
Goal: Understand basic concepts and trade-offs of parallelism

Question on topic of “no standard parallel model”:

Sequential computers were quite different originally,

before one machine (IBM 701) gained widespread

use. Won’t the widespread use of Intel (or AMD)

CMPs have that same effect for parallelism?

 Do we think that the multicore processor will
become the idealized parallel machine in the
same way the 701 defined the RAM model?

4/13/2010 © 2010 Larry Snyder, CSE 2

 The CTA is supposed to guide us in finding
good computations to run on parallel
machines

 Using it should

 Aid in producing programs exploiting locality

 Insure the program distributes work ‘well’

 Other features, to be discussed later

 Consider sorting and HW2 …

4/13/2010 © 2010 Larry Snyder, CSE 3

 The idea: Create a lot of independent parallel
work – compare adjacent pairs and exchange
if out of order – repeating until ordered. Lots
of parallelism; w.c. A[0]==max

 Specifically, … for i Odd

 First ‘half step’, compare A[i]:A[i+1], exch if OoO

 Second ‘half step’, compare A[i-1]:A[i], exch if OoO

 If a step has no exchanges, stop

4/13/2010 © 2010 Larry Snyder, CSE 4

 General criticisms of this idea –

 Dependences between threads at ½ step size

 Parallel work in a 1/2 step is very modest: one
compare and (possibly) one exchange

 Though there is n-way parallelism, much is
probably wasted

 n == P/2 is unlikely

 Considering the CTA –

 l >> amount of work at each ½ step

4/13/2010 © 2010 Larry Snyder, CSE 5

 Clearly, increasing the work at each step is
smart

 Allocate n/P items per processor

 Extend the comparison …

to

 A value from the neighbor could propagate along

4/13/2010 © 2010 Larry Snyder, CSE 6

i : , i:

:i : i,

 Overall logic and analysis
One Step:

get end neighbor value: l

O/E half step: (n/P)c

get end neighbor value: l

E/O half step: (n/P)c

And-reduce over done?: l log P

P0 P1 P2 P3

What is the worst case number of steps?

An Easy Argument: What crosses the midpoint?

4/13/2010 7© 2010 Larry Snyder, CSE

 Task: Recognize the well-formedness of ((xxx))
 An easy sequential solution …

open = 0; // keep count of opens

for (i=0; i<n; i++) { // proceeding L to R

if (A[i] == '(') open++; // found one

if (A[i] == ')') { // here’s a match

open--;

if (open < 0) break; // oops, mismatch

}

}
4/13/2010 © 2010 Larry Snyder, CSE 8

Does this look totally sequential??

 Allocate a contiguous sequence of symbols to
a processor

 Each processor gets an ill-formed subsequence

 (x)) (((x) x x x (x))

 Begin by resolving locally

 (x)) (((x) x x x (x))

Leaving unresolved closes and opens

4/13/2010 © 2010 Larry Snyder, CSE 9

P0 P1 P2 P3

 The unresolved values from each subproblem
produce a similar problem, except optimized

) (becomes 1 1 and) ((((becomes 1 4

 Adjacent pairs combine their unresolved
counts to a new pair describing the larger
sequence:

1 1 and 1 4 become 1 4

2 4 and 1 2 become 2 5

 Resolved to the root: 0 0 is balanced

4/13/2010 © 2010 Larry Snyder, CSE 10

 Allocate contiguous subsequences of size n/P
to each processor, starting with P0

 Sequentially, locally resolve, creating c o cn/P
 Combine pairs to produce new c o descriptors

by inducing a tree on PE indices: [0-1][2-3] …
for level 1, [0-3][4-7] … for level 2, etc.

 Log levels of the tree to produce a final
descriptor: c o cllog2P

 Only a result of 0 0 means balanced

4/13/2010 © 2010 Larry Snyder, CSE 11

 First step: Allocated work to processors,
generally by dividing it evenly

 Next step: Found local, independent work to
perform

 Next step: Focused on combining
subproblems into a tree network

 Made correctness and termination conditions
explicit

4/13/2010 © 2010 Larry Snyder, CSE 12

 Controller

 Not strictly needed

 Often available

 How well does

the CTA match other

parallel architectures?

