
Goal: Understand basic concepts and trade-offs of parallelism 

Question on topic of “no standard parallel model”: 

Sequential computers were quite different originally, 

before one machine (IBM 701) gained widespread 

use. Won’t the widespread use of Intel (or AMD) 

CMPs have that same effect for parallelism?



 Do we think that the multicore processor will 
become the idealized parallel machine in the 
same way the 701 defined the RAM model?

4/13/2010 © 2010 Larry Snyder, CSE 2



 The CTA is supposed to guide us in finding 
good computations to run on parallel 
machines

 Using it should

 Aid in producing programs exploiting locality

 Insure the program distributes work ‘well’

 Other features, to be discussed later

 Consider sorting and HW2 …
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 The idea: Create a lot of independent parallel  
work – compare adjacent pairs and exchange 
if out of order – repeating until ordered. Lots 
of parallelism; w.c.  A[0]==max

 Specifically, … for i Odd

 First ‘half step’, compare A[i]:A[i+1], exch if OoO

 Second ‘half step’, compare A[i-1]:A[i], exch if OoO

 If a step has no exchanges, stop
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 General criticisms of this idea –

 Dependences between threads at ½ step size

 Parallel work in a 1/2 step is very modest: one 
compare and (possibly) one exchange

 Though there is n-way parallelism, much is 
probably wasted

 n == P/2 is unlikely 

 Considering the CTA –

 l >> amount of work at each ½ step
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 Clearly, increasing the work at each step is 
smart

 Allocate n/P items per processor

 Extend the comparison …

to

 A value from the neighbor could propagate along
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 Overall logic and analysis
One Step:

get end neighbor value: l

O/E half step: (n/P)c

get end neighbor value: l

E/O half step: (n/P)c

And-reduce over done?: l log P

P0 P1 P2 P3

What is the worst case number of steps?

An Easy Argument: What crosses the midpoint?
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 Task: Recognize the well-formedness of ((xxx))
 An easy sequential solution …

open = 0; // keep count of opens

for (i=0; i<n; i++) { // proceeding L to R

if (A[i] == '(' ) open++; // found one

if (A[i] == ')' ) { // here’s a match

open--;

if (open < 0) break;          // oops, mismatch

}

}
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 Allocate a contiguous sequence of symbols to 
a processor

 Each processor gets an ill-formed subsequence

 ( x ) ) ( ( ( x ) x x x ( x ) )

 Begin by resolving locally

 ( x ) ) ( ( ( x ) x x x ( x ) )

Leaving unresolved closes and opens
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 The unresolved values from each subproblem 
produce a similar problem, except optimized

) ( becomes 1 1 and ) ( ( ( ( becomes 1 4

 Adjacent pairs combine their unresolved 
counts to a new pair describing the larger 
sequence:  

1 1 and 1 4 become 1 4

2 4 and 1 2 become 2 5

 Resolved to the root: 0 0 is balanced
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 Allocate contiguous subsequences of size n/P
to each processor, starting with P0

 Sequentially, locally resolve, creating c o cn/P
 Combine pairs to produce new c o descriptors 

by inducing a tree on PE indices: [0-1][2-3] … 
for level 1, [0-3][4-7] … for level 2, etc.

 Log levels of the tree to produce a final 
descriptor: c o cllog2P

 Only a result of 0 0 means balanced
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 First step: Allocated work to processors, 
generally by dividing it evenly

 Next step: Found local, independent work to 
perform

 Next step: Focused on combining 
subproblems into a tree network

 Made correctness and termination conditions 
explicit
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 Controller

 Not strictly needed

 Often available

 How well does

the CTA match other

parallel architectures?

▪ CMPs & SMPs

▪ Clusters

▪ Blue Gene
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 The CTA is a ‘machine model’ – an abstraction
 How can it be wrong?

 Architecture has more features – shared memory

 CTA predicts a certain behavior and features in 
the architecture make the program much faster

 If it mispredicts … it’s in trouble

 Isn’t it a mistake for the CTA to ignore all the 
great stuff architects put in a processor
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 Why should we believe it’s right?

