Question on topic of “no standard parallel model”:
Sequential computers were quite different originally,
before one machine (IBM 701) gained widespread
use. Won't the widespread use of Intel (or AMD)
CMPs have that same effect for parallelism?

Part lll: Concepts

Goal: Understand basic concepts and trade-offs of parallelism

Discuss ...

Do we think that the multicore processor will
become the idealized parallel machine in the
same way the 701 defined the RAM model?

4/13/2010 © 2010 Larry Snyder, CSE 2

Finishing the Discussion on CTA

The CTA is supposed to guide us in finding

good computations to run on parallel
machines

Using it should
Aid in producing programs exploiting locality
Insure the program distributes work ‘well’

Other features, to be discussed later
Consider sorting and HW2 ...

4/13/2010 © 2010 Larry Snyder, CSE

Odd/Even Sort...A Good || Solution?

The idea: Create a lot of independent parallel
work —compare adjacent pairs and exchange
if out of order — repeating until ordered. Lots
of parallelism; w.c. A[o]==max
Specifically, ... for i Odd
First ‘half step’, compare A[i]:A[i+1], exch if 00O
Second ‘half step’, compare A[i-1]:A[i], exch if OoO
If a step has no exchanges, stop

4/13/2010 © 2010 Larry Snyder, CSE 4

Thinking Realistically ...

General criticisms of this idea —
Dependences between threads at V2 step size

Parallel work in a 1/2 step is very modest: one
compare and (possibly) one exchange

Though there is n-way parallelism, much is
probably wasted

n == P/2is unlikely
Considering the CTA —

A >>amount of work at each V2 step

4/13/2010 © 2010 Larry Snyder, CSE

To Revise the Idea

Clearly, increasing the work at each step is
smart

Allocate n/P items per processor
Extend the comparison ...

to
i)) i

A value from the neighbor could propagate along

4/13/2010 © 2010 Larry Snyder, CSE 6

O/E - E/O Sort

Overall logic and analysis

One Step:
get end neighbor value: A
O/E half step: (n/P)c
get end neighbor value: A
E/O half step: (n/P)c
And-reduce over done?: AlogP

Py Py P, P

What is the worst case number of steps? '
An Easy Argument: What crosses the midpoint? '

4/13/2010 © 2010 Larry Snyder, CSE 7

Considering HW2

Task: Recognize the well-formedness of ((xxx))
An easy sequential solution ...

open = o; /| keep count of opens
for (i=o; i<n; i++) § /[proceeding L toR
if (A[il=="(") open++; /[found one
if (A[i]==""){ /[here’s a match
open--;
if (open < o) break; /[oops, mismatch
5

5

4/13/2010 © 2010 Larry Snyder, CSE 8

Proceeding As Usual

Allocate a contiguous sequence of symbols to
a processor

Py Py P, P

Each processor gets an ill-formed subsequence

(%)) (((x)xxx(x))
Begin by resolving locally

) (Lo

Leaving unresolved closes and opens

4/13/2010 © 2010 Larry Snyder, CSE 9

The Global Steps

The unresolved values from each subproblem
produce a similar problem, except optimized
) (becomesi11and) ((((becomesiy

Adjacent pairs combine their unresolved
counts to a new pair describing the larger
sequence:

11and 14 become1y

2 4and 12 become2g
Resolved to the root: 0 0 is balanced

4/13/2010 © 2010 Larry Snyder, CSE 10

Summarizing the Solution

Allocate contiguous subsequences of size n/P
to each processor, starting with P,
Sequentially, locally resolve, creating co
Combine pairs to produce new c o descriptors
by inducing a tree on PE indices: [0-1][2-3] ...
forlevel 1, [0-3][4-7] ... for level 2, etc.

Log levels of the tree to produce a final
descriptor: co

Only a result of o o means balanced

4/13/2010 © 2010 Larry Snyder, CSE 11

Where Was The Focus?

First step: Allocated work to processors,
generally by dividing it evenly

Next step: Found local, independent work to
perform

Next step: Focused on combining
subproblems into a tree network

Made correctness and termination conditions
explicit

4/13/2010 © 2010 Larry Snyder, CSE 12

Completing the CTA Discussion

Controller RAM |

Not strictly needed

Often available

RAM RAM

RAM | ...

