
Goal: Understand basic concepts and trade-offs of parallelism

Question on topic of “no standard parallel model”:

Sequential computers were quite different originally,

before one machine (IBM 701) gained widespread

use. Won’t the widespread use of Intel (or AMD)

CMPs have that same effect for parallelism?

 Do we think that the multicore processor will
become the idealized parallel machine in the
same way the 701 defined the RAM model?

4/13/2010 © 2010 Larry Snyder, CSE 2

 The CTA is supposed to guide us in finding
good computations to run on parallel
machines

 Using it should

 Aid in producing programs exploiting locality

 Insure the program distributes work ‘well’

 Other features, to be discussed later

 Consider sorting and HW2 …

4/13/2010 © 2010 Larry Snyder, CSE 3

 The idea: Create a lot of independent parallel
work – compare adjacent pairs and exchange
if out of order – repeating until ordered. Lots
of parallelism; w.c. A[0]==max

 Specifically, … for i Odd

 First ‘half step’, compare A[i]:A[i+1], exch if OoO

 Second ‘half step’, compare A[i-1]:A[i], exch if OoO

 If a step has no exchanges, stop

4/13/2010 © 2010 Larry Snyder, CSE 4

 General criticisms of this idea –

 Dependences between threads at ½ step size

 Parallel work in a 1/2 step is very modest: one
compare and (possibly) one exchange

 Though there is n-way parallelism, much is
probably wasted

 n == P/2 is unlikely

 Considering the CTA –

 l >> amount of work at each ½ step

4/13/2010 © 2010 Larry Snyder, CSE 5

 Clearly, increasing the work at each step is
smart

 Allocate n/P items per processor

 Extend the comparison …

to

 A value from the neighbor could propagate along

4/13/2010 © 2010 Larry Snyder, CSE 6

i : , i:

:i : i,

 Overall logic and analysis
One Step:

get end neighbor value: l

O/E half step: (n/P)c

get end neighbor value: l

E/O half step: (n/P)c

And-reduce over done?: l log P

P0 P1 P2 P3

What is the worst case number of steps?

An Easy Argument: What crosses the midpoint?

4/13/2010 7© 2010 Larry Snyder, CSE

 Task: Recognize the well-formedness of ((xxx))
 An easy sequential solution …

open = 0; // keep count of opens

for (i=0; i<n; i++) { // proceeding L to R

if (A[i] == '(') open++; // found one

if (A[i] == ')') { // here’s a match

open--;

if (open < 0) break; // oops, mismatch

}

}
4/13/2010 © 2010 Larry Snyder, CSE 8

Does this look totally sequential??

 Allocate a contiguous sequence of symbols to
a processor

 Each processor gets an ill-formed subsequence

 (x)) (((x) x x x (x))

 Begin by resolving locally

 (x)) (((x) x x x (x))

Leaving unresolved closes and opens

4/13/2010 © 2010 Larry Snyder, CSE 9

P0 P1 P2 P3

 The unresolved values from each subproblem
produce a similar problem, except optimized

) (becomes 1 1 and) ((((becomes 1 4

 Adjacent pairs combine their unresolved
counts to a new pair describing the larger
sequence:

1 1 and 1 4 become 1 4

2 4 and 1 2 become 2 5

 Resolved to the root: 0 0 is balanced

4/13/2010 © 2010 Larry Snyder, CSE 10

 Allocate contiguous subsequences of size n/P
to each processor, starting with P0

 Sequentially, locally resolve, creating c o cn/P
 Combine pairs to produce new c o descriptors

by inducing a tree on PE indices: [0-1][2-3] …
for level 1, [0-3][4-7] … for level 2, etc.

 Log levels of the tree to produce a final
descriptor: c o cllog2P

 Only a result of 0 0 means balanced

4/13/2010 © 2010 Larry Snyder, CSE 11

 First step: Allocated work to processors,
generally by dividing it evenly

 Next step: Found local, independent work to
perform

 Next step: Focused on combining
subproblems into a tree network

 Made correctness and termination conditions
explicit

4/13/2010 © 2010 Larry Snyder, CSE 12

 Controller

 Not strictly needed

 Often available

 How well does

the CTA match other

parallel architectures?

