
CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSEP524

30 March 2010

http://www.cs.washington.edu/CSE524


CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSE524

30 March 2010

Computation

http://www.cs.washington.edu/CSE524


CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSE524

30 March 2010

Computation
Programming

http://www.cs.washington.edu/CSE524


Course Logistics

 Teaching Assistants: Matt Kehrt and 
Adrienne Wang

 Text: Lin&Snyder, Principles of Parallel 
Programming, Addison Wesley, 2008

 There will also be occasional readings

 Class web page is headquarters for all data

 Take lecture notes -- the slides will be online 
sometime after the lecture

Informal class; ask questions immediately



Expectations

 Readings: We will cover much of the book; please 

read the text before class

 Lectures will layout certain details, arguments … 

discussion is encouraged

 Most weeks there will be graded homework to be 

submitted electronically PRIOR to class

 Am assuming most students have access to a 

multi-core or other parallel machine

 Grading: class contributions, homework assignments; 

no final is contemplated at the moment



Part I: Introduction

Goal: Set the parameters for studying parallelism



Why Study Parallelism?

 After all, for most of our daily computer 

uses, sequential processing is plenty fast

 It is a fundamental departure from the “normal” 

computer model, therefore it is inherently cool

 The extra power from parallel computers is 

enabling in science, engineering, business, …

 Multicore chips present a new opportunity

 Deep intellectual challenges for CS -- models, 

programming languages, algorithms, HW, …



Facts 

Figure courtesy of Kunle 

Olukotun, Lance Hammond, 

Herb Sutter & Burton Smith

2x in 2yrs
Single

Processor

Opportunity

Moore’s law 

continues, so 
use more gates



Size vs Power

 Power5 (Server)

 389mm^2

 120W@1900MHz

 Intel Core2 sc (laptop)

 130mm^2

 15W@1000MHz

 ARM Cortex A8 (automobiles)

 5mm^2

 0.8W@800MHz

 Tensilica DP (cell phones / printers)

 0.8mm^2

 0.09W@600MHz

 Tensilica Xtensa (Cisco router)

 0.32mm^2 for 3!

 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency 

of the largest chip: more threads, lower power



Topic Overview

 Goal:  To give a good idea of parallel computation

 Concepts -- looking at problems with “parallel eyes”

 Algorithms -- different resources; different goals

 Languages -- reduce control flow; increase 

independence; new abstractions

 Hardware -- the challenge is communication, not 

instruction execution

 Programming -- describe the computation without 

saying it sequentially

 Practical wisdom about using parallelism



Everyday Parallelism 

 Juggling -- event-based computation

 House construction -- parallel tasks, wiring 

and plumbing performed at once

 Assembly line manufacture -- pipelining, 

many instances in process at once

 Call center -- independent tasks executed 

simultaneously

How do we describe execution of tasks?



Parallel vs Distributed Computing

 Comparisons are often matters of degree

Characteristic Parallel Distributed

Overall Goal Speed Convenience

Interactions Frequent Infrequent

Granularity Fine Coarse

Reliable Assumed Not Assumed



Parallel vs Concurrent

 In OS and DB communities execution of 

multiple threads is logically simultaneous

 In Arch and HPC communities execution of 

multiple threads is physically simultaneous

 The issues are often the same, say with 

respect to races

 Parallelism can achieve states that are 

impossible with concurrent execution 

because two events happen at once



Consider A Simple Task …

 Adding a sequence of numbers A[0],…,A[n-1]

 Standard way to express it

 Semantics require: (…((sum+A[0])+A[1])+…)+A[n-1]

 That is, sequential

 Can it be executed in parallel?

sum = 0;

for (i=0; i<n; i++) {

sum += A[i];

}



Parallel Summation

 To sum a sequence in parallel 

 add pairs of values producing 1st level results, 

 add pairs of 1st level results producing 2nd 

level results, 

 sum pairs of 2nd level results …

 That is,

(…((A[0]+A[1]) + (A[2]+A[3])) + ... + (A[n-2]+A[n-1]))…)



Express the Two Formulations

 Graphic representation makes difference 

clear

 Same number of operations; different order
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The Dream …

 Since 70s (Illiac IV days) the dream has 

been to compile sequential programs into 

parallel object code

 Three decades of continual, well-funded 

research by smart people implies it’s hopeless

 For a tight loop summing numbers, its doable

 For other computations it has proved extremely

challenging to generate parallel code, even with 

pragmas or other assistance from programmers



What’s the Problem?

 It’s not likely a compiler will produce parallel 
code from a C specification any time soon…

 Fact: For most computations, a “best” 
sequential solution (practically, not 
theoretically) and a “best” parallel solution are 
usually fundamentally different …

 Different solution paradigms imply computations 
are not “simply” related

 Compiler transformations generally preserve the 
solution paradigm

Therefore... the programmer must discover the || solution



A Related Computation

 Consider computing the prefix sums

 Semantics ... 

