
Part II: Architecture

Goal: Understand the main properties of parallel 

computers 

The parallel approach to computing … does require 

that some original thinking be done about numerical 

analysis and data management in order to secure 

efficient use. In an environment which has 

represented the absence of the need to think as the 

highest virtue, this is a decided disadvantage.

-- Dan Slotnick, 1967



What‟s The Deal With Hardware?

 Facts Concerning Hardware

 Parallel computers differ dramatically from 
each other -- there is no standard architecture

 No single programming target!

 Parallelism introduces costs not present in vN 
machines -- communication; influence of 
external events

 Many parallel architectures have failed 

 Details of parallel computer are of no greater 
concern to programmers than details of vN

The “no single target” is key problem to solve

should be



Our Plan

 Think about the problem abstractly

 Introduce instances of basic || designs

 Multicore

 Symmetric Multiprocessors (SMPs)

 Large scale parallel machines

 Clusters

 Blue Gene/L

 Formulate a model of computation

 Assess the model of computation



Shared Memory

 Global memory shared among ||processors 

is the natural generalization of the 

sequential memory model

 Thinking about it, programmers assume 

sequential consistency when they think ||ism

 Recall Lamport‟s definition of SC:
 "...the result of any execution is the same as if the operations 

of all the processors were executed in some sequential 

order, and the operations of each individual processor 

appear in this sequence in the order specified by its 

program."



Sequential Consistency

 SC difficult to achieve under all 

circumstances 

 [Whether SC suffices as a model at all is a 

deep and complex issue; there‟s more to 

say than today‟s points.]

 The original way to achieve SC was literally 

to keep a single memory image and make 

sure that modifications are recorded in that 

memory



The Problem

 The “single memory” view implies …

 The memory is the only source of values

 Processors use memory values one-at-a-time, 

not sharing or caching; if not available, stall

 Lock when fetched, Execute, Store & unlock

 A bus can do this, but … 
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Reduce Contention

 Replace bus with network, an early design

 Network delays cause memory latency to 
be higher for a single reference than with a 
the bus, but simultaneous use should help 
when many references are in the air (MT)
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Interconnection Network

(Dance Hall)



An Implementation

 -Network is one possible interconnect

 Processor 2 references memory 6 (110)
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Backing Up In Network

 Even if processors work on different data, 

the requests can back up in the network

 Everyone references data in memory 6
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One-At-A-Time Use

 The critical problem is that only one 

processor at a time can use/change data

 Cache read-only data (& pgms) only

 Check-in/Check-out model most appropriate

 Conclusion: Processors stall a lot …

 Solution: Multi-threading

 When stalled, change to another waiting activity

 Must make transition quickly, keeping context

 Need ample supply of waiting activities

 Available at different granularities



Briefly recall, Multithreading

 Multithreading: Executing multiple threads 

“at once”

 The threads are, of course, simply 

sequential programs executing a von 

Neumann model of computation

 Executed “at once” means that the context 

switching among them is not implemented 

by the OS, but takes place opportunistically 

in the hardware … 3 related cases



Facts of Instruction Execution

 The von Neumann model requires 

that each instruction be executed to 

completion before starting the next

 Once that was the way it worked

 Now it is a conceptual model

 Multi-issue architectures start many 

instructions at a time, and do them 

when their operands are available 

leading to out of order execution

ld r1,0(r2)

add r1,r5

mult r8,r6

sw r1,0(r2)

li r1,0xabc

sw r1,4(r2)



Fine Grain Multithreading: Tera

Figure from: Paolo.Ienne@epfl.ch



Coarse Grain Multithreading: Alewife



Simultaneous Multi-threading: SMT



Multi-threading Grain Size

 The point when the activity switches can be

 Instruction level, at memory reference: Tera 

MTA

 Basic block level, with L1 cache miss: Alewife

 …

 At process level, with page fault: Time sharing

 Another variation (3-address code level) is to 

execute many threads (P*log P) in batches, 

called Bulk Synchronous Programming 
No individual activity improved, but less wait time



Problems with Multi-threading

 Cost (time, resources) of switching trades off 
with work: larger switching cost means more 
useful work completed before switch … 
instruction level too low?