▪ CMPs & SMPs

▪ Clusters

▪ Blue Gene

4/13/2010 © 2010 Larry Snyder, CSE 13

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

 The CTA is a ‘machine model’ – an abstraction
 How can it be wrong?

 Architecture has more features – shared memory

 CTA predicts a certain behavior and features in
the architecture make the program much faster

 If it mispredicts … it’s in trouble

 Isn’t it a mistake for the CTA to ignore all the
great stuff architects put in a processor

4/13/2010 © 2010 Larry Snyder, CSE 14

The CTA focuses on the parts that matter

 Why should we believe it’s right?

 In his thesis (1993) Calvin Lin did a careful study of
using the CTA as a programming model against the
models used by others (whatever they were)

▪ CTA consistently pointed programmers to better solutions

▪ The CTA’s effectiveness was independent of architecture

▪ The apparent value of the model is emphasizing locality –
always a benefit in computing

 The greatest value of the CTA would be if it is
the basis for parallel programming languages

4/13/2010 © 2010 Larry Snyder, CSE 15

 A thread consists of program code, a
program counter, call stack, and a small
amount of thread-specific data
 Threads share access to memory (and the file

system) with other threads

 Threads communicate through the shared
memory

 Though it may seem odd, apply the CTA model to
thread programming -- emphasize locality, expect
sharing to cost plenty

Threads are familiar, but don’t use std model

4/13/2010 16© 2010 Larry Snyder, CSE

 A process is a thread in its own private
address space

 Processes do not communicate through shared
memory, but need another mechanism like
message passing

 Key issue: How is the problem divided among the
processes, which includes data and work

 Processes (logically subsume) threads

4/13/2010 17© 2010 Larry Snyder, CSE

 Both have code, PC, call stack, local data

 Threads -- One address space

 Processes -- Separate address spaces

 Weight and Agility

 Threads: lighter weight, faster to setup, tear
down, more dynamic

 Processes: heavier weight, setup and tear down
more time consuming, communication is slower

Mostly we use ‘thread’ & ‘process’ interchangeably

4/13/2010 18© 2010 Larry Snyder, CSE

 Terms used to refer to a unit of parallel
computation include: thread, process,
processor, …

 Technically, thread and process are SW, processor
(including SMT) is HW

 Usually, it doesn’t matter

 I will (try to) use “thread/process” for logical
parallelism, and “processor” when I mean physical
parallelism

4/13/2010 19© 2010 Larry Snyder, CSE

 Naïvely, many people think that applying P
processors to a T time computation will result
in T/P time performance

 Generally wrong
 For a few problems (Monte Carlo) it is possible to

apply more processors directly to the solution

 For most problems, using P processors requires a
paradigm shift

 Assume “P processors => T/P time” to be the
best case possible

4/13/2010 20© 2010 Larry Snyder, CSE

 (Because of the presumed paradigm shift) the
sequential and parallel solutions differ so we do not
expect a simple performance relationship between
the two
 More or fewer instructions must be executed

 Examples of other differences
 The hardware is different

 Parallel solution has difficult-to-quantify costs such as
communication time, wait time, etc. that the serial
solution does not have

4/13/2010 21© 2010 Larry Snyder, CSE

 To implement parallel computations requires
overhead that sequential computations do
not need
 All costs associated with communication are

overhead: locks, cache flushes, coherency,
message passing protocols, etc.

 All costs associated with thread/process setup

 Lost optimizations -- many compiler
optimizations not available in parallel setting
▪ Instruction reordering

4/13/2010 22© 2010 Larry Snyder, CSE

 Threads and processes incur overhead

 Obviously, the cost of creating a thread or process must
be recovered through parallel performance:

(t1 + osu + otd + cost(t2))/2 < t2

Thread

Process

Setup Tear down

tp = p proc execution time

osu = setup, otd = tear down

cost(t2) = all other || costs

4/13/2010 23© 2010 Larry Snyder, CSE

 Redundant execution can avoid
communication -- a parallel optimization

New random number needed for loop iteration:

(a) Generate one copy, have all threads ref it

… requires communication

(b) Communicate seed once, then each thread

generates its own random number … removes

communication and gets parallelism, but by

increasing instruction load

A common (and recommended) programming trick

4/13/2010 24© 2010 Larry Snyder, CSE

 Searches illustrate the possibility of parallelism
requiring fewer instructions

 Independently searching subtrees means an item is
likely to be found faster than sequential

4/13/2010 25© 2010 Larry Snyder, CSE

 Sequential hardware ≠ parallel hardware

 There is more parallel hardware, e.g. memory

 There is more cache on parallel machines

 Sequential computer ≠ 1 processor of || computer,
because of coherence hw, power, etc.