 A[0] is unchanged

 A[1] = A[1] + A[0]

 A[2] = A[2] + (A[1] + A[0])

...

 A[n-1] = A[n-1] + (A[n-2] + ( ... (A[1] + A[0]) … )

for (i=1; i<n; i++) {

A[i] += A[i-1];

}

A[i] is the sum of the 

first i + 1 elements 

What advantage can ||ism give? 



Comparison of Paradigms

 The sequential solution computes the prefixes … 

the parallel solution computes only the last

 Or does it?
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Parallel Prefix Algorithm

6 4            16         10             16         14            2           8 

6         10             26         36             52         66           68         76

Compute sum going up

Figure prefixes going down 

Invariant: Parent data 

is sum of elements to 

left of subtree 



Fundamental Tool of || Pgmming

 Original research on parallel prefix 

algorithm published by
R. E. Ladner and M. J. Fischer

Parallel Prefix Computation

Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm 

requires 2log n time, twice as 

much as simple tournament 

global sum, not linear time

Applies to a wide class of operations



Parallel Compared to Sequential 

Programming 

 Has different costs, different advantages

 Requires different, unfamiliar algorithms

 Must use different abstractions

 More complex to understand a program’s 
behavior

 More difficult to control the interactions of 
the program’s components

 Knowledge/tools/understanding more 
primitive



Consider a Simple Problem

 Count the 3s in array[] of length values 

 Definitional solution …

 Sequential program 

count = 0;

for (i=0; i<length; i++) 

{

if (array[i] == 3)

count += 1;

}



Write A Parallel Program

 Need to know something about machine … 

use multicore architecture

L2

RAM

Memory

L1L1

P0 P1

How would you 

solve it in parallel?



Divide Into Separate Parts

 Threading solution -- prepare for MT procs

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16  t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;

int start = id * length_per_thread;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

count += 1;

}



Divide Into Separate Parts

 Threading solution -- prepare for MT procs

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16  t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;

int start = id * length_per_thread;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

count += 1;

}

Doesn’t actually get the right answer



Races

 Two processes interfere on memory writes

Thread 1 Thread 2

count  0

time

count  1

count  1

load

increment

store

load

increment

store



Races

 Two processes interfere on memory writes

Thread 1 Thread 2

count  0

time

count  1

count  1

load

increment

store

load

increment

store

Try 1



Protect Memory References 

 Protect Memory References 

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}



Protect Memory References 

 Protect Memory References 

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Try 2



Correct Program Runs Slow

 Serializing at the mutex

 The processors wait on each other

Performance

serial Try 2

0.91

5.02
6.81

t=1 t=2



Closer Look: Motion of count, m

 Lock Reference and Contention

L2

RAM

Memory

L1L1

P0 P1

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}



Accumulate Into Private Count

 Each processor adds into its own memory; 

combine at the end

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

private_count[t] += 1;

}

}

mutex_lock(m);

count += private_count[t];

mutex_unlock(m);



Accumulate Into Private Count

 Each processor adds into its own memory; 

combine at the end

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

private_count[t] += 1;

}

}

mutex_lock(m);

count += private_count[t];

mutex_unlock(m);

Try 3



Keeping Up, But Not Gaining

 Sequential and 1 processor match, but it’s 

a loss with 2 processors

0.91
Performance

serial Try 3

0.91 1.15

t=1 t=2



False Sharing 

 Private var  private cache-line

private_count[0]

private_count[1]

Thread modifying
private_count[0]

private_count[0]

private_count[1]

Thread modifying
private_count[1]

private_count[0] private_count[1]

L2

RAM

Memory

L1L1

P0 P1



Force Into Different Lines 

 Padding the private variables forces them 

into separate cache lines and removes 

false sharing

struct padded_int

{  int value;

char padding[128];

}  private_count[MaxThreads];



Force Into Different Lines 

 Padding the private variables forces them 

into separate cache lines and removes 

false sharing

struct padded_int

{  int value;

char padding[128];

}  private_count[MaxThreads];

Try 4



Success!!

 Two processors are almost twice as fast

Is this the best solution???

Performance

serial Try 4

0.91 0.51

t=1 t=2

0.91



Count 3s Summary

 Recapping the experience of writing the 

program, we

 Wrote the obvious “break into blocks” program

 We needed to protect the count variable

 We got the right answer, but the program was 

slower … lock congestion

 Privatized memory and 1-process was fast 

enough, 2- processes slow … false sharing

 Separated private variables to own cache line

Finally, success



Break

 During break think about how to generalize 

the “sum n-integers” computation for n>8, 

and possibly, more processors



Variations

 What happens when more processors are 

available?