 In his thesis (1993) Calvin Lin did a careful study of 
using the CTA as a programming model against the 
models used by others (whatever they were)

▪ CTA consistently pointed programmers to better solutions

▪ The CTA’s effectiveness was independent of architecture

▪ The apparent value of the model is emphasizing locality –
always a benefit in computing

 The greatest value of the CTA would be if it is 
the basis for parallel programming languages
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 A thread consists of program code, a 
program counter, call stack, and a small 
amount of thread-specific data
 Threads share access to memory (and the file 

system) with other threads

 Threads communicate through the shared 
memory

 Though it may seem odd, apply the CTA model to 
thread programming -- emphasize locality, expect 
sharing to cost plenty

Threads are familiar, but don’t use std model
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 A process is a thread in its own private 
address space

 Processes do not communicate through shared 
memory, but need another mechanism like 
message passing

 Key issue: How is the problem divided among the 
processes, which includes data and work

 Processes (logically subsume) threads
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 Both have code, PC, call stack, local data

 Threads -- One address space

 Processes -- Separate address spaces

 Weight and Agility

 Threads: lighter weight, faster to setup, tear 
down, more dynamic

 Processes: heavier weight, setup and tear down 
more time consuming, communication is slower

Mostly we use ‘thread’ & ‘process’ interchangeably
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 Terms used to refer to a unit of parallel 
computation include: thread, process, 
processor, …

 Technically, thread and process are SW, processor 
(including SMT) is HW

 Usually, it doesn’t matter

 I will (try to) use “thread/process” for logical 
parallelism, and “processor” when I mean physical 
parallelism
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 Naïvely, many people think that applying P
processors to a T time computation will result 
in T/P time performance

 Generally wrong
 For a few problems (Monte Carlo) it is possible to 

apply more processors directly to the solution

 For most problems, using P processors requires a 
paradigm shift

 Assume “P processors => T/P time” to be the 
best case possible
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 (Because of the presumed paradigm shift) the 
sequential and parallel solutions differ so we do not 
expect a simple performance relationship between 
the two 
 More or fewer instructions must be executed

 Examples of other differences
 The hardware is different

 Parallel solution has difficult-to-quantify costs such as 
communication time, wait time, etc. that the serial 
solution does not have
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 To implement parallel computations requires 
overhead that sequential computations do 
not need
 All costs associated with communication are 

overhead: locks, cache flushes, coherency, 
message passing protocols, etc.

 All costs associated with thread/process setup

 Lost optimizations -- many compiler 
optimizations not available in parallel setting
▪ Instruction reordering
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 Threads and processes incur overhead

 Obviously, the cost of creating a thread or process must 
be recovered through parallel performance:

(t1 + osu + otd + cost(t2))/2 < t2

Thread

Process

Setup Tear down

tp = p proc execution time

osu = setup, otd = tear down

cost(t2) = all other || costs
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 Redundant execution can avoid 
communication -- a parallel optimization

New random number needed for loop iteration: 

(a) Generate one copy, have all threads ref it 

… requires communication

(b) Communicate seed once, then each thread 

generates its own random number … removes 

communication and gets parallelism, but by 

increasing instruction load

A common (and recommended) programming trick
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 Searches illustrate the possibility of parallelism 
requiring fewer instructions

 Independently searching subtrees means an item is 
likely to be found faster than sequential
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 Sequential hardware ≠ parallel hardware

 There is more parallel hardware, e.g. memory

 There is more cache on parallel machines

 Sequential computer ≠ 1 processor of || computer, 
because of coherence hw, power, etc.

▪ Important in multicore context

 Parallel channels to disk, possibly

?

These differences tend to favor || machine
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 Additional cache is an advantage of ||ism

 The effect is to make execution time < T/P
because data (& program) memory 
references are faster

 Cache-effects help mitigate other || costs

PS P0 P1 P2 P3

vs
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 Wait: All computations must wait at points, 
but serial computation waits are well known

 Parallel waiting …

 For serialization to assure correctness

 Congestion in communication facilities

▪ Bus contention; network congestion; etc.

 Stalls: data not available/recipient busy

 These costs are generally time-dependent, 
implying that they are highly variable
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 Applying P processors to a problem with a 
time T (serial) solution can be either …
better or worse … 

 It’s up to programmers to exploit the 
advantages and avoid the disadvantages
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 If 1/S of a computation is inherently 
sequential, then the maximum performance 
improvement is limited to a factor of S

TP = 1/S ×TS + (1-1/S) ×TS / P

 Amdahl’s Law, like the Law of Supply and 
Demand, is a fact

Gene Amdahl -- IBM Mainframe Architect

TS=sequential time

TP=parallel time

P =no. processors
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 Consider the equation

