
Part II: Architecture

Goal: Understand the main properties of parallel

computers

The parallel approach to computing … does require

that some original thinking be done about numerical

analysis and data management in order to secure

efficient use. In an environment which has

represented the absence of the need to think as the

highest virtue, this is a decided disadvantage.

-- Dan Slotnick, 1967

What‟s The Deal With Hardware?

 Facts Concerning Hardware

 Parallel computers differ dramatically from
each other -- there is no standard architecture

 No single programming target!

 Parallelism introduces costs not present in vN
machines -- communication; influence of
external events

 Many parallel architectures have failed

 Details of parallel computer are of no greater
concern to programmers than details of vN

The “no single target” is key problem to solve

should be

Our Plan

 Think about the problem abstractly

 Introduce instances of basic || designs

 Multicore

 Symmetric Multiprocessors (SMPs)

 Large scale parallel machines

 Clusters

 Blue Gene/L

 Formulate a model of computation

 Assess the model of computation

Shared Memory

 Global memory shared among ||processors

is the natural generalization of the

sequential memory model

 Thinking about it, programmers assume

sequential consistency when they think ||ism

 Recall Lamport‟s definition of SC:
 "...the result of any execution is the same as if the operations

of all the processors were executed in some sequential

order, and the operations of each individual processor

appear in this sequence in the order specified by its

program."

Sequential Consistency

 SC difficult to achieve under all

circumstances

 [Whether SC suffices as a model at all is a

deep and complex issue; there‟s more to

say than today‟s points.]

 The original way to achieve SC was literally

to keep a single memory image and make

sure that modifications are recorded in that

memory

The Problem

 The “single memory” view implies …

 The memory is the only source of values

 Processors use memory values one-at-a-time,

not sharing or caching; if not available, stall

 Lock when fetched, Execute, Store & unlock

 A bus can do this, but …

M M M M M M M M

P P P P P P P P
references

all visible

source of

contention

Reduce Contention

 Replace bus with network, an early design

 Network delays cause memory latency to
be higher for a single reference than with a
the bus, but simultaneous use should help
when many references are in the air (MT)

M M M M M M M M

P P P P P P P P

Interconnection Network

(Dance Hall)

An Implementation

 -Network is one possible interconnect

 Processor 2 references memory 6 (110)

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

P
ro

c
e
s
s
o
r

ID
H

i M
e

m
o

ry
 B

its

Backing Up In Network

 Even if processors work on different data,

the requests can back up in the network

 Everyone references data in memory 6

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

One-At-A-Time Use

 The critical problem is that only one

processor at a time can use/change data

 Cache read-only data (& pgms) only

 Check-in/Check-out model most appropriate

 Conclusion: Processors stall a lot …

 Solution: Multi-threading

 When stalled, change to another waiting activity

 Must make transition quickly, keeping context

 Need ample supply of waiting activities

 Available at different granularities

Briefly recall, Multithreading

 Multithreading: Executing multiple threads

“at once”

 The threads are, of course, simply

sequential programs executing a von

Neumann model of computation

 Executed “at once” means that the context

switching among them is not implemented

by the OS, but takes place opportunistically

in the hardware … 3 related cases

Facts of Instruction Execution

 The von Neumann model requires

that each instruction be executed to

completion before starting the next

 Once that was the way it worked

 Now it is a conceptual model

 Multi-issue architectures start many

instructions at a time, and do them

when their operands are available

leading to out of order execution

ld r1,0(r2)

add r1,r5

mult r8,r6

sw r1,0(r2)

li r1,0xabc

sw r1,4(r2)

Fine Grain Multithreading: Tera

Figure from: Paolo.Ienne@epfl.ch

Coarse Grain Multithreading: Alewife

Simultaneous Multi-threading: SMT

Multi-threading Grain Size

 The point when the activity switches can be

 Instruction level, at memory reference: Tera

MTA

 Basic block level, with L1 cache miss: Alewife

 …

 At process level, with page fault: Time sharing

 Another variation (3-address code level) is to

execute many threads (P*log P) in batches,

called Bulk Synchronous Programming
No individual activity improved, but less wait time

Problems with Multi-threading

 Cost (time, resources) of switching trades off
with work: larger switching cost means more
useful work completed before switch …
instruction level too low?