 4 processors

 8 processors

 256 processors

 32,768 processors



Our Goals In Parallel Programming

 Goal: Scalable programs with performance 

and portability 

 Scalable: More processors can be “usefully” 

added to solve the problem faster

 Performance: Programs run as fast as those 

produced by experienced parallel 

programmers for the specific machine

 Portability: The solutions run well on all parallel 

platforms



Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8 

 Use a logical binary tree?



Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8 

 Assume communication time = 30 ticks

 n = 1024

 compute performance



Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8 

 and communication time = 30 ticks

 n = 1024

 compute performance

 Now scale to 64 processors



Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8 

 and communication time = 30 ticks

 n = 1024

 compute performance

 Now scale to 64 processors

This analysis will become standard, intuitive



Matrix Product: || Poster Algorithm  

 Matrix multiplication is most studied parallel 
algorithm (analogous to sequential sorting)

 Many solutions known

 Illustrate a variety of complications 

 Demonstrate great solutions 

 Our goal: explore variety of issues

 Amount of concurrency

 Data placement

 Granularity

Exceptional by requiring O(n3) ops on O(n2) data



Recall the computation…

 Matrix multiplication of (square n x n) 

matrices A and B producing n x n result C
where Crs = 1≤k≤n Ark*Bks

C A B

+*
1

1

= +*
2

2
*

n

n

… +

=



Extreme Matrix Multiplication

 The multiplications are independent (do in 

any order) and the adds can be done in a 

tree

*

1

1
*

2

2
*

3

3

...

*

n

n

...

=

+ +

+

O(n) processors 

for each result 

element implies 

O(n3) total

Time: O(log n)

Strassen Not Relevant



O(log n) MM in the real world … 

Good properties

 Extremely parallel … shows limit of 
concurrency

 Very fast -- log2 n is a good bound … faster?

Bad properties

 Ignores memory structure and reference 
collisions

 Ignores data motion and communication costs

 Under-uses processors -- half of the 
processors do only 1 operation



Where is the data?

 Data references collisions and communication costs 

are important to final result … need a model … can 

generalize the standard RAM to get PRAM

P3

A BC

Memory

P7P6P5P4P2P1P0



Parallel Random Access Machine 

 Any number of processors, including nc

 Any processor can reference any memory in “unit 
time”

 Resolve Memory Collisions
 Read Collisions -- simultaneous reads to location are OK

 Write Collisions -- simultaneous writes to loc need a rule:

 Allowed, but must all write the same value

 Allowed, but value from highest indexed processor wins

 Allowed, but a random value wins

 Prohibited

Caution: The PRAM is not a model we advocate



PRAM says O(log n) MM is good

 PRAM allows any # processors => O(n3) OK

 A and B matrices are read simultaneously, 

but that’s OK

 C is written simultaneously, but no location 

is written by more than 1 processor => OK

PRAM model implies O(log n) algorithm is 

best … but in real world, we suspect not

We return to this point later



Where else could data be?

 Local memories of separate processors …

 Each processor could compute block of C

 Avoid keeping multiple copies of A and B

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers



Data Motion

 Getting rows and columns to processors

 Allocate matrices in blocks

 Ship only portion being used

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp



Blocking Improves Locality

 Compute a b x b block of the result

 Advantages

 Reuse of rows, columns = caching effect

 Larger blocks of local computation = hi locality

A BC



Caching in Parallel Computers

 Blocking = caching … why not automatic?

 Blocking improves locality, but it is generally a manual 

optimization in sequential computation

 Caching exploits two forms of locality

 Temporal locality -- refs clustered in time

 Spatial locality -- refs clustered by address

 When multiple threads touch the data, global 

reference sequence may not exhibit clustering 

features typical of one thread -- thrashing



Sweeter Blocking

 It’s possible to do even better blocking …

 Completely use the cached values before 

reloading

A BC

r rows



Best MM Algorithm?

 We haven’t decided on a good MM solution

 A variety of factors have emerged

 A processor’s connection to memory, unknown

 Number of processors available, unknown

 Locality--always important in computing--

 Using caching is complicated by multiple threads

 Contrary to high levels of parallelism

 Conclusion: Need a better understanding of 
the constraints of parallelism

Next week, architectural details + model of ||ism



Assignment for Next Time

 Reproduce the parallel prefix tree labeling 

to compute the bit-wise & scan

 Try the “count 3s” computation on your 

multi-core computer

 Implementation Discussion Board … please 

contribute – success, failure, kibitzing, … 

 https://catalysttools.washington.edu/gopost/bo

ard/snyder/16265/


