
CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSEP524

30 March 2010

http://www.cs.washington.edu/CSE524

CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSE524

30 March 2010

Computation

http://www.cs.washington.edu/CSE524

CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSE524

30 March 2010

Computation
Programming

http://www.cs.washington.edu/CSE524

Course Logistics

 Teaching Assistants: Matt Kehrt and
Adrienne Wang

 Text: Lin&Snyder, Principles of Parallel
Programming, Addison Wesley, 2008

 There will also be occasional readings

 Class web page is headquarters for all data

 Take lecture notes -- the slides will be online
sometime after the lecture

Informal class; ask questions immediately

Expectations

 Readings: We will cover much of the book; please

read the text before class

 Lectures will layout certain details, arguments …

discussion is encouraged

 Most weeks there will be graded homework to be

submitted electronically PRIOR to class

 Am assuming most students have access to a

multi-core or other parallel machine

 Grading: class contributions, homework assignments;

no final is contemplated at the moment

Part I: Introduction

Goal: Set the parameters for studying parallelism

Why Study Parallelism?

 After all, for most of our daily computer

uses, sequential processing is plenty fast

 It is a fundamental departure from the “normal”

computer model, therefore it is inherently cool

 The extra power from parallel computers is

enabling in science, engineering, business, …

 Multicore chips present a new opportunity

 Deep intellectual challenges for CS -- models,

programming languages, algorithms, HW, …

Facts

Figure courtesy of Kunle

Olukotun, Lance Hammond,

Herb Sutter & Burton Smith

2x in 2yrs
Single

Processor

Opportunity

Moore’s law

continues, so
use more gates

Size vs Power

 Power5 (Server)

 389mm^2

 120W@1900MHz

 Intel Core2 sc (laptop)

 130mm^2

 15W@1000MHz

 ARM Cortex A8 (automobiles)

 5mm^2

 0.8W@800MHz

 Tensilica DP (cell phones / printers)

 0.8mm^2

 0.09W@600MHz

 Tensilica Xtensa (Cisco router)

 0.32mm^2 for 3!

 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency

of the largest chip: more threads, lower power

Topic Overview

 Goal: To give a good idea of parallel computation

 Concepts -- looking at problems with “parallel eyes”

 Algorithms -- different resources; different goals

 Languages -- reduce control flow; increase

independence; new abstractions

 Hardware -- the challenge is communication, not

instruction execution

 Programming -- describe the computation without

saying it sequentially

 Practical wisdom about using parallelism

Everyday Parallelism

 Juggling -- event-based computation

 House construction -- parallel tasks, wiring

and plumbing performed at once

 Assembly line manufacture -- pipelining,

many instances in process at once

 Call center -- independent tasks executed

simultaneously

How do we describe execution of tasks?

Parallel vs Distributed Computing

 Comparisons are often matters of degree

Characteristic Parallel Distributed

Overall Goal Speed Convenience

Interactions Frequent Infrequent

Granularity Fine Coarse

Reliable Assumed Not Assumed

Parallel vs Concurrent

 In OS and DB communities execution of

multiple threads is logically simultaneous

 In Arch and HPC communities execution of

multiple threads is physically simultaneous

 The issues are often the same, say with

respect to races

 Parallelism can achieve states that are

impossible with concurrent execution

because two events happen at once

Consider A Simple Task …

 Adding a sequence of numbers A[0],…,A[n-1]

 Standard way to express it

 Semantics require: (…((sum+A[0])+A[1])+…)+A[n-1]

 That is, sequential

 Can it be executed in parallel?

sum = 0;

for (i=0; i<n; i++) {

sum += A[i];

}

Parallel Summation

 To sum a sequence in parallel

 add pairs of values producing 1st level results,

 add pairs of 1st level results producing 2nd

level results,

 sum pairs of 2nd level results …

 That is,

(…((A[0]+A[1]) + (A[2]+A[3])) + ... + (A[n-2]+A[n-1]))…)

Express the Two Formulations

 Graphic representation makes difference

clear

 Same number of operations; different order

246 810 16 1416

10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

The Dream …

 Since 70s (Illiac IV days) the dream has

been to compile sequential programs into

parallel object code

 Three decades of continual, well-funded

research by smart people implies it’s hopeless

 For a tight loop summing numbers, its doable

 For other computations it has proved extremely

challenging to generate parallel code, even with

pragmas or other assistance from programmers

What’s the Problem?