 Need many threads w/o dependences & …

 Threads must meet preceding criterion

 Computations grow & shrink thread count (loop
control) implies potential thread starvation

 Fine-grain threads most numerous, but have
least locality

Multi-core Chips

 Multi-core means more than one processor

per chip – generalization of SMT

 Consequence of Moore‟s Law

 IBM‟s PowerPC 2002, AMD Dual Core

Opteron 2005, Intel CoreDuo 2006

 A small amount of multi-threading included

 Main advantage: More ops per tick

 Main disadvantages: Programming, BW

Diversity Among Small Systems

Intel CoreDuo

 2 32-bit Pentiums

 Private 32K L1s

 Shared 2M-4M L2

 MESI cc-protocol

 Shared bus control

and memory bus
L1-I L1-D

Memory Bus Controller

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

Front Side Bus

MESI Protocol

 Standard Protocol for

cache - coherent

shared memory

 Mechanism for

multiple caches to give

single memory image

 We will not study it

 4 states can be

amazingly rich

Thanks: Slater & Tibrewala of CMU

MESI, Intuitively

 Upon loading, a line is marked E,

subsequent reads are OK; write marks M

 Seeing another load, mark as S

 A write to an S, sends I to all, marks as M

 Another‟s read to an M line, writes it back,

marks it S

 Read/write to an I misses

 Related scheme: MOESI (used by AMD)

Modified

Exclusive

Shared

Invalid

AMD Dual Core Opteron

AMD Dual Core Opteron

 2 64-bit Opterons

 64K private L1s

 1 MB private L2s

 MOESI cc-protocol

 Direct connect

shared memory

System Request Interface

L1-I L1-D

Mem Ctlr

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

Front Side Bus

Intel

System Request Interface

L1-I L1-D

Mem Ctlr

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

AMD AMD

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

System Request Interface

L1-I L1-D

Mem Ctlr

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD AMD AMD

Symmetric Multiprocessor on a Bus

 The bus is a point that serializes references

 A serializing point is a shared mem enabler

Bus

L1-I L1-D

Processor

P0

L2 Cache

Cache Control

Memory Memory Memory Memory

L1-I L1-D

Processor

P1

L2 Cache

Cache Control

L1-I L1-D

Processor

P2

L2 Cache

Cache Control

L1-I L1-D

Processor

P3

L2 Cache

Cache Control

Sun Fire E25K

Cross-Bar Switch

 A crossbar is a network

connecting each processor

to every other processor

 Used in CMU‟s 1971

C.MMP, 16 proc PDP-11s

 Crossbars grow as n2

making them impractical

for large n

B0

B1

B2

B3

Sun Fire E25K

 X-bar gives low latency for snoops allowing

for shared memory

 18 x 18 X-bar is basically the limit

 Raising the number of processors per node

will, on average, increase congestion

 How could we make a larger machine?

Co-Processor Architectures

 A powerful parallel design is to add 1 or
more subordinate processors to std design

 Floating point instructions once implemented
this way

 Graphics Processing Units - deep pipelining

 Cell Processor - multiple SIMD units

 Attached FPGA chip(s) - compile to a circuit

 These architectures will be discussed later

Clusters

 Interconnecting

with InfiniBand

 Switch-based

technology

 Host channel

adapters (HCA)

 Peripheral

computer

interconnect (PCI)

Thanks: IBM‟s Clustering sytems using InfiniBand Hardware

Clusters

 Cheap to build using commodity
technologies

 Effective when interconnect is “switched”

 Easy to extend, usually in increments of 1

 Processors often have disks “nearby”

 No shared memory

 Latencies are usually large

 Programming uses message passing

Networks

Torus

(Mesh)

Hyper-

Cube

Fat Tree

Omega Network

Supercomputer

 BlueGene/L

BlueGene/L Specs

 A 64x32x32 torus = 65K 2-core processors

 Cut-through routing gives a worst-case

latency of 6.4 s

 Processor nodes are dual PPC-440 with

“double hummer” FPUs

 Collective network performs global reduce

for the “usual” functions

Summarizing Architectures

 Two main classes
 Complete connection: CMPs, SMPs, X-bar

 Preserve single memory image

 Complete connection limits scaling to …

 Available to everyone

 Sparse connection: Clusters, Supercomputers,
Networked computers used for parallelism (Grid)

