
CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSEP524

30 March 2010

http://www.cs.washington.edu/CSE524

CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSE524

30 March 2010

Computation

http://www.cs.washington.edu/CSE524

CSE524 Parallel Algorithms

Lawrence Snyder

www.cs.washington.edu/CSE524

30 March 2010

Computation
Programming

http://www.cs.washington.edu/CSE524

Course Logistics

 Teaching Assistants: Matt Kehrt and
Adrienne Wang

 Text: Lin&Snyder, Principles of Parallel
Programming, Addison Wesley, 2008

 There will also be occasional readings

 Class web page is headquarters for all data

 Take lecture notes -- the slides will be online
sometime after the lecture

Informal class; ask questions immediately

Expectations

 Readings: We will cover much of the book; please

read the text before class

 Lectures will layout certain details, arguments …

discussion is encouraged

 Most weeks there will be graded homework to be

submitted electronically PRIOR to class

 Am assuming most students have access to a

multi-core or other parallel machine

 Grading: class contributions, homework assignments;

no final is contemplated at the moment

Part I: Introduction

Goal: Set the parameters for studying parallelism

Why Study Parallelism?

 After all, for most of our daily computer

uses, sequential processing is plenty fast

 It is a fundamental departure from the “normal”

computer model, therefore it is inherently cool

 The extra power from parallel computers is

enabling in science, engineering, business, …

 Multicore chips present a new opportunity

 Deep intellectual challenges for CS -- models,

programming languages, algorithms, HW, …

Facts

Figure courtesy of Kunle

Olukotun, Lance Hammond,

Herb Sutter & Burton Smith

2x in 2yrs
Single

Processor

Opportunity

Moore’s law

continues, so
use more gates

Size vs Power

 Power5 (Server)

 389mm^2

 120W@1900MHz

 Intel Core2 sc (laptop)

 130mm^2

 15W@1000MHz

 ARM Cortex A8 (automobiles)

 5mm^2

 0.8W@800MHz

 Tensilica DP (cell phones / printers)

 0.8mm^2

 0.09W@600MHz

 Tensilica Xtensa (Cisco router)

 0.32mm^2 for 3!

 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency

of the largest chip: more threads, lower power

Topic Overview

 Goal: To give a good idea of parallel computation

 Concepts -- looking at problems with “parallel eyes”

 Algorithms -- different resources; different goals

 Languages -- reduce control flow; increase

independence; new abstractions

 Hardware -- the challenge is communication, not

instruction execution

 Programming -- describe the computation without

saying it sequentially

 Practical wisdom about using parallelism

Everyday Parallelism

 Juggling -- event-based computation

 House construction -- parallel tasks, wiring

and plumbing performed at once

 Assembly line manufacture -- pipelining,

many instances in process at once

 Call center -- independent tasks executed

simultaneously

How do we describe execution of tasks?

Parallel vs Distributed Computing

 Comparisons are often matters of degree

Characteristic Parallel Distributed

Overall Goal Speed Convenience

Interactions Frequent Infrequent

Granularity Fine Coarse

Reliable Assumed Not Assumed

Parallel vs Concurrent

 In OS and DB communities execution of

multiple threads is logically simultaneous

 In Arch and HPC communities execution of

multiple threads is physically simultaneous

 The issues are often the same, say with

respect to races

 Parallelism can achieve states that are

impossible with concurrent execution

because two events happen at once

Consider A Simple Task …

 Adding a sequence of numbers A[0],…,A[n-1]

 Standard way to express it

 Semantics require: (…((sum+A[0])+A[1])+…)+A[n-1]

 That is, sequential

 Can it be executed in parallel?

sum = 0;

for (i=0; i<n; i++) {

sum += A[i];

}

Parallel Summation

 To sum a sequence in parallel

 add pairs of values producing 1st level results,

 add pairs of 1st level results producing 2nd

level results,

 sum pairs of 2nd level results …

 That is,

(…((A[0]+A[1]) + (A[2]+A[3])) + ... + (A[n-2]+A[n-1]))…)

Express the Two Formulations

 Graphic representation makes difference

clear

 Same number of operations; different order

246 810 16 1416

10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

The Dream …

 Since 70s (Illiac IV days) the dream has

been to compile sequential programs into

parallel object code

 Three decades of continual, well-funded

research by smart people implies it’s hopeless

 For a tight loop summing numbers, its doable

 For other computations it has proved extremely

challenging to generate parallel code, even with

pragmas or other assistance from programmers

What’s the Problem?