▪ Important in multicore context

 Parallel channels to disk, possibly

?

These differences tend to favor || machine

4/13/2010 26© 2010 Larry Snyder, CSE

 Additional cache is an advantage of ||ism

 The effect is to make execution time < T/P
because data (& program) memory
references are faster

 Cache-effects help mitigate other || costs

PS P0 P1 P2 P3

vs

4/13/2010 27© 2010 Larry Snyder, CSE

 Wait: All computations must wait at points,
but serial computation waits are well known

 Parallel waiting …

 For serialization to assure correctness

 Congestion in communication facilities

▪ Bus contention; network congestion; etc.

 Stalls: data not available/recipient busy

 These costs are generally time-dependent,
implying that they are highly variable

4/13/2010 28© 2010 Larry Snyder, CSE

 Applying P processors to a problem with a
time T (serial) solution can be either …
better or worse …

 It’s up to programmers to exploit the
advantages and avoid the disadvantages

4/13/2010 29© 2010 Larry Snyder, CSE

4/13/2010 © 2010 Larry Snyder, CSE 30

 If 1/S of a computation is inherently
sequential, then the maximum performance
improvement is limited to a factor of S

TP = 1/S ×TS + (1-1/S) ×TS / P

 Amdahl’s Law, like the Law of Supply and
Demand, is a fact

Gene Amdahl -- IBM Mainframe Architect

TS=sequential time

TP=parallel time

P =no. processors

4/13/2010 31© 2010 Larry Snyder, CSE

 Consider the equation

 With no charge for || costs, let P  then TP
 1/S  TS

 Amdahl’s Law applies to problem instances

TP = 1/S × TS + (1-1/S) × TS / P

The best parallelism can do to is to eliminate the
parallelizable work; the sequential work remains

Parallelism seemingly has little potential

4/13/2010 32© 2010 Larry Snyder, CSE

 Amdahl’s Law assumes a fixed problem
instance: Fixed n, fixed input, perfect
speedup

 The algorithm can change to become more ||

 Problem instances grow implying proportion of
work that is sequential may be smaller %

 … Many, many realities including parallelism in
‘sequential’ execution imply analysis is simplistic

 Amdahl is a fact; it’s not a show-stopper

4/13/2010 33© 2010 Larry Snyder, CSE

 As an artifact of P-completeness theory, we
have the idea of Inherently Sequential --
computations not appreciably improved by
parallelism

 Probably not much of a limitation

Circuit Value Problem:
Given a circuit  over Boolean inputs, values b1, …, bn and
designated output value y, is the circuit true for y?

4/13/2010 34© 2010 Larry Snyder, CSE

 Latency -- time required before a requested
value is available

 Latency, measured in seconds; called transmit
time or execution time or just time

 Throughput -- amount of work completed in
a given amount of time

 Throughput, measured in “work”/sec, where
“work” can be bits, instructions, jobs, etc.; also
called bandwidth in communication

Both terms apply to computing and communications

4/13/2010 35© 2010 Larry Snyder, CSE

 Reducing latency (execution time) is a
principal goal of parallelism

 There is upper limit on reducing latency

 Speed of light, esp. for bit transmissions

 In networks, switching time (node latency)

 (Clock rate) x (issue width), for instructions

 Diminishing returns (overhead) for problem
instances

Hitting the upper limit is rarely a worry

4/13/2010 36© 2010 Larry Snyder, CSE

 Throughput improvements are often easier to
achieve by adding hardware

 More wires improve bits/second

 Use processors to run separate jobs

 Pipelining is a powerful technique to execute more (serial)
operations in unit time

timein
s
tru

c
tio

n
s

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Better throughput often hyped as if better latency

