locally computed val
4    nodeval'[index] = val2accum; Assign initially to tree node
5    while (stride < P) { Begin logic for tree
6      if (index % (2*stride) == 0) {
7         nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
8         stride = 2*stride;
9      }
10    else {
11       break; Exit, if not now a parent
12    }
12.5 barrier;

13  }

14 }



0 1 2 3 4 5 6 7 8 9 a b c d e f

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]



 In many places barriers are essential to the 
logic of a computation, but …

 In many cases they are just an 
implementational device to overcome (for 
example) false dependences

 Avoid them when possible

 They force the ||-ism to drop to zero

 Often costly even when all threads arrive at once
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1  int nodeval'[P]; Global full/empty vars to save right child val
2  forall ( index in (0..P-1) ) {
3    int val2accum;   int stride = 1;
4    while (stride < P) { Begin logic for tree
5       if (index % (2*stride) == 0) {
6          val2accum=val2accum+nodeval'[index+stride];
7          stride = 2*stride;
8       }
9       else {
10        nodeval'[index]=val2accum; Assign val to F/E memory
11        break; Exit, if not now a parent
12     }
13    }
14 }



3 1 2 2 2 2 3 1 2 2 3 1 3 1 2 2

0 1 2 3 4 5 6 7 8 9 a b c d e f

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

index % (2 * stride)

8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1

16 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

32 1 4 1 8 1 4 1 16 1 4 1 8 1 4 1

nodeval[index]



 Both the synchronous and asynchronous 
accumulates are available to us, but we 
usually prefer the asynch solution

 Notice that the asynch solution uses data 
availability as its form of synchronization
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1 char *symb[n];

2 forall pID in (0..P-1) {

3 int i, len_per_th=length/t; 

4 int start=pID * len_per_th;

5 int o=0, c=0;

6 for (i=start; i<start+len_per_th; i++) {

7 if (symb[i] == "(" )

8 o++;

9 if (symb[i] == ")" ) {

10 o--;

11 if (o < 0) {

12 c++; o = 0;

13 }

14 }

15 }
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 Computations need to be reconceptualized 
to be effective parallel computations

 Three cases to consider
 Unlimited parallelism -- issue is grain 

 Fixed ||ism -- issue is performance

 Scalable parallelism -- get all performance that 
is realistic and build in flexibility

 Consider the three as an exercise in
 Learning Peril-L

 Thinking in parallel and discussing choices



 Assume a linear sequence of records to be 
alphabetized

 Technically, this is parallel sorting, but the full 
discussion on sorting must wait

 Solutions

 Unlimited: Odd/Even

 Fixed: Local Alphabetize

 Scalable: Batcher’s Sort



1  bool continue = true;

2  rec L[n]; The data is global

3  while (continue) do {

4    forall (i in (1:n-2:2)){ Stride by 2

5    rec temp;

6    if (strcmp(L[i].x,L[i+1].x)>0){ Is o/even pair misordered?

7         temp   = L[i]; Yes,fix

8         L[i]   = L[i+1];

9         L[i+1] = temp;

10     }

11   }

Data is referenced globally



12   forall (i in (0:n-2:2))   { Stride by 2
13     rec temp;
14     bool done = true; Set up for termination test
15     if (strcmp(L[i].x,L[i+1].x)>0){ Is e/odd pair misordered?
16        temp   = L[i]; Yes, interchange
17        L[i]   = L[i+1];
18        L[i+1] = temp;
19        done   = false; Not done yet
20     }
21     continue= !(&&/ done); Were any changes made?
22   }
23 }



 Is solution correct … are writes exclusive?
 What’s the effect of process spawning 

overhead?
 How might this algorithm be executed for 

n=10,000, P=1000
 What is the performance?
 Are the properties of this solution clear from 

the Peril-L code?



 The criticism of fine-grain logical processes is 
they will usually be emulated; it’s much 
slower than doing the work directly.

 Can we compile logical threads to tight code?
 Possibly, but consider this model

 Imagine data shifts left one item … what’s the 
cost for 100,000 local values?

Generalizing “trivialized” operations is hard

P0 P1 P2 P3 P4 P5 P6 P7



 We are illustrating the Peril-L notation for 
writing machine/language independent 
parallel programs

 The “unlimited parallel solution” is O/E Sort

▪ All data references were to global data

▪ Threads spawned for each half step

▪ Ineffective use of parallelism requiring threads to be 
created and implemented literally

 Now consider a “fixed parallel solution”



 Postulate a process for handling each letter of 
the alphabet -- 26 Latin letters

 Logic

 Processes scan records counting how many 
records start w/their letter handle

 Allocate storage for those records, grab & sort 

 Scan to find how many records ahead precede 



 Move locally

 Sort
 Return

��

P0 P1 P2 P3 P4 P5 P6 P7



1  rec L[n];                     The data is global
2  forall (index in (0..25)) { A thread for each letter
3    int myAllo = mySize(L, 0); Number of local items
4    rec LocL[] = localize(L[]); Make data locally ref-able
5    int counts[26] = 0;          Count # of each letter
6    int i, j, startPt, myLet;
7    for (i=0; i<myAllo; i++)  { Count number w/each letter
8        counts[letRank(charAt(LocL[i].x,0))]++;
9    }
10  counts[index] = +/ counts[index]; Figure no. of each letter
11  myLet = counts[index];       Number of records of my letter
12  rec Temp[myLet];             Alloc local mem for records