 Separate memory images

 Can grow “arbitrarily” large

 Available to everyone with air conditioning

 Differences are significant; world views diverge

Break

 During the break, consider which aspects

of the architectures we‟ve seen should be

high-lighted and which should be

abstracted away

The Parallel Programming Problem

 Some computations can be platform specific

 Most should be platform independent

 Parallel Software Development Problem:

How do we neutralize the machine

differences given that

 Some knowledge of execution behavior is

needed to write programs that perform

 Programs must port across platforms

effortlessly, meaning, by at most recompilation

Options for Solving the PPP

 Leave the problem to the compiler …

Options for Solving the PPP

 Leave the problem to the compiler …

 Very low level parallelism (ILP) is already

being exploited

 Sequential languages cause us to introduce

unintentional sequentiality

 Parallel solutions often require a paradigm shift

 Compiler writers‟ track record over past 3

decades not promising … recall HPF

 Bottom Line: Compilers will get more helpful,

but they probably won‟t solve the PPP

Options for Solving the PPP

 Adopt a very abstract language that can

target to any platform …

Options for Solving the PPP

 Adopt a very abstract language that can

target to any platform …

 No one wants to learn a new language, no

matter how cool

 How does a programmer know how efficient or

effective his/her code is? Interpreted code?

 What are the “right” abstractions and

statement forms for such a language?

 Emphasize programmer convenience?

 Emphasize compiler translation effectiveness?

Options for Solving the PPP

 Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create

libraries that work w/ sequential code …

Options for Solving the PPP

 Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create

libraries that work w/ sequential code …

 Libraries are a mature technology

 To work with multiple languages, limit base

language assumptions … L.C.D. facilities

 Libraries use a stylized interface (fcn call)

limiting possible parallelism-specific abstractions

 Achieving consistent semantics is difficult

Options for Solving the PPP

 Create an abstract machine model that

accurately describes common capabilities

and let the language facilities catch up …

Options for Solving the PPP

 Create an abstract machine model that

accurately describes common capabilities

and let the language facilities catch up …

 Not a full solution until languages are available

 The solution works in sequential world (RAM)

 Requires discovering (and predicting) what the

common capabilities are

 Solution needs to be (continually) validated

against actual experience

Summary of Options for PPP

 Leave the problem to the compiler …

 Adopt a very abstract language that can
target to any platform …

 Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

49

Why is Seq Programming Successful

When we write programs in C they are ...

 Efficient -- programs run fast, especially if we use performance

as a goal

 traverse arrays in row major order to improve caching

 Economical -- use resources well

 represent data by packing memory

 Portable -- run well on any computer with C compiler

 all computers are universal, but with C fast programs are

fast everywhere

 Easy to write -- we know many „good‟ techniques

 reference data, don‟t copy

These qualities all derive from von Neumman model

50

Von Neumann (RAM) Model

 Call the „standard‟ model of a random access

machine (RAM) the von Neumann model

 A processor interpreting 3-address instructions

 PC pointing to the next instruction of program in

memory

 “Flat,” randomly accessed memory requires 1 time unit

 Memory is composed of fixed-size addressable units

 One instruction executes at a time, and is completed

before the next instruction executes

 The model is not literally true, e.g., memory is

hierarchical but made to “look flat”

C directly implements this model in a HLL

51

Why Use Model That‟s Not Literally True?

 Simple is better, and many things--GPRs,

floating point format--don‟t matter at all

 Avoid embedding assumptions where things

could change …

 Flat memory, tho originally true, is no longer

right, but we don‟t retrofit the model; we don‟t

want people “programming to the cache”

 Yes, exploit spatial locality

 No, avoid blocking to fit in cache line, or tricking cache

into prefetch, etc.

 Compilers bind late, particularize and are better

than you are!

52

vN Model Contributes To Success
 The cost of C statements on the vN machine

is “understood” by C programmers …

 How much time does A[r][s] += B[r][s]; take?
 Load row_size_A, row_size_B, r, s, A_base, B_base (6)

 tempa = (row_size_A * r + s) * data_size (3)

 tempb = (row_size_B * r + s) * data_size (3)

 A_base + tempa; B_base + tempb; load both values (4)

 Add values and return to memory (2)

 Same for many operations, any data size

 Result is measured in “instructions” not time

Widely known and effectively used

53

Portability

 Most important property of the C-vN coupling:

It is approximately right everywhere

 Why so little variation in sequential computers?