 With no charge for || costs, let P  then TP
 1/S  TS

 Amdahl’s Law applies to problem instances

TP = 1/S × TS + (1-1/S) × TS / P

The best parallelism can do to is to eliminate the 
parallelizable work; the sequential work remains

Parallelism seemingly has little potential
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 Amdahl’s Law assumes a fixed problem 
instance: Fixed n, fixed input, perfect 
speedup

 The algorithm can change to become more ||

 Problem instances grow implying proportion of 
work that is sequential may be smaller %

 … Many, many realities including parallelism in 
‘sequential’ execution imply analysis is simplistic 

 Amdahl is a fact; it’s not a show-stopper
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 As an artifact of P-completeness theory, we 
have the idea of Inherently Sequential --
computations not appreciably improved by 
parallelism

 Probably not much of a limitation

Circuit Value Problem: 
Given a circuit  over Boolean inputs, values b1, …, bn and 
designated output value y, is the circuit true for y? 
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 Latency -- time required before a requested 
value is available

 Latency, measured in seconds; called transmit 
time or execution time or just time

 Throughput -- amount of work completed in 
a given amount of time

 Throughput, measured in “work”/sec, where 
“work” can be bits, instructions, jobs, etc.; also 
called bandwidth in communication

Both terms apply to computing and communications
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 Reducing latency (execution time) is a 
principal goal of parallelism

 There is upper limit on reducing latency

 Speed of light, esp. for bit transmissions

 In networks, switching time (node latency)

 (Clock rate) x (issue width), for instructions

 Diminishing returns (overhead) for problem 
instances

Hitting the upper limit is rarely a worry
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 Throughput improvements are often easier to 
achieve by adding hardware

 More wires improve bits/second

 Use processors to run separate jobs

 Pipelining is a powerful technique to execute more (serial) 
operations in unit time

timein
s
tru

c
tio

n
s

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Better throughput often hyped as if better latency
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 Reduce wait times by switching to work on 
different operation (multithreading)
 Old idea, dating back to Multics

 In parallel computing it’s called latency hiding
 Idea most often used to lower impact of  l cost
 Have many threads ready to go …

 Execute a thread until it makes nonlocal ref

 Switch to next thread

 When nonlocal ref is filled, add to ready list

See discussion from Part II
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 Latency hiding requires …

 Consistently large supply of threads ~ le

where e = average # cycles between nonlocal refs

 Enough network throughput to have many requests in the air 
at once

 Latency hiding has been claimed to make shared 
memory feasible in the presence of large l

t1
t2

t3
t4

t5
t1

Nonlocal data

reference time

There are difficulties
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 Challenges to supporting shared memory
 Threads must be numerous, and the shorter the 

interval between nonlocal refs, the more
▪ Running out of threads stalls the processor

 Context switching to next thread has overhead
▪ Many hardware contexts -- or --

▪ Waste time storing and reloading context

 Tension between latency hiding & caching
▪ Shared data must still be protected somehow

 Other technical issues
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 Contention -- the action of one processor interferes 
with another processor’s actions -- is an elusive 
quantity

 Lock contention: One processor’s lock stops other processors 
from referencing; they must wait

 Bus contention: Bus wires are in use by one processor’s 
memory reference

 Network contention: Wires are in use by one packet, blocking 
other packets

 Bank contention: Multiple processors try to access different 
locations on one memory chip simultaneously

Contention is very time dependent, that is, variable
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 Load imbalance, work not evenly assigned to 
the processors, underutilizes parallelism
 The assignment of work, not data, is key

 Static assignments, being rigid, are more prone to 
imbalance

 Because dynamic assignment carries overhead, 
the quantum of work must be large enough to 
amortize the overhead

 With flexible allocations, load balance can be 
solved late in the design programming cycle
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 Performance is maximized if processors 
execute continuously on local data without 
interacting with other processors

 To unify the ways in which processors could 
interact, we adopt the concept of dependence

 A dependence is an ordering relationship 
between two computations

▪ Dependences are usually induced by read/write

▪ Dependences that cross process boundaries induce a 
need to synchronize the threads 

Dependences are well-studied in compilers
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 Dependences are orderings that must be 
maintained to guarantee correctness

 Flow-dependence: read after write

 Anti-dependence: write after read

 Output-dependence: write after write

 True dependences affect correctness
 False dependences arise from memory reuse

True

False

False
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 Both true and false dependences
1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;
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 Both true and false dependences

 Flow-dependence read after write; must be 
preserved for correctness

 Anti-dependence write after read; can be 
eliminated with additional memory

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;
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 Change variable names