 It’s not likely a compiler will produce parallel
code from a C specification any time soon…

 Fact: For most computations, a “best”
sequential solution (practically, not
theoretically) and a “best” parallel solution are
usually fundamentally different …

 Different solution paradigms imply computations
are not “simply” related

 Compiler transformations generally preserve the
solution paradigm

Therefore... the programmer must discover the || solution

A Related Computation

 Consider computing the prefix sums

 Semantics ...

 A[0] is unchanged

 A[1] = A[1] + A[0]

 A[2] = A[2] + (A[1] + A[0])

...

 A[n-1] = A[n-1] + (A[n-2] + (... (A[1] + A[0]) …)

for (i=1; i<n; i++) {

A[i] += A[i-1];

}

A[i] is the sum of the

first i + 1 elements

What advantage can ||ism give?

Comparison of Paradigms

 The sequential solution computes the prefixes …

the parallel solution computes only the last

 Or does it?

246 810 16 1416

10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Compute sum going up

Figure prefixes going down

Invariant: Parent data

is sum of elements to

left of subtree

Fundamental Tool of || Pgmming

 Original research on parallel prefix

algorithm published by
R. E. Ladner and M. J. Fischer

Parallel Prefix Computation

Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm

requires 2log n time, twice as

much as simple tournament

global sum, not linear time

Applies to a wide class of operations

Parallel Compared to Sequential

Programming

 Has different costs, different advantages

 Requires different, unfamiliar algorithms

 Must use different abstractions

 More complex to understand a program’s
behavior

 More difficult to control the interactions of
the program’s components

 Knowledge/tools/understanding more
primitive

Consider a Simple Problem

 Count the 3s in array[] of length values

 Definitional solution …

 Sequential program

count = 0;

for (i=0; i<length; i++)

{

if (array[i] == 3)

count += 1;

}

Write A Parallel Program

 Need to know something about machine …

use multicore architecture

L2

RAM

Memory

L1L1

P0 P1

How would you

solve it in parallel?

Divide Into Separate Parts

 Threading solution -- prepare for MT procs

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16 t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;

int start = id * length_per_thread;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

count += 1;

}

Divide Into Separate Parts

 Threading solution -- prepare for MT procs

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16 t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;

int start = id * length_per_thread;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

count += 1;

}

Doesn’t actually get the right answer

Races

 Two processes interfere on memory writes

Thread 1 Thread 2

count 0

time

count 1

count 1

load

increment

store

load

increment

store

Races

 Two processes interfere on memory writes

Thread 1 Thread 2

count 0

time

count 1

count 1

load

increment

store

load

increment

store

Try 1

Protect Memory References

 Protect Memory References

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Protect Memory References

 Protect Memory References

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Try 2

Correct Program Runs Slow

 Serializing at the mutex

 The processors wait on each other

Performance

serial Try 2

0.91

5.02
6.81

t=1 t=2

Closer Look: Motion of count, m

 Lock Reference and Contention

L2

RAM

Memory

L1L1

P0 P1

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Accumulate Into Private Count

 Each processor adds into its own memory;

combine at the end

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

private_count[t] += 1;

}

}

mutex_lock(m);

count += private_count[t];

mutex_unlock(m);

Accumulate Into Private Count

 Each processor adds into its own memory;

combine at the end

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

private_count[t] += 1;

}

}

mutex_lock(m);

count += private_count[t];

mutex_unlock(m);

Try 3

Keeping Up, But Not Gaining

 Sequential and 1 processor match, but it’s

a loss with 2 processors

0.91
Performance

serial Try 3

0.91 1.15

t=1 t=2

False Sharing

 Private var private cache-line

private_count[0]

private_count[1]

Thread modifying
private_count[0]

private_count[0]

private_count[1]

Thread modifying
private_count[1]

private_count[0] private_count[1]

L2

RAM

Memory

L1L1

P0 P1

Force Into Different Lines

 Padding the private variables forces them

into separate cache lines and removes

false sharing

struct padded_int

{ int value;

char padding[128];

} private_count[MaxThreads];

Force Into Different Lines

 Padding the private variables forces them

into separate cache lines and removes

false sharing

struct padded_int

{ int value;

char padding[128];

} private_count[MaxThreads];

Try 4

Success!!

 Two processors are almost twice as fast

Is this the best solution???

Performance

serial Try 4

0.91 0.51

t=1 t=2

0.91

Count 3s Summary

 Recapping the experience of writing the

program, we

 Wrote the obvious “break into blocks” program

 We needed to protect the count variable

 We got the right answer, but the program was

slower … lock congestion

 Privatized memory and 1-process was fast

enough, 2- processes slow … false sharing

 Separated private variables to own cache line

Finally, success

Break

 During break think about how to generalize

the “sum n-integers” computation for n>8,

and possibly, more processors

Variations

 What happens when more processors are

available?