 Need many threads w/o dependences & …

 Threads must meet preceding criterion

 Computations grow & shrink thread count (loop 
control) implies potential thread starvation

 Fine-grain threads most numerous, but have 
least locality 



Multi-core Chips

 Multi-core means more than one processor 

per chip – generalization of SMT

 Consequence of Moore‟s Law 

 IBM‟s PowerPC 2002, AMD Dual Core 

Opteron 2005, Intel CoreDuo 2006

 A small amount of multi-threading included

 Main advantage: More ops per tick

 Main disadvantages: Programming, BW



Diversity Among Small Systems



Intel CoreDuo

 2 32-bit Pentiums

 Private 32K L1s

 Shared 2M-4M L2

 MESI cc-protocol

 Shared bus control

and memory bus 
L1-I L1-D

Memory Bus Controller

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

Front Side Bus



MESI Protocol

 Standard Protocol for

cache - coherent

shared memory

 Mechanism for 

multiple caches to give

single memory image

 We will not study it

 4 states can be

amazingly rich  

Thanks: Slater & Tibrewala of CMU



MESI, Intuitively

 Upon loading, a line is marked E, 

subsequent reads are OK; write marks M

 Seeing another load, mark as S

 A write to an S, sends I to all, marks as M

 Another‟s read to an M line, writes it back, 

marks it S

 Read/write to an I misses 

 Related scheme: MOESI (used by AMD)

Modified

Exclusive

Shared

Invalid



AMD Dual Core Opteron

 



AMD Dual Core Opteron

 2 64-bit Opterons

 64K private L1s

 1 MB private L2s

 MOESI cc-protocol

 Direct connect 

shared memory 

System Request Interface

L1-I L1-D

Mem Ctlr

Processor

P0

Processor

P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect



Comparing Core Duo/Dual Core
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Symmetric Multiprocessor on a Bus

 The bus is a point that serializes references

 A serializing point is a shared mem enabler 

Bus
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Sun Fire E25K

 



Cross-Bar Switch

 A crossbar is a network 

connecting each processor 

to every other processor 

 Used in CMU‟s 1971 

C.MMP, 16 proc PDP-11s

 Crossbars grow as n2

making them impractical 

for large n

B0

B1

B2

B3



Sun Fire E25K

 X-bar gives low latency for snoops allowing 

for shared memory

 18 x 18 X-bar is basically the limit

 Raising the number of processors per node 

will, on average, increase congestion

 How could we make a larger machine?



Co-Processor Architectures

 A powerful parallel design is to add 1 or 
more subordinate processors to std design

 Floating point instructions once implemented 
this way

 Graphics Processing Units - deep pipelining

 Cell Processor - multiple SIMD units

 Attached FPGA chip(s) - compile to a circuit

 These architectures will be discussed later



Clusters

 Interconnecting 

with InfiniBand

 Switch-based 

technology

 Host channel 

adapters (HCA)

 Peripheral 

computer 

interconnect (PCI)

Thanks: IBM‟s Clustering sytems using InfiniBand Hardware



Clusters

 Cheap to build using commodity 
technologies

 Effective when interconnect is “switched”

 Easy to extend, usually in increments of 1

 Processors often have disks “nearby”

 No shared memory

 Latencies are usually large

 Programming uses message passing



Networks

Torus 

(Mesh)

Hyper-

Cube

Fat Tree

Omega Network



Supercomputer

 BlueGene/L



BlueGene/L Specs

 A 64x32x32 torus = 65K 2-core processors

 Cut-through routing gives a worst-case 

latency of 6.4 s

 Processor nodes are dual PPC-440 with 

“double hummer” FPUs

 Collective network performs global reduce 

for the “usual” functions



Summarizing Architectures

 Two main classes
 Complete connection: CMPs, SMPs, X-bar

 Preserve single memory image

 Complete connection limits scaling to …

 Available to everyone

 Sparse connection: Clusters, Supercomputers, 
Networked computers used for parallelism (Grid)

 Separate memory images

 Can grow “arbitrarily” large

 Available to everyone with air conditioning

 Differences are significant; world views diverge



Break

 During the break, consider which aspects 

of the architectures we‟ve seen should be 

high-lighted and which should be 

abstracted away



The Parallel Programming Problem

 Some computations can be platform specific

 Most should be platform independent

 Parallel Software Development Problem: 