4/13/2010 37© 2010 Larry Snyder, CSE

 Reduce wait times by switching to work on
different operation (multithreading)
 Old idea, dating back to Multics

 In parallel computing it’s called latency hiding
 Idea most often used to lower impact of l cost
 Have many threads ready to go …

 Execute a thread until it makes nonlocal ref

 Switch to next thread

 When nonlocal ref is filled, add to ready list

See discussion from Part II

4/13/2010 38© 2010 Larry Snyder, CSE

 Latency hiding requires …

 Consistently large supply of threads ~ le

where e = average # cycles between nonlocal refs

 Enough network throughput to have many requests in the air
at once

 Latency hiding has been claimed to make shared
memory feasible in the presence of large l

t1
t2

t3
t4

t5
t1

Nonlocal data

reference time

There are difficulties

4/13/2010 39© 2010 Larry Snyder, CSE

 Challenges to supporting shared memory
 Threads must be numerous, and the shorter the

interval between nonlocal refs, the more
▪ Running out of threads stalls the processor

 Context switching to next thread has overhead
▪ Many hardware contexts -- or --

▪ Waste time storing and reloading context

 Tension between latency hiding & caching
▪ Shared data must still be protected somehow

 Other technical issues

4/13/2010 40© 2010 Larry Snyder, CSE

 Contention -- the action of one processor interferes
with another processor’s actions -- is an elusive
quantity

 Lock contention: One processor’s lock stops other processors
from referencing; they must wait

 Bus contention: Bus wires are in use by one processor’s
memory reference

 Network contention: Wires are in use by one packet, blocking
other packets

 Bank contention: Multiple processors try to access different
locations on one memory chip simultaneously

Contention is very time dependent, that is, variable

4/13/2010 41© 2010 Larry Snyder, CSE

 Load imbalance, work not evenly assigned to
the processors, underutilizes parallelism
 The assignment of work, not data, is key

 Static assignments, being rigid, are more prone to
imbalance

 Because dynamic assignment carries overhead,
the quantum of work must be large enough to
amortize the overhead

 With flexible allocations, load balance can be
solved late in the design programming cycle

4/13/2010 42© 2010 Larry Snyder, CSE

 Performance is maximized if processors
execute continuously on local data without
interacting with other processors

 To unify the ways in which processors could
interact, we adopt the concept of dependence

 A dependence is an ordering relationship
between two computations

▪ Dependences are usually induced by read/write

▪ Dependences that cross process boundaries induce a
need to synchronize the threads

Dependences are well-studied in compilers
4/13/2010 43© 2010 Larry Snyder, CSE

 Dependences are orderings that must be
maintained to guarantee correctness

 Flow-dependence: read after write

 Anti-dependence: write after read

 Output-dependence: write after write

 True dependences affect correctness
 False dependences arise from memory reuse

True

False

False

4/13/2010 44© 2010 Larry Snyder, CSE

 Both true and false dependences
1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;

4/13/2010 45© 2010 Larry Snyder, CSE

 Both true and false dependences

 Flow-dependence read after write; must be
preserved for correctness

 Anti-dependence write after read; can be
eliminated with additional memory

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;

4/13/2010 46© 2010 Larry Snyder, CSE

 Change variable names

1. first_sum = a + 1;

2. first_term = first_sum * scale1;

3. second_sum = b + 1;

4. second_term = second_sum * scale2;

1. sum = a + 1;

2. first_term = sum * scale1;

3. sum = b + 1;

4. second_term = sum * scale2;

4/13/2010 47© 2010 Larry Snyder, CSE

 Granularity is used in many contexts…here
granularity is the amount of work between
cross-processor dependences

 Important because interactions usually cost

 Generally, larger grain is better

+ fewer interactions, more local work

- can lead to load imbalance

 Batching is an effective way to increase grain

4/13/2010 48© 2010 Larry Snyder, CSE

 The CTA motivates us to maximize locality

 Caching is the traditional way to exploit locality …
but it doesn’t translate directly to ||ism

 Redesigning algorithms for parallel execution
often means repartitioning to increase locality

 Locality often requires redundant storage and
redundant computation, but in limited quantities
they help

4/13/2010 49© 2010 Larry Snyder, CSE

 Execution time … what’s time?