1. first_sum = a + 1;

2. first_term = first_sum * scale1;

3. second_sum = b + 1;

4. second_term = second_sum * scale2;

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;
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 Granularity is used in many contexts…here 
granularity is the amount of work between 
cross-processor dependences

 Important because interactions usually cost

 Generally, larger grain is better

+ fewer interactions, more local work

- can lead to load imbalance

 Batching is an effective way to increase grain
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 The CTA motivates us to maximize locality

 Caching is the traditional way to exploit locality … 
but it doesn’t translate directly to ||ism

 Redesigning algorithms for parallel execution 
often means repartitioning to increase locality

 Locality often requires redundant storage and 
redundant computation, but in limited quantities 
they help

4/13/2010 49© 2010 Larry Snyder, CSE



 Execution time … what’s time?

 ‘Wall clock’ time

 Processor execution time

 System time

 Paging and caching can affect time

 Cold start vs warm start

 Conflicts w/ other users/system components
 Measure kernel or whole program
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 Floating Point Operations Per Second is a 
common measurement for scientific pgms

 Even scientific computations use many ints

 Results can often be influenced by small, low-level 
tweaks having little generality: mult/add

 Translates poorly across machines because it is 
hardware dependent

 Limited application … but it won’t go away!
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 Speedup is the factor of improvement for P
processors: TS/TP

0

Processors

Performance

640

Program1

Program2

48

Speedup

Efficiency =

Speedup/P
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 Speedup is best applied when hardware is 
constant, or for family within a generation

 Need to have computation, communication in 
same ratio

 Great sensitivity to the TS value

▪ TS should be time of best sequential program on 1 
processor of the ||-machine

▪ TP=1   TS Measures relative speedup

Relative speedup is often important 
but it must be labeled as such
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 As P increases, the amount of work per 
processor diminishes, often below the amt 
needed to amortize costs

 Speedup curves bend down
 Scaled speedup keeps 

the work per processor
constant, allowing other 
effects to be seen

 Both are important

0

Processors

Performance

640

Program1

Program2

48

Speedup

If not stated, speedup 
is fixed speedup
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 The sequential computation should not be 
charged for any || costs … consider

 If referencing memory in other processors 
takes time (l) and data is distributed, then 
one processor solving the problem results in 
greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems
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 Cases arise when sequential doesn’t fit in 1 
processor of parallel machine

 Best solution is relative speed-up

 Measure Tp=smallest possible

 Measure TP, compute Tp/TP as having P/p
potential improvement 
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 Many issues regarding parallelism have been 
introduced, but they require further 
discussion … we will return to them when 
they are relevant
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 Amdahl’s Law is a fact but it doesn’t impede 
us much

 Inherently sequential problems (probably) 
exist, but they don’t impede us either

 Latency hiding could hide the impact of l
with sufficiently many threads and much 
(interconnection) bandwidth

 Impediments to parallel speedup are 
numerous: overhead, contention, inherently 
sequential code, waiting time, etc.
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 Concerns while parallel programming are also 
numerous: locality, granularity, dependences 
(both true and false), load balance, etc.

 Happily: Parallel and sequential computers 
are different: More hardware means more 
fast memory (cache, RAM), implying the 
possibility of superlinear speedup

 Measuring improvement is complicated
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 Consider the Red/Blue Simulation: A 2D torus array, that 
is with wrap around, is randomly filled with some red & 
blue cells; unoccupied is white. In 1st half step, reds move 
right into unoccupied cell; in 2nd half step, blues move 
down into unoccupied cell; both happening (legally) is OK; 
terminate if occupancy of any 10x10 tile is outside [0.45, 
0.55]; tile 0 is A[0..9,0..9]; 1 is  A[0..9,10..19]; …

 Write a parallel program for the Red/Blue problem for a 
multicore or SMP machine using Pthreads (intro Ch 6); 
apply CTA-type analysis, trying to increase locality

4/13/2010 60© 2010 Larry Snyder, CSE



 This program will have a 2 part turn-in

 Part 1: Turn in a brief description (for a human) 
saying how your solution will go, and why you 
have chosen to do it that way. Rationale is key: “I 
will allocate the array as follows … because … .” 
Due Sunday (17 APR) by 5:00 PM

 Part 2: Turn in a program with measured 
performance, that is, speedup, on a small parallel 
machine (CMP, SMP). Due Tuesday (20 APR) by 
class; a “flexibility week” is allowed.
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