[N/

\ /

\

How well does

Interconnection Network

the CTA match other

parallel architectures?
CMPs & SMPs
Clusters
Blue Gene

4/13/2010 © 2010 Larry Snyder, CSE

13

Precision of the CTA

The CTA is a ‘machine model’ — an abstraction
How can it be wrong?
Architecture has more features — shared memory

CTA predicts a certain behavior and features in
the architecture make the program much faster

If it mispredicts ... it's in trouble
Isn’t it a mistake for the CTA to ignore all the
great stuff architects put in a processor

4/13/2010 © 2010 Larry Snyder, CSE 14

Using the CTA

Why should we believe it's right?

In his thesis (1993) Calvin Lin did a careful study of
using the CTA as a programming model against the
models used by others (whatever they were)
CTA consistently pointed programmers to better solutions
The CTA's effectiveness was independent of architecture

The apparent value of the model is emphasizing locality —
always a benefit in computing

The greatest value of the CTA would be if it is
the basis for parallel programming languages

4/13/2010 © 2010 Larry Snyder, CSE 15

Threads

A thread consists of program code, a
program counter, call stack, and a small
amount of thread-specific data

Threads share access to memory (and the file
system) with other threads

Threads communicate through the shared
memory

Though it may seem odd, apply the CTA model to
thread programming -- emphasize locality, expect
sharing to cost plenty

4/13/2010 © 2010 Larry Snyder, CSE 16

Processes

A process is a thread in its own private
address space
Processes do not communicate through shared

memory, but need another mechanism like
message passing

Key issue: How is the problem divided among the
orocesses, which includes data and work

Processes (logically subsume) threads

4/13/2010 © 2010 Larry Snyder, CSE 17

Compare Threads & Processes

Both have code, PC, call stack, local data
Threads -- One address space
Processes -- Separate address spaces
Weight and Agility
Threads: lighter weight, faster to setup, tear
down, more dynamic

Processes: heavier weight, setup and tear down
more time consuming, communication is slower

4/13/2010 © 2010 Larry Snyder, CSE 18

Terminology

Terms used to refer to a unit of parallel

computation include: thread, process,
processor, ...

Technically, thread and process are SW, processor
(including SMT) is HW
Usually, it doesn’t matter

will (try to) use “thread/process” for logical

parallelism, and “processor” when | mean physical
parallelism

4/13/2010 © 2010 Larry Snyder, CSE 19

Parallelism vs Performance

Naively, many people think that applying P
processors to a T time computation will result
in T/P time performance

Generally wrong

For a few problems (Monte Carlo) it is possible to
apply more processors directly to the solution

For most problems, using P processors requires a
paradigm shift

Assume "“P processors =>T/P time” to be the
best case possible

4/13/2010 © 2010 Larry Snyder, CSE 20

Better Intuition

(Because of the presumed paradigm shift) the
sequential and parallel solutions differ so we do not
expect a simple performance relationship between
the two

More or fewer instructions must be executed
Examples of other differences

The hardware is different

Parallel solution has difficult-to-quantify costs such as
communication time, wait time, etc. that the serial
solution does not have

4/13/2010 © 2010 Larry Snyder, CSE 21

More Instructions Needed

To implement parallel computations requires
overhead that sequential computations do
not need

All costs associated with communication are

overhead: locks, cache flushes, coherency,
message passing protocols, etc.

All costs associated with thread/process setup

Lost optimizations -- many compiler
optimizations not available in parallel setting

Instruction reordering

4/13/2010 © 2010 Larry Snyder, CSE 22

Performance Loss: Overhead

Threads and processes incur overhead

O

Thread

\T
Setu ear down
P ~.,

Process

bviously, the cost of creating a thread or process must

be recovered through parallel performance:

(t,+o0,,+ o0, +cCost(t,)))2<t,

4/13/2010

t, = p proc execution time
0., = Ssetup, 0,4 = tear down
cost(t,) = all other || costs

© 2010 Larry Snyder, CSE 23

More Instructions (Continued)

Redundant execution can avoid
communication -- a parallel optimization

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it
... requires communication
(b) Communicate seed once, then each thread
generates its own random number ... removes
communication and gets parallelism, but by
Increasing instruction load

4/13/2010 © 2010 Larry Snyder, CSE 24

Fewer Instructions

Searches illustrate the possibility of parallelism
requiring fewer instructions

Independently searching subtrees means an item is
likely to be found faster than sequential