▪ CMPs & SMPs

▪ Clusters

▪ Blue Gene

4/13/2010 © 2010 Larry Snyder, CSE 13

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

 The CTA is a ‘machine model’ – an abstraction
 How can it be wrong?

 Architecture has more features – shared memory

 CTA predicts a certain behavior and features in
the architecture make the program much faster

 If it mispredicts … it’s in trouble

 Isn’t it a mistake for the CTA to ignore all the
great stuff architects put in a processor

4/13/2010 © 2010 Larry Snyder, CSE 14

The CTA focuses on the parts that matter

 Why should we believe it’s right?

 In his thesis (1993) Calvin Lin did a careful study of
using the CTA as a programming model against the
models used by others (whatever they were)

▪ CTA consistently pointed programmers to better solutions

▪ The CTA’s effectiveness was independent of architecture

▪ The apparent value of the model is emphasizing locality –
always a benefit in computing

 The greatest value of the CTA would be if it is
the basis for parallel programming languages

4/13/2010 © 2010 Larry Snyder, CSE 15

 A thread consists of program code, a
program counter, call stack, and a small
amount of thread-specific data
 Threads share access to memory (and the file

system) with other threads

 Threads communicate through the shared
memory

 Though it may seem odd, apply the CTA model to
thread programming -- emphasize locality, expect
sharing to cost plenty

Threads are familiar, but don’t use std model

4/13/2010 16© 2010 Larry Snyder, CSE

 A process is a thread in its own private
address space

 Processes do not communicate through shared
memory, but need another mechanism like
message passing

 Key issue: How is the problem divided among the
processes, which includes data and work

 Processes (logically subsume) threads

4/13/2010 17© 2010 Larry Snyder, CSE

 Both have code, PC, call stack, local data

 Threads -- One address space

 Processes -- Separate address spaces

 Weight and Agility

 Threads: lighter weight, faster to setup, tear
down, more dynamic

 Processes: heavier weight, setup and tear down
more time consuming, communication is slower

Mostly we use ‘thread’ & ‘process’ interchangeably

4/13/2010 18© 2010 Larry Snyder, CSE

 Terms used to refer to a unit of parallel
computation include: thread, process,
processor, …

 Technically, thread and process are SW, processor
(including SMT) is HW

 Usually, it doesn’t matter

 I will (try to) use “thread/process” for logical
parallelism, and “processor” when I mean physical
parallelism

4/13/2010 19© 2010 Larry Snyder, CSE

 Naïvely, many people think that applying P
processors to a T time computation will result
in T/P time performance

 Generally wrong
 For a few problems (Monte Carlo) it is possible to

apply more processors directly to the solution

 For most problems, using P processors requires a
paradigm shift

 Assume “P processors => T/P time” to be the
best case possible

4/13/2010 20© 2010 Larry Snyder, CSE

 (Because of the presumed paradigm shift) the
sequential and parallel solutions differ so we do not
expect a simple performance relationship between
the two
 More or fewer instructions must be executed

 Examples of other differences
 The hardware is different

 Parallel solution has difficult-to-quantify costs such as
communication time, wait time, etc. that the serial
solution does not have

4/13/2010 21© 2010 Larry Snyder, CSE

 To implement parallel computations requires
overhead that sequential computations do
not need
 All costs associated with communication are

overhead: locks, cache flushes, coherency,
message passing protocols, etc.

 All costs associated with thread/process setup

 Lost optimizations -- many compiler
optimizations not available in parallel setting
▪ Instruction reordering

4/13/2010 22© 2010 Larry Snyder, CSE

 Threads and processes incur overhead

 Obviously, the cost of creating a thread or process must
be recovered through parallel performance:

(t1 + osu + otd + cost(t2))/2 < t2

Thread

Process

Setup Tear down

tp = p proc execution time

osu = setup, otd = tear down

cost(t2) = all other || costs

4/13/2010 23© 2010 Larry Snyder, CSE

 Redundant execution can avoid
communication -- a parallel optimization

New random number needed for loop iteration:

(a) Generate one copy, have all threads ref it

… requires communication

(b) Communicate seed once, then each thread

generates its own random number … removes

communication and gets parallelism, but by

increasing instruction load

A common (and recommended) programming trick

4/13/2010 24© 2010 Larry Snyder, CSE

 Searches illustrate the possibility of parallelism
requiring fewer instructions

 Independently searching subtrees means an item is
likely to be found faster than sequential

4/13/2010 25© 2010 Larry Snyder, CSE

 Sequential hardware ≠ parallel hardware

 There is more parallel hardware, e.g. memory

 There is more cache on parallel machines

 Sequential computer ≠ 1 processor of || computer,
because of coherence hw, power, etc.

