
Goal: Understand basic concepts and trade-offs of parallelism 

Question on topic of “no standard parallel model”: 

Sequential computers were quite different originally, 

before one machine (IBM 701) gained widespread 

use. Won’t the widespread use of Intel (or AMD) 

CMPs have that same effect for parallelism?



 Do we think that the multicore processor will 
become the idealized parallel machine in the 
same way the 701 defined the RAM model?
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 The CTA is supposed to guide us in finding 
good computations to run on parallel 
machines

 Using it should

 Aid in producing programs exploiting locality

 Insure the program distributes work ‘well’

 Other features, to be discussed later

 Consider sorting and HW2 …
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 The idea: Create a lot of independent parallel  
work – compare adjacent pairs and exchange 
if out of order – repeating until ordered. Lots 
of parallelism; w.c.  A[0]==max

 Specifically, … for i Odd

 First ‘half step’, compare A[i]:A[i+1], exch if OoO

 Second ‘half step’, compare A[i-1]:A[i], exch if OoO

 If a step has no exchanges, stop
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 General criticisms of this idea –

 Dependences between threads at ½ step size

 Parallel work in a 1/2 step is very modest: one 
compare and (possibly) one exchange

 Though there is n-way parallelism, much is 
probably wasted

 n == P/2 is unlikely 

 Considering the CTA –

 l >> amount of work at each ½ step
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 Clearly, increasing the work at each step is 
smart

 Allocate n/P items per processor

 Extend the comparison …

to

 A value from the neighbor could propagate along
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 Overall logic and analysis
One Step:

get end neighbor value: l

O/E half step: (n/P)c

get end neighbor value: l

E/O half step: (n/P)c

And-reduce over done?: l log P

P0 P1 P2 P3

What is the worst case number of steps?

An Easy Argument: What crosses the midpoint?
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 Task: Recognize the well-formedness of ((xxx))
 An easy sequential solution …

open = 0; // keep count of opens

for (i=0; i<n; i++) { // proceeding L to R

if (A[i] == '(' ) open++; // found one

if (A[i] == ')' ) { // here’s a match

open--;

if (open < 0) break;          // oops, mismatch

}

}
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Does this look totally sequential??



 Allocate a contiguous sequence of symbols to 
a processor

 Each processor gets an ill-formed subsequence

 ( x ) ) ( ( ( x ) x x x ( x ) )

 Begin by resolving locally

 ( x ) ) ( ( ( x ) x x x ( x ) )

Leaving unresolved closes and opens
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P0 P1 P2 P3



 The unresolved values from each subproblem 
produce a similar problem, except optimized

) ( becomes 1 1 and ) ( ( ( ( becomes 1 4

 Adjacent pairs combine their unresolved 
counts to a new pair describing the larger 
sequence:  

1 1 and 1 4 become 1 4

2 4 and 1 2 become 2 5

 Resolved to the root: 0 0 is balanced
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 Allocate contiguous subsequences of size n/P
to each processor, starting with P0

 Sequentially, locally resolve, creating c o cn/P
 Combine pairs to produce new c o descriptors 

by inducing a tree on PE indices: [0-1][2-3] … 
for level 1, [0-3][4-7] … for level 2, etc.

 Log levels of the tree to produce a final 
descriptor: c o cllog2P

 Only a result of 0 0 means balanced
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 First step: Allocated work to processors, 
generally by dividing it evenly

 Next step: Found local, independent work to 
perform

 Next step: Focused on combining 
subproblems into a tree network

 Made correctness and termination conditions 
explicit
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 Controller

 Not strictly needed

 Often available

 How well does

the CTA match other

parallel architectures?

▪ CMPs & SMPs

▪ Clusters

▪ Blue Gene
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 The CTA is a ‘machine model’ – an abstraction
 How can it be wrong?

 Architecture has more features – shared memory

 CTA predicts a certain behavior and features in 
the architecture make the program much faster

 If it mispredicts … it’s in trouble

 Isn’t it a mistake for the CTA to ignore all the 
great stuff architects put in a processor
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The CTA focuses on the parts that matter



 Why should we believe it’s right?