4/13/2010 © 2010 Larry Snyder, CSE 25

One vs Many

Sequential hardware # parallel hardware

4/13/2010

There is more parallel hardware, e.g. memory
There is more cache on parallel machines

2
Sequential computer # 1 processor of || computer,
because of coherence hw, power, etc.

Important in multicore context

Parallel channels to disk, possibly

© 2010 Larry Snyder, CSE 26

Superlinear Speed up

Additional cache is an advantage of ||ism

VS || | B |

The effect is to make execution time < T/P
because data (& program) memory
references are faster

Cache-effects help mitigate other || costs

4/13/2010 © 2010 Larry Snyder, CSE 27

Other Parallel Costs

Wait: All computations must wait at points,
but serial computation waits are well known
Parallel waiting ...

For serialization to assure correctness
Congestion in communication facilities

Bus contention; network congestion; etc.
Stalls: data not available/recipient busy
These costs are generally time-dependent,
implying that they are highly variable

4/13/2010 © 2010 Larry Snyder, CSE 28

Bottom Line...

Applying P processors to a problem with a
time T (serial) solution can be either ...
better or worse ...

It's up to programmers to exploit the
advantages and avoid the disadvantages

4/13/2010 © 2010 Larry Snyder, CSE 29

4/13/2010 © 2010 Larry Snyder, CSE 30

Amdahl’s Law

If 1/S of a computation is inherently
sequential, then the maximum performance
improvement is limited to a factor of S

Ts=sequential time
Tp=1/5 XTs+(1-1/5) XTg/P To=parallel time

P =no. processors

Amdahl’s Law, like the Law of Supply and
Demand, is a fact

4/13/2010 © 2010 Larry Snyder, CSE 31

Interpreting Amdahl’s Law

Consider the equation

Te=1/S x T+ (1-1/S) x T / P
With no charge for || costs, let P— oo then T,
—>1/S X T¢

Amdahl’s Law applies to problem instances

4/13/2010 © 2010 Larry Snyder, CSE 32

More On Amdahl’s Law

Amdahl’s Law assumes a fixed problem
instance: Fixed n, fixed input, perfect
speedup

The algorithm can change to become more ||

Problem instances grow implying proportion of
work that is sequential may be smaller %

... Many, many realities including parallelism in
‘sequential’ execution imply analysis is simplistic
Amdahlis a fact; it’s not a show-stopper

4/13/2010 © 2010 Larry Snyder, CSE 33

Digress: Inherently Sequential

As an artifact of P-completeness theory, we
have the idea of Inherently Sequential --

computations not appreciably improved by
parallelism

Probably not much of a limitation

4/13/2010 © 2010 Larry Snyder, CSE 34

Two kinds of performance

Latency -- time required before a requested
value is available

Latency, measured in seconds; called transmit
time or execution time or just time

Throughput -- amount of work completed in
a given amount of time

Throughput, measured in “work”/sec, where
“work” can be bits, instructions, jobs, etc.; also
called bandwidth in communication

4/13/2010 © 2010 Larry Snyder, CSE 35

Reducing latency (execution time) is a
principal goal of parallelism
There is upper limit on reducing latency

Speed of light, esp. for bit transmissions

In networks, switching time (node latency)
(Clock rate) x (issue width), for instructions

Diminishing returns (overhead) for problem
Instances

4/13/2010 © 2010 Larry Snyder, CSE 36

Throughput

Throughput improvements are often easier to
achieve by adding hardware

More wires improve bits/second

Use processors to run separate jobs

Pipelining is a powerful technique to execute more (serial)
operations in unit time

time ~

IF ID EX | MA | WB
IF ID EX | MA | WB
IF ID EX | MA | WB

ID EX | MA | WB
IF ID EX | MA | WB

€ SUONONASUI
ﬁ

4/13/2010 © 2010 Larry Snyder, CSE 37

Latency Hiding

Reduce wait times by switching to work on
different operation (multithreading)

Old idea, dating back to Multics

In parallel computing it’s called latency hiding
ldea most often used to lower impact of A cost

Have many threads ready to go ...

Execute a thread until it makes nonlocal ref
Switch to next thread

When nonlocal ref is filled, add to ready list

4/13/2010 © 2010 Larry Snyder, CSE 38

Latency Hiding (Continued)

Latency hiding requires ...