▪ Important in multicore context

 Parallel channels to disk, possibly

?

These differences tend to favor || machine

4/13/2010 26© 2010 Larry Snyder, CSE

 Additional cache is an advantage of ||ism

 The effect is to make execution time < T/P
because data (& program) memory
references are faster

 Cache-effects help mitigate other || costs

PS P0 P1 P2 P3

vs

4/13/2010 27© 2010 Larry Snyder, CSE

 Wait: All computations must wait at points,
but serial computation waits are well known

 Parallel waiting …

 For serialization to assure correctness

 Congestion in communication facilities

▪ Bus contention; network congestion; etc.

 Stalls: data not available/recipient busy

 These costs are generally time-dependent,
implying that they are highly variable

4/13/2010 28© 2010 Larry Snyder, CSE

 Applying P processors to a problem with a
time T (serial) solution can be either …
better or worse …

 It’s up to programmers to exploit the
advantages and avoid the disadvantages

4/13/2010 29© 2010 Larry Snyder, CSE

4/13/2010 © 2010 Larry Snyder, CSE 30

 If 1/S of a computation is inherently
sequential, then the maximum performance
improvement is limited to a factor of S

TP = 1/S ×TS + (1-1/S) ×TS / P

 Amdahl’s Law, like the Law of Supply and
Demand, is a fact

Gene Amdahl -- IBM Mainframe Architect

TS=sequential time

TP=parallel time

P =no. processors

4/13/2010 31© 2010 Larry Snyder, CSE

 Consider the equation

 With no charge for || costs, let P then TP
 1/S TS

 Amdahl’s Law applies to problem instances

TP = 1/S × TS + (1-1/S) × TS / P

The best parallelism can do to is to eliminate the
parallelizable work; the sequential work remains

Parallelism seemingly has little potential

4/13/2010 32© 2010 Larry Snyder, CSE

 Amdahl’s Law assumes a fixed problem
instance: Fixed n, fixed input, perfect
speedup

 The algorithm can change to become more ||

 Problem instances grow implying proportion of
work that is sequential may be smaller %

 … Many, many realities including parallelism in
‘sequential’ execution imply analysis is simplistic

 Amdahl is a fact; it’s not a show-stopper

4/13/2010 33© 2010 Larry Snyder, CSE

 As an artifact of P-completeness theory, we
have the idea of Inherently Sequential --
computations not appreciably improved by
parallelism

 Probably not much of a limitation

Circuit Value Problem:
Given a circuit over Boolean inputs, values b1, …, bn and
designated output value y, is the circuit true for y?

4/13/2010 34© 2010 Larry Snyder, CSE

 Latency -- time required before a requested
value is available

 Latency, measured in seconds; called transmit
time or execution time or just time

 Throughput -- amount of work completed in
a given amount of time

 Throughput, measured in “work”/sec, where
“work” can be bits, instructions, jobs, etc.; also
called bandwidth in communication

Both terms apply to computing and communications

4/13/2010 35© 2010 Larry Snyder, CSE

 Reducing latency (execution time) is a
principal goal of parallelism

 There is upper limit on reducing latency

 Speed of light, esp. for bit transmissions

 In networks, switching time (node latency)

 (Clock rate) x (issue width), for instructions

 Diminishing returns (overhead) for problem
instances

Hitting the upper limit is rarely a worry

4/13/2010 36© 2010 Larry Snyder, CSE

 Throughput improvements are often easier to
achieve by adding hardware

 More wires improve bits/second

 Use processors to run separate jobs

 Pipelining is a powerful technique to execute more (serial)
operations in unit time

timein
s
tru

c
tio

n
s

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Better throughput often hyped as if better latency