 In his thesis (1993) Calvin Lin did a careful study of 
using the CTA as a programming model against the 
models used by others (whatever they were)

▪ CTA consistently pointed programmers to better solutions

▪ The CTA’s effectiveness was independent of architecture

▪ The apparent value of the model is emphasizing locality –
always a benefit in computing

 The greatest value of the CTA would be if it is 
the basis for parallel programming languages
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 A thread consists of program code, a 
program counter, call stack, and a small 
amount of thread-specific data
 Threads share access to memory (and the file 

system) with other threads

 Threads communicate through the shared 
memory

 Though it may seem odd, apply the CTA model to 
thread programming -- emphasize locality, expect 
sharing to cost plenty

Threads are familiar, but don’t use std model
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 A process is a thread in its own private 
address space

 Processes do not communicate through shared 
memory, but need another mechanism like 
message passing

 Key issue: How is the problem divided among the 
processes, which includes data and work

 Processes (logically subsume) threads
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 Both have code, PC, call stack, local data

 Threads -- One address space

 Processes -- Separate address spaces

 Weight and Agility

 Threads: lighter weight, faster to setup, tear 
down, more dynamic

 Processes: heavier weight, setup and tear down 
more time consuming, communication is slower

Mostly we use ‘thread’ & ‘process’ interchangeably
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 Terms used to refer to a unit of parallel 
computation include: thread, process, 
processor, …

 Technically, thread and process are SW, processor 
(including SMT) is HW

 Usually, it doesn’t matter

 I will (try to) use “thread/process” for logical 
parallelism, and “processor” when I mean physical 
parallelism

4/13/2010 19© 2010 Larry Snyder, CSE



 Naïvely, many people think that applying P
processors to a T time computation will result 
in T/P time performance

 Generally wrong
 For a few problems (Monte Carlo) it is possible to 

apply more processors directly to the solution

 For most problems, using P processors requires a 
paradigm shift

 Assume “P processors => T/P time” to be the 
best case possible
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 (Because of the presumed paradigm shift) the 
sequential and parallel solutions differ so we do not 
expect a simple performance relationship between 
the two 
 More or fewer instructions must be executed

 Examples of other differences
 The hardware is different

 Parallel solution has difficult-to-quantify costs such as 
communication time, wait time, etc. that the serial 
solution does not have
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 To implement parallel computations requires 
overhead that sequential computations do 
not need
 All costs associated with communication are 

overhead: locks, cache flushes, coherency, 
message passing protocols, etc.

 All costs associated with thread/process setup

 Lost optimizations -- many compiler 
optimizations not available in parallel setting
▪ Instruction reordering
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 Threads and processes incur overhead

 Obviously, the cost of creating a thread or process must 
be recovered through parallel performance:

(t1 + osu + otd + cost(t2))/2 < t2

Thread

Process

Setup Tear down

tp = p proc execution time

osu = setup, otd = tear down

cost(t2) = all other || costs
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 Redundant execution can avoid 
communication -- a parallel optimization

New random number needed for loop iteration: 

(a) Generate one copy, have all threads ref it 

… requires communication

(b) Communicate seed once, then each thread 

generates its own random number … removes 

communication and gets parallelism, but by 

increasing instruction load

A common (and recommended) programming trick
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 Searches illustrate the possibility of parallelism 
requiring fewer instructions

 Independently searching subtrees means an item is 
likely to be found faster than sequential
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 Sequential hardware ≠ parallel hardware

 There is more parallel hardware, e.g. memory

 There is more cache on parallel machines

 Sequential computer ≠ 1 processor of || computer, 
because of coherence hw, power, etc.

▪ Important in multicore context

 Parallel channels to disk, possibly

?

These differences tend to favor || machine
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 Additional cache is an advantage of ||ism

 The effect is to make execution time < T/P
because data (& program) memory 
references are faster

 Cache-effects help mitigate other || costs

PS P0 P1 P2 P3

vs
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 Wait: All computations must wait at points, 
but serial computation waits are well known

 Parallel waiting …

 For serialization to assure correctness

 Congestion in communication facilities

▪ Bus contention; network congestion; etc.