How do we neutralize the machine 

differences given that

 Some knowledge of execution behavior is 

needed to write programs that perform

 Programs must port across platforms 

effortlessly, meaning, by at most recompilation



Options for Solving the PPP

 Leave the problem to the compiler …



Options for Solving the PPP

 Leave the problem to the compiler …

 Very low level parallelism (ILP) is already 

being exploited

 Sequential languages cause us to introduce 

unintentional sequentiality

 Parallel solutions often require a paradigm shift

 Compiler writers‟ track record over past 3 

decades not promising … recall HPF

 Bottom Line: Compilers will get more helpful, 

but they probably won‟t solve the PPP 



Options for Solving the PPP

 Adopt a very abstract language that can 

target to any platform …



Options for Solving the PPP

 Adopt a very abstract language that can 

target to any platform …

 No one wants to learn a new language, no 

matter how cool

 How does a programmer know how efficient or 

effective his/her code is? Interpreted code?

 What are the “right” abstractions and 

statement forms for such a language? 

 Emphasize programmer convenience?

 Emphasize compiler translation effectiveness?



Options for Solving the PPP

 Agree on a set of parallel primitives (spawn 

process, lock location, etc.) and create 

libraries that work w/ sequential code …



Options for Solving the PPP

 Agree on a set of parallel primitives (spawn 

process, lock location, etc.) and create 

libraries that work w/ sequential code …

 Libraries are a mature technology

 To work with multiple languages, limit base 

language assumptions … L.C.D. facilities

 Libraries use a stylized interface (fcn call) 

limiting possible parallelism-specific abstractions

 Achieving consistent semantics is difficult 



Options for Solving the PPP

 Create an abstract machine model that 

accurately describes common capabilities 

and let the language facilities catch up …



Options for Solving the PPP

 Create an abstract machine model that 

accurately describes common capabilities 

and let the language facilities catch up …

 Not a full solution until languages are available

 The solution works in sequential world (RAM)

 Requires discovering (and predicting) what the 

common capabilities are

 Solution needs to be (continually) validated 

against actual experience



Summary of Options for PPP

 Leave the problem to the compiler …

 Adopt a very abstract language that can 
target to any platform …

 Agree on a set of parallel primitives (spawn 
process, lock location, etc.) and create 
libraries that work w/ sequential code …

 Create an abstract machine model that 
accurately describes common capabilities 
and let the language facilities catch up …
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Why is Seq Programming Successful 

When we write programs in C they are ...

 Efficient -- programs run fast, especially if we use performance 

as a goal 

 traverse arrays in row major order to improve caching 

 Economical -- use resources well 

 represent data by packing memory

 Portable -- run well on any computer with C compiler

 all computers are universal, but with C fast programs are 

fast everywhere

 Easy to write -- we know many „good‟ techniques

 reference data, don‟t copy

These qualities all derive from von Neumman model
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Von Neumann (RAM) Model

 Call the „standard‟ model of a random access 

machine (RAM) the von Neumann model

 A processor interpreting 3-address instructions

 PC pointing to the next instruction of program in 

memory

 “Flat,” randomly accessed memory requires 1 time unit

 Memory is composed of fixed-size addressable units 

 One instruction executes at a time, and is completed 

before the next instruction executes

 The model is not literally true, e.g., memory is 

hierarchical but made to “look flat”

C directly implements this model in a HLL
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Why Use Model That‟s Not Literally True?

 Simple is better, and many things--GPRs, 

floating point format--don‟t matter at all

 Avoid embedding assumptions where things 

could change …

 Flat memory, tho originally true, is no longer 

right, but we don‟t retrofit the model; we don‟t 

want people “programming to the cache” 

 Yes, exploit spatial locality

 No, avoid blocking to fit in cache line, or tricking cache 

into prefetch, etc.

 Compilers bind late, particularize and are better 

than you are!
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vN Model Contributes To Success
 The cost of C statements on the vN machine 

is “understood” by C programmers … 

 How much time does A[r][s] += B[r][s]; take? 
 Load row_size_A, row_size_B, r, s, A_base, B_base (6)

 tempa = (row_size_A * r + s) * data_size (3)

 tempb = (row_size_B * r + s) * data_size (3)

 A_base + tempa; B_base + tempb; load both values (4)

 Add values and return to memory (2)

 Same for many operations, any data size

 Result is measured in “instructions” not time

Widely known and effectively used
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Portability

 Most important property of the C-vN coupling: 

It is approximately right everywhere

 Why so little variation in sequential computers?