4/13/2010 37© 2010 Larry Snyder, CSE

 Reduce wait times by switching to work on
different operation (multithreading)
 Old idea, dating back to Multics

 In parallel computing it’s called latency hiding
 Idea most often used to lower impact of l cost
 Have many threads ready to go …

 Execute a thread until it makes nonlocal ref

 Switch to next thread

 When nonlocal ref is filled, add to ready list

See discussion from Part II

4/13/2010 38© 2010 Larry Snyder, CSE

 Latency hiding requires …

 Consistently large supply of threads ~ le

where e = average # cycles between nonlocal refs

 Enough network throughput to have many requests in the air
at once

 Latency hiding has been claimed to make shared
memory feasible in the presence of large l

t1
t2

t3
t4

t5
t1

Nonlocal data

reference time

There are difficulties

4/13/2010 39© 2010 Larry Snyder, CSE

 Challenges to supporting shared memory
 Threads must be numerous, and the shorter the

interval between nonlocal refs, the more
▪ Running out of threads stalls the processor

 Context switching to next thread has overhead
▪ Many hardware contexts -- or --

▪ Waste time storing and reloading context

 Tension between latency hiding & caching
▪ Shared data must still be protected somehow

 Other technical issues

4/13/2010 40© 2010 Larry Snyder, CSE

 Contention -- the action of one processor interferes
with another processor’s actions -- is an elusive
quantity

 Lock contention: One processor’s lock stops other processors
from referencing; they must wait

 Bus contention: Bus wires are in use by one processor’s
memory reference

 Network contention: Wires are in use by one packet, blocking
other packets

 Bank contention: Multiple processors try to access different
locations on one memory chip simultaneously

Contention is very time dependent, that is, variable

4/13/2010 41© 2010 Larry Snyder, CSE

 Load imbalance, work not evenly assigned to
the processors, underutilizes parallelism
 The assignment of work, not data, is key

 Static assignments, being rigid, are more prone to
imbalance

 Because dynamic assignment carries overhead,
the quantum of work must be large enough to
amortize the overhead

 With flexible allocations, load balance can be
solved late in the design programming cycle

4/13/2010 42© 2010 Larry Snyder, CSE

 Performance is maximized if processors
execute continuously on local data without
interacting with other processors

 To unify the ways in which processors could
interact, we adopt the concept of dependence

 A dependence is an ordering relationship
between two computations

▪ Dependences are usually induced by read/write

▪ Dependences that cross process boundaries induce a
need to synchronize the threads

Dependences are well-studied in compilers
4/13/2010 43© 2010 Larry Snyder, CSE

 Dependences are orderings that must be
maintained to guarantee correctness

 Flow-dependence: read after write

 Anti-dependence: write after read

 Output-dependence: write after write

 True dependences affect correctness
 False dependences arise from memory reuse

True

False

False

4/13/2010 44© 2010 Larry Snyder, CSE

 Both true and false dependences
1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;

4/13/2010 45© 2010 Larry Snyder, CSE

 Both true and false dependences

 Flow-dependence read after write; must be
preserved for correctness

 Anti-dependence write after read; can be
eliminated with additional memory

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;

4/13/2010 46© 2010 Larry Snyder, CSE

 Change variable names

1. first_sum = a + 1;

2. first_term = first_sum * scale1;

3. second_sum = b + 1;

4. second_term = second_sum * scale2;

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;

4/13/2010 47© 2010 Larry Snyder, CSE

 Granularity is used in many contexts…here
granularity is the amount of work between
cross-processor dependences

 Important because interactions usually cost

 Generally, larger grain is better

+ fewer interactions, more local work

- can lead to load imbalance

 Batching is an effective way to increase grain

4/13/2010 48© 2010 Larry Snyder, CSE

 The CTA motivates us to maximize locality

 Caching is the traditional way to exploit locality …
but it doesn’t translate directly to ||ism

 Redesigning algorithms for parallel execution
often means repartitioning to increase locality

 Locality often requires redundant storage and
redundant computation, but in limited quantities
they help

4/13/2010 49© 2010 Larry Snyder, CSE

 Execution time … what’s time?