Consistently large supply of threads ~ A/e

where e = average # cycles between nonlocal refs

Enough network throughput to have many requests in the air

at once

t1

t2

t3

“—— Nonlocal data
reference time

t4

t5

- . t1
Latency hiding has been claimed to make shared
memory feasible in the presence of large A

4/13/2010 © 2010 Larry Snyder, CSE

39

Latency Hiding (Continued)

Challenges to supporting shared memory

Threads must be numerous, and the shorter the

interval between nonlocal refs, the more
Running out of threads stalls the processor

Context switching to next thread has overhead
Many hardware contexts -- or --
Waste time storing and reloading context

Tension between latency hiding & caching
Shared data must still be protected somehow

Other technical issues

4/13/2010 © 2010 Larry Snyder, CSE

40

Performance Loss: Contention

Contention -- the action of one processor interferes
with another processor’s actions -- is an elusive
quantity

4/13/2010

Lock contention: One processor’s lock stops other processors
from referencing; they must wait

Bus contention: Bus wires are in use by one processor’s
memory reference

Network contention: Wires are in use by one packet, blocking
other packets

Bank contention: Multiple processors try to access different
locations on one memory chip simultaneously

© 2010 Larry Snyder, CSE

41

Performance Loss: Load Imbalance

Load imbalance, work not evenly assigned to
the processors, underutilizes parallelism

The assignment of work, not data, is key

Static assignments, being rigid, are more prone to
imbalance

Because dynamic assignment carries overhead,
the quantum of work must be large enough to
amortize the overhead

With flexible allocations, load balance can be
solved late in the design programming cycle

4/13/2010 © 2010 Larry Snyder, CSE 42

The Best Parallel Programs ...

Performance is maximized if processors
execute continuously on local data without
interacting with other processors

To unify the ways in which processors could
interact, we adopt the concept of dependence

A dependence is an ordering relationship
between two computations

Dependences are usually induced by read/write

Dependences that cross process boundaries induce a
need to synchronize the threads

4/13/2010 © 2010 Larry Snyder, CSE 43

Dependences

Dependences are orderings that must be

maintained to guarantee correctness
Flow-dependence: read after write True
Anti-dependence: write after read False
Output-dependence: write after write ~ False

True dependences affect correctness

False dependences arise from memory reuse

4/13/2010 © 2010 Larry Snyder, CSE 44

Example of Dependences

Both true and false dependences

1. sum_= a + 1;

2. fir;EiEE?ﬁft~%um.* scalel;
3. sum«=’5’1’37’

4. second term = sum * scaleZ;

4/13/2010 © 2010 Larry Snyder, CSE 45

Example of Dependences

Both true and false dependences

1. sum_=_a + 1;

2. fir;EjEE?ﬁf=~€um.* scalel;
3. sum«=’5’:’37’

4. second term = sum * scaleZ;

Flow-dependence read after write; must be
preserved for correctness
Anti-dependence write after read; can be
eliminated with additional memory

4/13/2010 © 2010 Larry Snyder, CSE 46

Removing Anti-dependence

Change variable names

4/13/2010

w0 DN

W N

sum = a + 1;

first term = sum * scalel;

sum = b + 1;

second term = sum * scaleZ;
first sum = a + 1;

first term = first sum * scalel;

second sum = b + 1;
second term = second sum * scaleZ;

© 2010 Larry Snyder, CSE 47

Granularity

Granularity is used in many contexts...here
granularity is the amount of work between
cross-processor dependences

Important because interactions usually cost
Generally, larger grain is better

+ fewer interactions, more local work
- can lead to load imbalance

Batching is an effective way to increase grain

4/13/2010 © 2010 Larry Snyder, CSE 48

Locality

The CTA motivates us to maximize locality

4/13/2010

Caching is the traditional way to exploit locality ...
but it doesn’t translate directly to |lism

Redesigning algorithms for parallel execution
often means repartitioning to increase locality

Locality often requires redundant storage and
redundant computation, but in limited quantities
they help

© 2010 Larry Snyder, CSE 49

Measuring Performance

Execution time ... what's time?
‘Wall clock’ time
Processor execution time
System time
Paging and caching can affect time
Cold start vs warm start
Conflicts w/ other users/system components
Measure kernel or whole program

4/13/2010 © 2010 Larry Snyder, CSE 50

FLOPS

Floating Po
common m

int Operations Per Second is a
easurement for scientific pgms

Even scientific computations use many ints

Results can often be influenced by small, low-level
tweaks having little generality: mult/add

Translates
hardware ¢

noorly across machines because it is
ependent

Limited ap

plication ... but it won't go away!