 4 processors

 8 processors

 256 processors

 32,768 processors

Our Goals In Parallel Programming

 Goal: Scalable programs with performance

and portability

 Scalable: More processors can be “usefully”

added to solve the problem faster

 Performance: Programs run as fast as those

produced by experienced parallel

programmers for the specific machine

 Portability: The solutions run well on all parallel

platforms

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 Use a logical binary tree?

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 Assume communication time = 30 ticks

 n = 1024

 compute performance

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 and communication time = 30 ticks

 n = 1024

 compute performance

 Now scale to 64 processors

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 and communication time = 30 ticks

 n = 1024

 compute performance

 Now scale to 64 processors

This analysis will become standard, intuitive

Matrix Product: || Poster Algorithm

 Matrix multiplication is most studied parallel
algorithm (analogous to sequential sorting)

 Many solutions known

 Illustrate a variety of complications

 Demonstrate great solutions

 Our goal: explore variety of issues

 Amount of concurrency

 Data placement

 Granularity

Exceptional by requiring O(n3) ops on O(n2) data

Recall the computation…

 Matrix multiplication of (square n x n)

matrices A and B producing n x n result C
where Crs = 1≤k≤n Ark*Bks

C A B

+*
1

1

= +*
2

2
*

n

n

… +

=

Extreme Matrix Multiplication

 The multiplications are independent (do in

any order) and the adds can be done in a

tree

*

1

1
*

2

2
*

3

3

...

*

n

n

...

=

+ +

+

O(n) processors

for each result

element implies

O(n3) total

Time: O(log n)

Strassen Not Relevant

O(log n) MM in the real world …

Good properties

 Extremely parallel … shows limit of
concurrency

 Very fast -- log2 n is a good bound … faster?

Bad properties

 Ignores memory structure and reference
collisions

 Ignores data motion and communication costs

 Under-uses processors -- half of the
processors do only 1 operation

Where is the data?

 Data references collisions and communication costs

are important to final result … need a model … can

generalize the standard RAM to get PRAM

P3

A BC

Memory

P7P6P5P4P2P1P0

Parallel Random Access Machine

 Any number of processors, including nc

 Any processor can reference any memory in “unit
time”

 Resolve Memory Collisions
 Read Collisions -- simultaneous reads to location are OK

 Write Collisions -- simultaneous writes to loc need a rule:

 Allowed, but must all write the same value

 Allowed, but value from highest indexed processor wins

 Allowed, but a random value wins

 Prohibited

Caution: The PRAM is not a model we advocate

PRAM says O(log n) MM is good

 PRAM allows any # processors => O(n3) OK

 A and B matrices are read simultaneously,

but that’s OK

 C is written simultaneously, but no location

is written by more than 1 processor => OK

PRAM model implies O(log n) algorithm is

best … but in real world, we suspect not

We return to this point later

Where else could data be?

 Local memories of separate processors …

 Each processor could compute block of C

 Avoid keeping multiple copies of A and B

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers

Data Motion

 Getting rows and columns to processors

 Allocate matrices in blocks

 Ship only portion being used

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp

Blocking Improves Locality

 Compute a b x b block of the result

 Advantages

 Reuse of rows, columns = caching effect

 Larger blocks of local computation = hi locality

A BC

Caching in Parallel Computers

 Blocking = caching … why not automatic?

 Blocking improves locality, but it is generally a manual

optimization in sequential computation

 Caching exploits two forms of locality

 Temporal locality -- refs clustered in time

 Spatial locality -- refs clustered by address

 When multiple threads touch the data, global

reference sequence may not exhibit clustering

features typical of one thread -- thrashing

Sweeter Blocking

 It’s possible to do even better blocking …

 Completely use the cached values before

reloading

A BC

r rows

Best MM Algorithm?

 We haven’t decided on a good MM solution

 A variety of factors have emerged

 A processor’s connection to memory, unknown

 Number of processors available, unknown

 Locality--always important in computing--

 Using caching is complicated by multiple threads

 Contrary to high levels of parallelism

 Conclusion: Need a better understanding of
the constraints of parallelism

Next week, architectural details + model of ||ism

Assignment for Next Time

 Reproduce the parallel prefix tree labeling

to compute the bit-wise & scan

 Try the “count 3s” computation on your

multi-core computer

 Implementation Discussion Board … please

contribute – success, failure, kibitzing, …

 https://catalysttools.washington.edu/gopost/bo

ard/snyder/16265/