HW vendors must run

installed SW so follow

vN rules

SW vendors must run

on installed HW so

follow vN rules

Everyone wins … no

motive to change

54

Von Neumann Summary

 The von Neumann model “explains” the costs of C

because C expresses the facilities of the von

Neumann machines in programming terms

 Knowing the relationship between C and the von

Neumann machine is essential for writing fast

programs

 Following the rules produces good results

everywhere because everyone benefits

 These ideas are “in our bones” … it‟s how we think

What is the parallel version of vN?

55

PRAM Often Proposed As A Candidate

 PRAM (Parallel RAM) ignores memory

organization, collisions, latency, conflicts, etc.

 Ignoring these are claimed to have benefits ...

 Portable everywhere since it is very general

 It is a simple programming model ignoring only

insignificant details -- off by “only log P”

 Ignoring memory difficulties is OK because

hardware can “fake” a shared memory

 Good for getting started: Begin with PRAM then

refine the program to a practical solution if needed

56

Recall Parallel Random-Access Machine

PRAM has any number of processors

 Every proc references any memory in “time 1”

 Memory read/write collisions must be resolved
P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC

SMPs implement PRAMs for small P … not scalable

57

Variations on PRAM

Resolving the memory conflicts considers read

and write conflicts separately

 Exclusive read/exclusive write (EREW)

 The most limited model

 Concurrent read/exclusive write (CREW)

 Multiple readers are OK

 Concurrent read/concurrent write (CRCW)

 Various write-conflict resolutions used

 There are at least a dozen other variations

All theoretical -- not used in practice

CTA Model

 Candidate Type Architecture: A model with
P standard processors, d degree, latency

 Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is

What CTA Doesn‟t Describe

 CTA has no global memory … but memory

could be globally addressed

 Mechanism for referencing memory not

specified: shared, message passing, 1-side

 Interconnection network not specified

 is not specified beyond >>1 -- cannot be

because every machine is different

 Controller, combining network “optional”

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

More On the CTA

 Consider what the diagram doesn‟t mean…

 After ACKing that CTA doesn‟t model
buses, accept that it‟s a good first approx.

…RAM RAM RAM RAM RAM

RAM

Interconnection NetworkBUS

Typical Values for

 Lambda can be estimated for any machine

(given numbers include no contention or

congestion)

CMP AMD 100

SMP Sun Fire E25K 400-660

Cluster Itanium + Myrinet 4100-5100

Super BlueGene/L 5000

As with merchandizing: It‟s location, location, location!

Lg range

=> cannot

be ignored

Measured Numbers

 Values (approximating) for small systems

Communication Mechanisms

 Shared addressing

 One consistent memory image; primitives are

load and store

 Must protect locations from races

 Widely considered most convenient, though it

is often tough to get a program to perform

 CTA implies that best practice is to keep as

much of the problem private; use sharing only

to communicate

A common pitfall: Logic is too fine grain

Communication Mechanisms

 Message Passing

 No global memory image; primitives are
send() and recv()

 Required for most large machines

 User writes in sequential language with
message passing library:

 Message Passing Interface (MPI)

 Parallel Virtual Machine (PVM)

 CTA implies that best practice is to build and
use own abstractions

Lack of abstractions makes message passing brutal

Communication Mechanisms

 One Sided Communication

 One global address space; primitives are
get() and put()

 Consistency is the programmer‟s responsibility

 Elevating mem copy to a comm mechanism

 Programmer writes in sequential language with

library calls -- not widely available unfortunately

 CTA implies that best practice is to build and

use own abstractions

One-sided is lighter weight than message passing

Programming Implications

 How does CTA influence programming …

 Discuss

 Expression evaluation: Same/Different?

 Relationship among processors?

 Data structures?

 Organization of work?

 …

70

Find Maximum in Parallel (Valiant)

Task: Find largest of n integers w/ n processors

Model: CRCW PRAM (writes OK if same value)

L.G.Valiant, “Parallelism in comparison problems,” SIAM J. Computing

4(3):348-355, 1975

L.G. Valiant, “A Bridging Model for Parallel Computation,” CACM

33(8):103-111, 1990

R.J. Anderson & L. Snyder, “A Comparison of Shared and Nonshared

Memory Models for Parallel Computation,” Proc. IEEE 79(4):480-

487

How would YOU do it?