4/13/2010 © 2010 Larry Snyder, CSE 51

Speedup and Efficiency

Speedup is the factor of improvement for P
processors: T¢/T,

48

Performance

Efficiency =
Speedup/P

,
4
e
e
7/
'
.
.
. /

Speedup
Programl1 ——
Program2 —
0 / 64
Processors

4/13/2010 © 2010 Larry Snyder, CSE 52

Issues with Speedup, Efficiency

Speedup is best applied when hardware is
constant, or for family within a generation

Need to have computation, communication in
same ratio
Great sensitivity to the T. value

T should be time of best sequential program on 1
processor of the ||-machine

To_, # T< Measures relative speedup

4/13/2010 © 2010 Larry Snyder, CSE 53

Scaled v. Fixed Speedup

As P increases, the amount of work per
processor diminishes, often below the amt

needed to amortize costs

Speedup curves bend down
Scaled speedup keeps
the work per processor

Speedup

Performance

Programl —
Program2 s

64
Processors

constant, allowing other
effects to be seen
Both are important

4/13/2010 © 2010 Larry Snyder, CSE

54

“"Cooking” The Speedup Numbers

The sequential computation should not be
charged for any || costs ... consider

Pa Pa
VS

f referencing memory in other processors
takes time (A) and data is distributed, then
one processor solving the problem results in
greater t compared to true sequential

4/13/2010 © 2010 Larry Snyder, CSE 55

What If Problem Doesn’t Fit?

Cases arise when sequential doesn’t fit in 1
processor of parallel machine
Best solution is relative speed-up

Measure Tﬂ=smallest possible

Measure T,, compute T /T, as having P/«
potential improvement

4/13/2010 © 2010 Larry Snyder, CSE 56

We Will Return ...

Many issues regarding parallelism have been
introduced, but they require further
discussion ... we will return to them when
they are relevant

4/13/2010 © 2010 Larry Snyder, CSE 57

Summary of Key Points

Amdahl’s Law is a fact but it doesn’t impede
us much

Inherently sequential problems (probably)
exist, but they don‘t impede us either
Latency hiding could hide the impact of A
with sufficiently many threads and much
(interconnection) bandwidth

Impediments to parallel speedup are
numerous: overhead, contention, inherently
sequential code, waiting time, etc.

4/13/2010 © 2010 Larry Snyder, CSE 58

Review Key Points (continued)

Concerns while parallel programming are also
numerous: locality, granularity, dependences
(both true and false), load balance, etc.
Happily: Parallel and sequential computers
are different: More hardware means more
fast memory (cache, RAM), implying the
possibility of superlinear speedup

Measuring improvement is complicated

4/13/2010 © 2010 Larry Snyder, CSE 59

For Next Time

Consider the Red/Blue Simulation: A 2D torus array, that
is with wrap around, is randomly filled with some red &
blue cells; unoccupied is white. In 1st half step, reds move
right into unoccupied cell; in 2nd half step, blues move
down into unoccupied cell; both happening (legally) is OK;
terminate if occupancy of any 10x10 tile is outside [0.45,
0.55]; tile o is A[o..9,0..9]; 1is A[0..9,10..19]; ...

Write a parallel program for the Red/Blue problem for a
multicore or SMP machine using Pthreads (intro Ch 6);
apply CTA-type analysis, trying to increase locality

4/13/2010 © 2010 Larry Snyder, CSE 60

Two Part Problem

This program will have a 2 part turn-in

Part 2: Turn in a brief description (for a human)
saying how your solution will go, and why you
have chosen to do it that way. Rationale is key: "
will allocate the array as follows ... because”
Due Sunday (17 APR) by 5:00 PM

Part 2: Turn in a program with measured
performance, that is, speedup, on a small parallel
machine (CMP, SMP). Due Tuesday (20 APR) by
class; a “flexibility week” is allowed.

4/13/2010 © 2010 Larry Snyder, CSE 61