 Stalls: data not available/recipient busy

 These costs are generally time-dependent, 
implying that they are highly variable
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 Applying P processors to a problem with a 
time T (serial) solution can be either …
better or worse … 

 It’s up to programmers to exploit the 
advantages and avoid the disadvantages
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 If 1/S of a computation is inherently 
sequential, then the maximum performance 
improvement is limited to a factor of S

TP = 1/S ×TS + (1-1/S) ×TS / P

 Amdahl’s Law, like the Law of Supply and 
Demand, is a fact

Gene Amdahl -- IBM Mainframe Architect

TS=sequential time

TP=parallel time

P =no. processors
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 Consider the equation

 With no charge for || costs, let P  then TP
 1/S  TS

 Amdahl’s Law applies to problem instances

TP = 1/S × TS + (1-1/S) × TS / P

The best parallelism can do to is to eliminate the 
parallelizable work; the sequential work remains

Parallelism seemingly has little potential
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 Amdahl’s Law assumes a fixed problem 
instance: Fixed n, fixed input, perfect 
speedup

 The algorithm can change to become more ||

 Problem instances grow implying proportion of 
work that is sequential may be smaller %

 … Many, many realities including parallelism in 
‘sequential’ execution imply analysis is simplistic 

 Amdahl is a fact; it’s not a show-stopper
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 As an artifact of P-completeness theory, we 
have the idea of Inherently Sequential --
computations not appreciably improved by 
parallelism

 Probably not much of a limitation

Circuit Value Problem: 
Given a circuit  over Boolean inputs, values b1, …, bn and 
designated output value y, is the circuit true for y? 
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 Latency -- time required before a requested 
value is available

 Latency, measured in seconds; called transmit 
time or execution time or just time

 Throughput -- amount of work completed in 
a given amount of time

 Throughput, measured in “work”/sec, where 
“work” can be bits, instructions, jobs, etc.; also 
called bandwidth in communication

Both terms apply to computing and communications
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 Reducing latency (execution time) is a 
principal goal of parallelism

 There is upper limit on reducing latency

 Speed of light, esp. for bit transmissions

 In networks, switching time (node latency)

 (Clock rate) x (issue width), for instructions

 Diminishing returns (overhead) for problem 
instances

Hitting the upper limit is rarely a worry
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 Throughput improvements are often easier to 
achieve by adding hardware

 More wires improve bits/second

 Use processors to run separate jobs

 Pipelining is a powerful technique to execute more (serial) 
operations in unit time

timein
s
tru

c
tio

n
s

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Better throughput often hyped as if better latency
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 Reduce wait times by switching to work on 
different operation (multithreading)
 Old idea, dating back to Multics

 In parallel computing it’s called latency hiding
 Idea most often used to lower impact of  l cost
 Have many threads ready to go …

 Execute a thread until it makes nonlocal ref

 Switch to next thread

 When nonlocal ref is filled, add to ready list

See discussion from Part II
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 Latency hiding requires …

 Consistently large supply of threads ~ le

where e = average # cycles between nonlocal refs

 Enough network throughput to have many requests in the air 
at once

 Latency hiding has been claimed to make shared 
memory feasible in the presence of large l

t1
t2

t3
t4

t5
t1

Nonlocal data

reference time

There are difficulties
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 Challenges to supporting shared memory
 Threads must be numerous, and the shorter the 

interval between nonlocal refs, the more
▪ Running out of threads stalls the processor

 Context switching to next thread has overhead
▪ Many hardware contexts -- or --

▪ Waste time storing and reloading context

 Tension between latency hiding & caching
▪ Shared data must still be protected somehow

 Other technical issues
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 Contention -- the action of one processor interferes 
with another processor’s actions -- is an elusive 
quantity

 Lock contention: One processor’s lock stops other processors 
from referencing; they must wait

 Bus contention: Bus wires are in use by one processor’s 
memory reference

 Network contention: Wires are in use by one packet, blocking 
other packets

 Bank contention: Multiple processors try to access different 
locations on one memory chip simultaneously

Contention is very time dependent, that is, variable
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 Load imbalance, work not evenly assigned to 
the processors, underutilizes parallelism
 The assignment of work, not data, is key

 Static assignments, being rigid, are more prone to 
imbalance

 Because dynamic assignment carries overhead, 
the quantum of work must be large enough to 
amortize the overhead

 With flexible allocations, load balance can be 
solved late in the design programming cycle
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 Performance is maximized if processors 
execute continuously on local data without 
interacting with other processors

 To unify the ways in which processors could 
interact, we adopt the concept of dependence

 A dependence is an ordering relationship 
between two computations

▪ Dependences are usually induced by read/write

▪ Dependences that cross process boundaries induce a 
need to synchronize the threads 

Dependences are well-studied in compilers
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 Dependences are orderings that must be 
maintained to guarantee correctness

 Flow-dependence: read after write

 Anti-dependence: write after read

 Output-dependence: write after write

 True dependences affect correctness
 False dependences arise from memory reuse

True

False

False
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 Both true and false dependences
1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;
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 Both true and false dependences