 ‘Wall clock’ time

 Processor execution time

 System time

 Paging and caching can affect time

 Cold start vs warm start

 Conflicts w/ other users/system components
 Measure kernel or whole program

4/13/2010 50© 2010 Larry Snyder, CSE

 Floating Point Operations Per Second is a
common measurement for scientific pgms

 Even scientific computations use many ints

 Results can often be influenced by small, low-level
tweaks having little generality: mult/add

 Translates poorly across machines because it is
hardware dependent

 Limited application … but it won’t go away!

4/13/2010 51© 2010 Larry Snyder, CSE

 Speedup is the factor of improvement for P
processors: TS/TP

0

Processors

Performance

640

Program1

Program2

48

Speedup

Efficiency =

Speedup/P

4/13/2010 52© 2010 Larry Snyder, CSE

 Speedup is best applied when hardware is
constant, or for family within a generation

 Need to have computation, communication in
same ratio

 Great sensitivity to the TS value

▪ TS should be time of best sequential program on 1
processor of the ||-machine

▪ TP=1 TS Measures relative speedup

Relative speedup is often important
but it must be labeled as such

4/13/2010 53© 2010 Larry Snyder, CSE

 As P increases, the amount of work per
processor diminishes, often below the amt
needed to amortize costs

 Speedup curves bend down
 Scaled speedup keeps

the work per processor
constant, allowing other
effects to be seen

 Both are important

0

Processors

Performance

640

Program1

Program2

48

Speedup

If not stated, speedup
is fixed speedup

4/13/2010 54© 2010 Larry Snyder, CSE

 The sequential computation should not be
charged for any || costs … consider

 If referencing memory in other processors
takes time (l) and data is distributed, then
one processor solving the problem results in
greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems

4/13/2010 55© 2010 Larry Snyder, CSE

 Cases arise when sequential doesn’t fit in 1
processor of parallel machine

 Best solution is relative speed-up

 Measure Tp=smallest possible

 Measure TP, compute Tp/TP as having P/p
potential improvement

4/13/2010 56© 2010 Larry Snyder, CSE

 Many issues regarding parallelism have been
introduced, but they require further
discussion … we will return to them when
they are relevant

4/13/2010 57© 2010 Larry Snyder, CSE

 Amdahl’s Law is a fact but it doesn’t impede
us much

 Inherently sequential problems (probably)
exist, but they don’t impede us either

 Latency hiding could hide the impact of l
with sufficiently many threads and much
(interconnection) bandwidth

 Impediments to parallel speedup are
numerous: overhead, contention, inherently
sequential code, waiting time, etc.

4/13/2010 58© 2010 Larry Snyder, CSE

 Concerns while parallel programming are also
numerous: locality, granularity, dependences
(both true and false), load balance, etc.

 Happily: Parallel and sequential computers
are different: More hardware means more
fast memory (cache, RAM), implying the
possibility of superlinear speedup

 Measuring improvement is complicated

4/13/2010 59© 2010 Larry Snyder, CSE

 Consider the Red/Blue Simulation: A 2D torus array, that
is with wrap around, is randomly filled with some red &
blue cells; unoccupied is white. In 1st half step, reds move
right into unoccupied cell; in 2nd half step, blues move
down into unoccupied cell; both happening (legally) is OK;
terminate if occupancy of any 10x10 tile is outside [0.45,
0.55]; tile 0 is A[0..9,0..9]; 1 is A[0..9,10..19]; …

 Write a parallel program for the Red/Blue problem for a
multicore or SMP machine using Pthreads (intro Ch 6);
apply CTA-type analysis, trying to increase locality

4/13/2010 60© 2010 Larry Snyder, CSE

 This program will have a 2 part turn-in

 Part 1: Turn in a brief description (for a human)
saying how your solution will go, and why you
have chosen to do it that way. Rationale is key: “I
will allocate the array as follows … because … .”
Due Sunday (17 APR) by 5:00 PM

 Part 2: Turn in a program with measured
performance, that is, speedup, on a small parallel
machine (CMP, SMP). Due Tuesday (20 APR) by
class; a “flexibility week” is allowed.

4/13/2010 © 2010 Larry Snyder, CSE 61