 It’s not likely a compiler will produce parallel
code from a C specification any time soon…

 Fact: For most computations, a “best”
sequential solution (practically, not
theoretically) and a “best” parallel solution are
usually fundamentally different …

 Different solution paradigms imply computations
are not “simply” related

 Compiler transformations generally preserve the
solution paradigm

Therefore... the programmer must discover the || solution

A Related Computation

 Consider computing the prefix sums

 Semantics ...

 A[0] is unchanged

 A[1] = A[1] + A[0]

 A[2] = A[2] + (A[1] + A[0])

...

 A[n-1] = A[n-1] + (A[n-2] + (... (A[1] + A[0]) …)

for (i=1; i<n; i++) {

A[i] += A[i-1];

}

A[i] is the sum of the

first i + 1 elements

What advantage can ||ism give?

Comparison of Paradigms

 The sequential solution computes the prefixes …

the parallel solution computes only the last

 Or does it?

246 810 16 1416

10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Compute sum going up

Figure prefixes going down

Invariant: Parent data

is sum of elements to

left of subtree

Fundamental Tool of || Pgmming

 Original research on parallel prefix

algorithm published by
R. E. Ladner and M. J. Fischer

Parallel Prefix Computation

Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm

requires 2log n time, twice as

much as simple tournament

global sum, not linear time

Applies to a wide class of operations

Parallel Compared to Sequential

Programming

 Has different costs, different advantages

 Requires different, unfamiliar algorithms

 Must use different abstractions

 More complex to understand a program’s
behavior

 More difficult to control the interactions of
the program’s components

 Knowledge/tools/understanding more
primitive

Consider a Simple Problem

 Count the 3s in array[] of length values

 Definitional solution …

 Sequential program

count = 0;

for (i=0; i<length; i++)

{

if (array[i] == 3)

count += 1;

}

Write A Parallel Program

 Need to know something about machine …

use multicore architecture

L2

RAM

Memory

L1L1

P0 P1

How would you

solve it in parallel?

Divide Into Separate Parts

 Threading solution -- prepare for MT procs

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16 t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;

int start = id * length_per_thread;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

count += 1;

}

Divide Into Separate Parts

 Threading solution -- prepare for MT procs

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16 t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;

int start = id * length_per_thread;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

count += 1;

}

Doesn’t actually get the right answer

Races

 Two processes interfere on memory writes

Thread 1 Thread 2

count  0

time

count  1

count  1

load

increment

store

load

increment

store

Races

 Two processes interfere on memory writes

Thread 1 Thread 2

count  0

time

count  1

count  1

load

increment

store

load

increment

store

Try 1

Protect Memory References

 Protect Memory References

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Protect Memory References

 Protect Memory References

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Try 2

Correct Program Runs Slow

 Serializing at the mutex

 The processors wait on each other

Performance

serial Try 2

0.91

5.02
6.81

t=1 t=2

Closer Look: Motion of count, m

 Lock Reference and Contention

L2

RAM

Memory

L1L1

P0 P1

mutex m;

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

mutex_lock(m);

count += 1;

mutex_unlock(m);

}

}

Accumulate Into Private Count

 Each processor adds into its own memory;

combine at the end

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

private_count[t] += 1;

}

}

mutex_lock(m);

count += private_count[t];

mutex_unlock(m);

Accumulate Into Private Count

 Each processor adds into its own memory;

combine at the end

for (i=start; i<start+length_per_thread; i++)

{

if (array[i] == 3)

{

private_count[t] += 1;

}

}

mutex_lock(m);

count += private_count[t];

mutex_unlock(m);

Try 3

Keeping Up, But Not Gaining

 Sequential and 1 processor match, but it’s

a loss with 2 processors

0.91
Performance

serial Try 3

0.91 1.15

t=1 t=2

False Sharing

 Private var  private cache-line

private_count[0]

private_count[1]

Thread modifying
private_count[0]

private_count[0]

private_count[1]

Thread modifying
private_count[1]

private_count[0] private_count[1]

L2

RAM

Memory

L1L1

P0 P1

Force Into Different Lines

 Padding the private variables forces them

into separate cache lines and removes

false sharing

struct padded_int

{ int value;

char padding[128];

} private_count[MaxThreads];

Force Into Different Lines

 Padding the private variables forces them

into separate cache lines and removes

false sharing

struct padded_int

{ int value;

char padding[128];

} private_count[MaxThreads];

Try 4

Success!!

 Two processors are almost twice as fast

Is this the best solution???

Performance

serial Try 4

0.91 0.51

t=1 t=2

0.91

Count 3s Summary

 Recapping the experience of writing the

program, we

 Wrote the obvious “break into blocks” program

 We needed to protect the count variable

 We got the right answer, but the program was

slower … lock congestion

 Privatized memory and 1-process was fast

enough, 2- processes slow … false sharing

 Separated private variables to own cache line

Finally, success

Break

 During break think about how to generalize

the “sum n-integers” computation for n>8,

and possibly, more processors

Variations

 What happens when more processors are

available?