13    j = 0;                      Index for local array
14    for(i=0; i<n; i++) { Grab records for local betize
15      if(index==letRank(charAt(L[i].x,0)))
16         Temp[j++]= L[i]; Save record locally
17    }
18    alphabetizeInPlace(Temp[]); Alphabetize within this letter
19    startPt=+\myLet; Scan counts # records ahead 

of these; scan synchs, so 
OK to overwrite L, post-sort

20    j=startPt-myLet; Find my start index in global
21    for(i=0; i<count; i++){ Return records to global mem
22      L[j++]=Temp[i];
23    }
24 }



 Is solution correct … are writes exclusive?
 Is “moving the data twice” efficient?
 How might this algorithm be executed for 

n=10,000, P=1000
 What is the performance?
 Are the properties of this solution clear from 

the Peril-L code?



 Batcher’s algorithm -- not absolute best, but 
illustrates a dramatic paradigm shift

 Bitonic Sort is based on a bitonic sequence:
 a sequence with increasing and decreasing 

subsequences

 Merging 2 sorted sequences makes bitonic

Ascending        Descending              Lower                 Upper

Bitonic                Bitonic



Skip recursive start; 
start w/ local sort

Control by thread ID 
of paired processes

(p,d) controls it: start 
at (-,0), d counts 
up, p down from d-
1

p = process pairs
d = direction is dth bit
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 Assumption: 2x processes, ascending result
 Leave data in place globally, find position

 Reference data locally, say k items

 Create (key, input position) pairs & sort these

 Processes are asynch, though alg is synchronous

 Each process has a buffer of size k to exchange data -- write to 
neighbor’s buffer

 Use F/E var to know when to write (other buffer empty) and 
when to read (my buffer full)

 Merge to keep (lo or hi) half data, and insure sorted 

 Go till control values end; use index to grab original rec



 Use one buffer per processor plus to F/E 
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready' 

BufK

Pi

free' ready' 

BufK



 Use one buffer per processor plus to F/E 
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready' 

BufK

Pi

free' ready' 

BufK



 Use one buffer per processor plus to F/E 
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled
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 Use one buffer per processor plus to F/E 
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled
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 Use one buffer per processor plus to F/E 
variables: free' and ready'

 free' is full when neighbor’s buffer can be filled

 ready' is empty until local buffer is filled

Pj

free' ready' 

BufK

Pi

free' ready' 

BufK



20    alphabetizeInPlace(K[],bit(index,0)); Local sort, up or
down based on bit 0

21    for(d=1; d<=m; d++)  { Main loop, m phases
22      for(p=d-1; p<0; p--)  { Define p for each sub-phase
23         stall=free'[neigh(index,p)]; Stall till I can give data
24         for(i=0; i<size; i++)  { Send my data to neighbor
25            BufK[neigh(index,p)][i]=K[i];         
26         }
27         ready'[neigh(index,p)]=true; Release neighbor to go
28         stall=ready'[index]; Stall till my data is ready
29         …  Merge two buffers, keeping half
30       }
31    }



 Details are in the book …
 Discussion Question: What, if any, is the 

relationship between Bitonic Sort and Quick 
Sort?

 http://www.tools-of-
computing.com/tc/CS/Sorts/bitonic_sort.htm



 The idea of sending data to where it belongs 
is a good one … the Fixed Solution works out 
where that is, and Batcher’s Sort uses a 
general scheme

 Can we figure this out with less work?
 Estimate where the data goes by sampling 

 Send a random sampling of a small number (log 
n?) of values from each process to p0

 p0 sorts the values and picks the P-1 “cut points”, 
sends them back to all processors

Sample size depends on the values of n and P



 After receiving the “cut points” each 
process…

 Sends its values to the process responsible for 
each range

 Each process sorts

 A scan of the actual counts can place the “cut 
points” into the right processes 

 An adjustment phase “scooches” the values into 
final position



 Sample v values from all processors to p0
 p0 sorts and figures P-1 cutpoints
 Move them there

 Adjust position

��

2

1

2

3

2

3

2

1

Cut Points:P=4

white : red

blue : l-blue

brick orange : 

yellow



 Is solution correct … are writes exclusive?
 If data not preassigned, how does one get it 
 How might this algorithm be executed for 

n=10,000, P=1000
 What is the performance?
 Are the properties of this solution clear from 

the Peril-L code?



 Peril-L is a useful notation for sketching a 
solution – you will probably implement it w/o 
much language support

 Ideally, we should have language support

 Hopefully, it helps working out subtle points, like 
synchronization  behavior

 In algorithm design, maximizing parallelism 
is much less important that minimizing 
process-interactions
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 Work out the basic logic of Sample Sort and 
program it in Peril-L

 Focus only on finding the “cuts,” determining 
where the data goes, and “adjusting” for 
balanced final allocation

 Data is initially placed where you want it – but say 
where that is

 Assume any “local” functions you wish, such as 
loc_sort() that sorts data locally in place

 n is a multiple of P, whose values are in n and P
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 The purpose of this assignment is 

 Familiarity with Peril-L

 Understand the ideas behind Sample sort

 Turn in

 Peril-L code with “coarse grain” commenting

 Your thoughts about the usefulness of the CTA in 
developing the algorithm, and any comments 
about Peril-L
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