 ‘Wall clock’ time

 Processor execution time

 System time

 Paging and caching can affect time

 Cold start vs warm start

 Conflicts w/ other users/system components
 Measure kernel or whole program

4/13/2010 50© 2010 Larry Snyder, CSE

 Floating Point Operations Per Second is a
common measurement for scientific pgms

 Even scientific computations use many ints

 Results can often be influenced by small, low-level
tweaks having little generality: mult/add

 Translates poorly across machines because it is
hardware dependent

 Limited application … but it won’t go away!

4/13/2010 51© 2010 Larry Snyder, CSE

 Speedup is the factor of improvement for P
processors: TS/TP

0

Processors

Performance

640

Program1

Program2

48

Speedup

Efficiency =

Speedup/P

4/13/2010 52© 2010 Larry Snyder, CSE

 Speedup is best applied when hardware is
constant, or for family within a generation

 Need to have computation, communication in
same ratio

 Great sensitivity to the TS value

▪ TS should be time of best sequential program on 1
processor of the ||-machine

▪ TP=1  TS Measures relative speedup

Relative speedup is often important
but it must be labeled as such

4/13/2010 53© 2010 Larry Snyder, CSE

 As P increases, the amount of work per
processor diminishes, often below the amt
needed to amortize costs

 Speedup curves bend down
 Scaled speedup keeps

the work per processor
constant, allowing other
effects to be seen

 Both are important

0

Processors

Performance

640

Program1

Program2

48

Speedup

If not stated, speedup
is fixed speedup

4/13/2010 54© 2010 Larry Snyder, CSE

 The sequential computation should not be
charged for any || costs … consider

 If referencing memory in other processors
takes time (l) and data is distributed, then
one processor solving the problem results in
greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems

4/13/2010 55© 2010 Larry Snyder, CSE

 Cases arise when sequential doesn’t fit in 1
processor of parallel machine

 Best solution is relative speed-up

 Measure Tp=smallest possible

 Measure TP, compute Tp/TP as having P/p
potential improvement

4/13/2010 56© 2010 Larry Snyder, CSE

 Many issues regarding parallelism have been
introduced, but they require further
discussion … we will return to them when
they are relevant

4/13/2010 57© 2010 Larry Snyder, CSE

 Amdahl’s Law is a fact but it doesn’t impede
us much

 Inherently sequential problems (probably)
exist, but they don’t impede us either

 Latency hiding could hide the impact of l
with sufficiently many threads and much
(interconnection) bandwidth

 Impediments to parallel speedup are
numerous: overhead, contention, inherently
sequential code, waiting time, etc.

4/13/2010 58© 2010 Larry Snyder, CSE

 Concerns while parallel programming are also
numerous: locality, granularity, dependences
(both true and false), load balance, etc.

 Happily: Parallel and sequential computers
are different: More hardware means more
fast memory (cache, RAM), implying the
possibility of superlinear speedup

 Measuring improvement is complicated

4/13/2010 59© 2010 Larry Snyder, CSE

 Consider the Red/Blue Simulation: A 2D torus array, that
is with wrap around, is randomly filled with some red &
blue cells; unoccupied is white. In 1st half step, reds move
right into unoccupied cell; in 2nd half step, blues move
down into unoccupied cell; both happening (legally) is OK;
terminate if occupancy of any 10x10 tile is outside [0.45,
0.55]; tile 0 is A[0..9,0..9]; 1 is A[0..9,10..19]; …

 Write a parallel program for the Red/Blue problem for a
multicore or SMP machine using Pthreads (intro Ch 6);
apply CTA-type analysis, trying to increase locality

4/13/2010 60© 2010 Larry Snyder, CSE

 This program will have a 2 part turn-in

 Part 1: Turn in a brief description (for a human)
saying how your solution will go, and why you
have chosen to do it that way. Rationale is key: “I
will allocate the array as follows … because … .”
Due Sunday (17 APR) by 5:00 PM

 Part 2: Turn in a program with measured
performance, that is, speedup, on a small parallel
machine (CMP, SMP). Due Tuesday (20 APR) by
class; a “flexibility week” is allowed.

4/13/2010 © 2010 Larry Snyder, CSE 61