HW vendors must run 

installed SW so follow 

vN rules

SW vendors must run 

on installed HW so 

follow vN rules 

Everyone wins … no 

motive to change
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Von Neumann Summary

 The von Neumann model “explains” the costs of C 

because C expresses the facilities of the von 

Neumann machines in programming terms

 Knowing the relationship between C and the von 

Neumann machine is essential for writing fast 

programs

 Following the rules produces good results 

everywhere because everyone benefits

 These ideas are “in our bones” … it‟s how we think

What is the parallel version of vN?
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PRAM Often Proposed As A Candidate

 PRAM (Parallel RAM) ignores memory 

organization, collisions, latency, conflicts, etc. 

 Ignoring these are claimed to have benefits ...

 Portable everywhere since it is very general

 It is a simple programming model ignoring only 

insignificant details -- off by “only log P”

 Ignoring memory difficulties is OK because 

hardware can “fake” a shared memory

 Good for getting started: Begin with PRAM then 

refine the program to a practical solution if needed
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Recall Parallel Random-Access Machine

PRAM has any number of processors

 Every proc references any memory in “time 1”

 Memory read/write collisions must be resolved
P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC

SMPs implement PRAMs for small P … not scalable
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Variations on PRAM

Resolving the memory conflicts considers read 

and write conflicts separately

 Exclusive read/exclusive write (EREW)

 The most limited model

 Concurrent read/exclusive write (CREW)

 Multiple readers are OK

 Concurrent read/concurrent write (CRCW)

 Various write-conflict resolutions used

 There are at least a dozen other variations

All theoretical -- not used in practice



CTA Model

 Candidate Type Architecture: A model with 
P standard processors, d degree,  latency

 Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is 



What CTA Doesn‟t Describe

 CTA has no global memory … but memory 

could be globally addressed

 Mechanism for referencing memory not 

specified: shared, message passing, 1-side

 Interconnection network not specified 

  is not specified beyond >>1 -- cannot be 

because every machine is different

 Controller, combining network “optional”



More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem



More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem



More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem



More On the CTA

 Consider what the diagram doesn‟t mean…

 After ACKing that CTA doesn‟t model 
buses, accept that it‟s a good first approx.

…RAM RAM RAM RAM RAM

RAM

Interconnection NetworkBUS



Typical Values for 

 Lambda can be estimated for any machine 

(given numbers include no contention or 

congestion)

CMP AMD 100

SMP Sun Fire E25K 400-660

Cluster Itanium + Myrinet 4100-5100

Super BlueGene/L 5000

As with merchandizing: It‟s location, location, location! 

Lg  range 

=> cannot 

be ignored



Measured Numbers

 Values (approximating)  for small systems



Communication Mechanisms

 Shared addressing

 One consistent memory image; primitives are 

load and store

 Must protect locations from races

 Widely considered most convenient, though it 

is often tough to get a program to perform

 CTA implies that best practice is to keep as 

much of the problem private; use sharing only 

to communicate

A common pitfall: Logic is too fine grain 



Communication Mechanisms

 Message Passing

 No global memory image; primitives are 
send() and recv()

 Required for most large machines

 User writes in sequential language with 
message passing library:

 Message Passing Interface (MPI)

 Parallel Virtual Machine (PVM)

 CTA implies that best practice is to build and 
use own abstractions

Lack of abstractions makes message passing brutal 



Communication Mechanisms

 One Sided Communication

 One global address space; primitives are 
get() and put()

 Consistency is the programmer‟s responsibility

 Elevating mem copy to a comm mechanism 

 Programmer writes in sequential language with 

library calls -- not widely available unfortunately

 CTA implies that best practice is to build and 

use own abstractions

One-sided is lighter weight than message passing



Programming Implications

 How does CTA influence programming …

 Discuss 

 Expression evaluation: Same/Different?

 Relationship among processors? 

 Data structures?

 Organization of work?