 Flow-dependence read after write; must be 
preserved for correctness

 Anti-dependence write after read; can be 
eliminated with additional memory

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;
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 Change variable names

1. first_sum = a + 1;

2. first_term = first_sum * scale1;

3. second_sum = b + 1;

4. second_term = second_sum * scale2;

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;
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 Granularity is used in many contexts…here 
granularity is the amount of work between 
cross-processor dependences

 Important because interactions usually cost

 Generally, larger grain is better

+ fewer interactions, more local work

- can lead to load imbalance

 Batching is an effective way to increase grain
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 The CTA motivates us to maximize locality

 Caching is the traditional way to exploit locality … 
but it doesn’t translate directly to ||ism

 Redesigning algorithms for parallel execution 
often means repartitioning to increase locality

 Locality often requires redundant storage and 
redundant computation, but in limited quantities 
they help
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 Execution time … what’s time?

 ‘Wall clock’ time

 Processor execution time

 System time

 Paging and caching can affect time

 Cold start vs warm start

 Conflicts w/ other users/system components
 Measure kernel or whole program
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 Floating Point Operations Per Second is a 
common measurement for scientific pgms

 Even scientific computations use many ints

 Results can often be influenced by small, low-level 
tweaks having little generality: mult/add

 Translates poorly across machines because it is 
hardware dependent

 Limited application … but it won’t go away!
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 Speedup is the factor of improvement for P
processors: TS/TP

0

Processors

Performance

640

Program1

Program2

48

Speedup

Efficiency =

Speedup/P
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 Speedup is best applied when hardware is 
constant, or for family within a generation

 Need to have computation, communication in 
same ratio

 Great sensitivity to the TS value

▪ TS should be time of best sequential program on 1 
processor of the ||-machine

▪ TP=1   TS Measures relative speedup

Relative speedup is often important 
but it must be labeled as such
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 As P increases, the amount of work per 
processor diminishes, often below the amt 
needed to amortize costs

 Speedup curves bend down
 Scaled speedup keeps 

the work per processor
constant, allowing other 
effects to be seen

 Both are important

0

Processors

Performance

640

Program1

Program2

48

Speedup

If not stated, speedup 
is fixed speedup
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 The sequential computation should not be 
charged for any || costs … consider

 If referencing memory in other processors 
takes time (l) and data is distributed, then 
one processor solving the problem results in 
greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems
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 Cases arise when sequential doesn’t fit in 1 
processor of parallel machine

 Best solution is relative speed-up

 Measure Tp=smallest possible

 Measure TP, compute Tp/TP as having P/p
potential improvement 
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 Many issues regarding parallelism have been 
introduced, but they require further 
discussion … we will return to them when 
they are relevant
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 Amdahl’s Law is a fact but it doesn’t impede 
us much

 Inherently sequential problems (probably) 
exist, but they don’t impede us either

 Latency hiding could hide the impact of l
with sufficiently many threads and much 
(interconnection) bandwidth

 Impediments to parallel speedup are 
numerous: overhead, contention, inherently 
sequential code, waiting time, etc.
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 Concerns while parallel programming are also 
numerous: locality, granularity, dependences 
(both true and false), load balance, etc.

 Happily: Parallel and sequential computers 
are different: More hardware means more 
fast memory (cache, RAM), implying the 
possibility of superlinear speedup

 Measuring improvement is complicated
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 Consider the Red/Blue Simulation: A 2D torus array, that 
is with wrap around, is randomly filled with some red & 
blue cells; unoccupied is white. In 1st half step, reds move 
right into unoccupied cell; in 2nd half step, blues move 
down into unoccupied cell; both happening (legally) is OK; 
terminate if occupancy of any 10x10 tile is outside [0.45, 
0.55]; tile 0 is A[0..9,0..9]; 1 is  A[0..9,10..19]; …

 Write a parallel program for the Red/Blue problem for a 
multicore or SMP machine using Pthreads (intro Ch 6); 
apply CTA-type analysis, trying to increase locality
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 This program will have a 2 part turn-in

 Part 1: Turn in a brief description (for a human) 
saying how your solution will go, and why you 
have chosen to do it that way. Rationale is key: “I 
will allocate the array as follows … because … .” 
Due Sunday (17 APR) by 5:00 PM

 Part 2: Turn in a program with measured 
performance, that is, speedup, on a small parallel 
machine (CMP, SMP). Due Tuesday (20 APR) by 
class; a “flexibility week” is allowed.
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