 4 processors

 8 processors

 256 processors

 32,768 processors

Our Goals In Parallel Programming

 Goal: Scalable programs with performance

and portability

 Scalable: More processors can be “usefully”

added to solve the problem faster

 Performance: Programs run as fast as those

produced by experienced parallel

programmers for the specific machine

 Portability: The solutions run well on all parallel

platforms

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 Use a logical binary tree?

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 Assume communication time = 30 ticks

 n = 1024

 compute performance

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 and communication time = 30 ticks

 n = 1024

 compute performance

 Now scale to 64 processors

Program A Parallel Sum

 Return to problem of writing a parallel sum

 Sketch solution in class when n > P = 8

 and communication time = 30 ticks

 n = 1024

 compute performance

 Now scale to 64 processors

This analysis will become standard, intuitive

Matrix Product: || Poster Algorithm

 Matrix multiplication is most studied parallel
algorithm (analogous to sequential sorting)

 Many solutions known

 Illustrate a variety of complications

 Demonstrate great solutions

 Our goal: explore variety of issues

 Amount of concurrency

 Data placement

 Granularity

Exceptional by requiring O(n3) ops on O(n2) data

Recall the computation…

 Matrix multiplication of (square n x n)

matrices A and B producing n x n result C
where Crs = 1≤k≤n Ark*Bks

C A B

+*
1

1

= +*
2

2
*

n

n

… +

=

Extreme Matrix Multiplication

 The multiplications are independent (do in

any order) and the adds can be done in a

tree

*

1

1
*

2

2
*

3

3

...

*

n

n

...

=

+ +

+

O(n) processors

for each result

element implies

O(n3) total

Time: O(log n)

Strassen Not Relevant

O(log n) MM in the real world …

Good properties

 Extremely parallel … shows limit of
concurrency

 Very fast -- log2 n is a good bound … faster?

Bad properties

 Ignores memory structure and reference
collisions

 Ignores data motion and communication costs

 Under-uses processors -- half of the
processors do only 1 operation

Where is the data?

 Data references collisions and communication costs

are important to final result … need a model … can

generalize the standard RAM to get PRAM

P3

A BC

Memory

P7P6P5P4P2P1P0

Parallel Random Access Machine

 Any number of processors, including nc

 Any processor can reference any memory in “unit
time”

 Resolve Memory Collisions
 Read Collisions -- simultaneous reads to location are OK

 Write Collisions -- simultaneous writes to loc need a rule:

 Allowed, but must all write the same value

 Allowed, but value from highest indexed processor wins

 Allowed, but a random value wins

 Prohibited

Caution: The PRAM is not a model we advocate

PRAM says O(log n) MM is good

 PRAM allows any # processors => O(n3) OK

 A and B matrices are read simultaneously,

but that’s OK

 C is written simultaneously, but no location

is written by more than 1 processor => OK

PRAM model implies O(log n) algorithm is

best … but in real world, we suspect not

We return to this point later

Where else could data be?

 Local memories of separate processors …

 Each processor could compute block of C

 Avoid keeping multiple copies of A and B

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers

Data Motion

 Getting rows and columns to processors

 Allocate matrices in blocks

 Ship only portion being used

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp

Blocking Improves Locality

 Compute a b x b block of the result

 Advantages

 Reuse of rows, columns = caching effect

 Larger blocks of local computation = hi locality

A BC

Caching in Parallel Computers

 Blocking = caching … why not automatic?

 Blocking improves locality, but it is generally a manual

optimization in sequential computation

 Caching exploits two forms of locality

 Temporal locality -- refs clustered in time

 Spatial locality -- refs clustered by address

 When multiple threads touch the data, global

reference sequence may not exhibit clustering

features typical of one thread -- thrashing

Sweeter Blocking

 It’s possible to do even better blocking …

 Completely use the cached values before

reloading

A BC

r rows

Best MM Algorithm?

 We haven’t decided on a good MM solution

 A variety of factors have emerged

 A processor’s connection to memory, unknown

 Number of processors available, unknown

 Locality--always important in computing--

 Using caching is complicated by multiple threads

 Contrary to high levels of parallelism

 Conclusion: Need a better understanding of
the constraints of parallelism

Next week, architectural details + model of ||ism

Assignment for Next Time

 Reproduce the parallel prefix tree labeling

to compute the bit-wise & scan

 Try the “count 3s” computation on your

multi-core computer

 Implementation Discussion Board … please

contribute – success, failure, kibitzing, …

 https://catalysttools.washington.edu/gopost/bo

ard/snyder/16265/