 …



70

Find Maximum in Parallel (Valiant)

Task: Find largest of n integers w/ n processors

Model: CRCW PRAM (writes OK if same value)

L.G.Valiant, “Parallelism in comparison problems,” SIAM J. Computing 

4(3):348-355, 1975

L.G. Valiant, “A Bridging Model for Parallel Computation,” CACM 

33(8):103-111, 1990 

R.J. Anderson & L. Snyder, “A Comparison of Shared and Nonshared 

Memory Models for Parallel Computation,” Proc. IEEE 79(4):480-

487

How would YOU do it?
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Algorithm Sketch

Algorithm: T rounds of O(1) time each

In round, process groups of m vals, v1, v2, …, vm

 Fill m memory locations x1, x2, …, xm with 1s to be 

“knocked out”

 For each 1i,j m a processor tests ...

if vi < vj then xi = 0 else xj = 0

 If xk = 1 it‟s max of group; pass vk to next round

The „trick‟ is to pick m right to minimize T
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Finding Max (continued)

Round 1: m = 3

v1 v2 v3

v1 - v1:v2 v1:v3

v2 - - v2:v3

v3 - - -

x1 x2 x3

1        1        1

v1 v2 v3

20       3       34

x1 x2 x3

0        0        1

For groups of size 3, three tests 

can find max, i.e. 3 procesors

Schedule

Input

Output
Knock out
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Solving Whole Problem

 Round 1 uses P processors to find the max in 

groups of m=3 … producing P/3 group maxes

 Round 2 uses P processors to find the max in 

groups of m=7 … producing P/21 group maxes

 Generally to find the max of a group requires 

m(m-1)/2 comparisons

 Picking m when there are P processors, r 

maxes … largest m s.t. (r/m)(m(m-1)/2)  P i.e. 

r(m-1)  2P 
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Finding Max (continued)

 Initially, r = P, so

r(m-1)  2P

implies m = 3, producing r = P/3

 For (P/3)(m-1)  2P implies next group = 7

 Etc.

 Group size increases quadratically implying 

the maximum is found in O(loglog n) steps 

on CRCW PRAM

It‟s very clever, but is it of any practical use? 
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Assessing Valiant‟s Max Algorithm

The PRAM model caused us to ...

 Exploit the “free use” of read and write 

collisions, which are not possible in practice

 Ignore the costs of data motion, so we adopt 

an algorithm that runs faster than the time 

required to bring all data values together, 

which is (log n)

 So what?
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Running Valiant‟s Algorithm

 PRAM‟s don‟t exist and can‟t be built

 To run the algorithm we need a simulator for the 

CRCWPRAM

 In order to simulate the concurrent reads and the 

concurrent writes, a parallel computer will need  

(log P) time per step, though there are bandwidth 

requirements and serious engineering problems to 

attain that goal

 Observed performance of Valiant‟s Max:

O(log n loglog n)
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Alternative Solution

 What is the best way of computing max using 

the CTA?

 A tree algorithm, a variation on global sum

 O(log P) time on P processors

 The tree algorithm doesn‟t need to be simulated … 

it runs in the stated time directly on all existing 

parallel processors

 Since O(log n) < O(log n loglog n) the PRAM 

model mispredicted the best practical 

algorithm 
The PRAM didn‟t help, it hurt our effort
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Is The PRAM A Good Abstraction?

Different Opinions ...

 OK for finding theoretical limits to parallelism

 It is a simple programming model ignoring 

only insignificant details -- off only by log P 

 Ignoring memory difficulties is OK because 

hardware can “fake” a shared memory

 Start with PRAM then evolve to more realistic 

solution -- good for getting started 



Apply CTA to Count 3s

 How does CTA guide us for Count 3s pgm

 Array segments will be allocated to local mem

 Each processor should count 3s in its segment

 Global total should be formed using reduction

 Performance is 

 Full parallelism for local processing

  log n for combining

 Base of log should be large, i.e high degree nodes

 Same solution as before, but by different rt



Summary

 Parallel hardware is a critical component of 

improving performance through ||-ism … but 

there‟s a Catch-22

 To have portable programs, we must abstract 

away from the hardware

 To write performant programs requires that we 

respect the hardware realities

 Solve the problem with CTA  -- an abstract 

machine with just enough (realizable) detail 

to support critical programming decisions



Assignment for Next Time

 Thinking of XML trees, which are made up of 
well-nested, user-defined matching tags, use 
the CTA to sketch the logic of a || algorithm to 
check if an XML file (is / is not) well nested 
and estimate its performance

 Simplifications
 Linear sequence of:  (, x, ) as in ((xxx)x(x)(xx))

 Explain the algorithm to a person, e.g. a TA 
grader, giving data allocation, communication 
specifics, protocol for processor interactions, etc.

 Assume n >> P, comm costs l, give performance