71

Algorithm Sketch

Algorithm: T rounds of O(1) time each

In round, process groups of m vals, v1, v2, …, vm

 Fill m memory locations x1, x2, …, xm with 1s to be

“knocked out”

 For each 1i,j m a processor tests ...

if vi < vj then xi = 0 else xj = 0

 If xk = 1 it‟s max of group; pass vk to next round

The „trick‟ is to pick m right to minimize T

72

Finding Max (continued)

Round 1: m = 3

v1 v2 v3

v1 - v1:v2 v1:v3

v2 - - v2:v3

v3 - - -

x1 x2 x3

1 1 1

v1 v2 v3

20 3 34

x1 x2 x3

0 0 1

For groups of size 3, three tests

can find max, i.e. 3 procesors

Schedule

Input

Output
Knock out

73

Solving Whole Problem

 Round 1 uses P processors to find the max in

groups of m=3 … producing P/3 group maxes

 Round 2 uses P processors to find the max in

groups of m=7 … producing P/21 group maxes

 Generally to find the max of a group requires

m(m-1)/2 comparisons

 Picking m when there are P processors, r

maxes … largest m s.t. (r/m)(m(m-1)/2) P i.e.

r(m-1) 2P

74

Finding Max (continued)

 Initially, r = P, so

r(m-1) 2P

implies m = 3, producing r = P/3

 For (P/3)(m-1) 2P implies next group = 7

 Etc.

 Group size increases quadratically implying

the maximum is found in O(loglog n) steps

on CRCW PRAM

It‟s very clever, but is it of any practical use?

75

Assessing Valiant‟s Max Algorithm

The PRAM model caused us to ...

 Exploit the “free use” of read and write

collisions, which are not possible in practice

 Ignore the costs of data motion, so we adopt

an algorithm that runs faster than the time

required to bring all data values together,

which is (log n)

 So what?

76

Running Valiant‟s Algorithm

 PRAM‟s don‟t exist and can‟t be built

 To run the algorithm we need a simulator for the

CRCWPRAM

 In order to simulate the concurrent reads and the

concurrent writes, a parallel computer will need

(log P) time per step, though there are bandwidth

requirements and serious engineering problems to

attain that goal

 Observed performance of Valiant‟s Max:

O(log n loglog n)

77

Alternative Solution

 What is the best way of computing max using

the CTA?

 A tree algorithm, a variation on global sum

 O(log P) time on P processors

 The tree algorithm doesn‟t need to be simulated …

it runs in the stated time directly on all existing

parallel processors

 Since O(log n) < O(log n loglog n) the PRAM

model mispredicted the best practical

algorithm
The PRAM didn‟t help, it hurt our effort

78

Is The PRAM A Good Abstraction?

Different Opinions ...

 OK for finding theoretical limits to parallelism

 It is a simple programming model ignoring

only insignificant details -- off only by log P

 Ignoring memory difficulties is OK because

hardware can “fake” a shared memory

 Start with PRAM then evolve to more realistic

solution -- good for getting started

Apply CTA to Count 3s

 How does CTA guide us for Count 3s pgm

 Array segments will be allocated to local mem

 Each processor should count 3s in its segment

 Global total should be formed using reduction

 Performance is

 Full parallelism for local processing

 log n for combining

 Base of log should be large, i.e high degree nodes

 Same solution as before, but by different rt

Summary

 Parallel hardware is a critical component of

improving performance through ||-ism … but

there‟s a Catch-22

 To have portable programs, we must abstract

away from the hardware

 To write performant programs requires that we

respect the hardware realities

 Solve the problem with CTA -- an abstract

machine with just enough (realizable) detail

to support critical programming decisions

Assignment for Next Time

 Thinking of XML trees, which are made up of
well-nested, user-defined matching tags, use
the CTA to sketch the logic of a || algorithm to
check if an XML file (is / is not) well nested
and estimate its performance

 Simplifications
 Linear sequence of: (, x,) as in ((xxx)x(x)(xx))

 Explain the algorithm to a person, e.g. a TA
grader, giving data allocation, communication
specifics, protocol for processor interactions, etc.

 Assume n >> P, comm costs l, give performance

