CSE524 Parallel Algorithms

Lawrence Snyder
www.cs.washington.edu/CSEP524

30 March 2010

Computation CSE524 Parallel Algorithins.

Lawrence Snyder
www.cs.washington.edu/CSE524

30 March 2010

Programming
 Computation
 CSE524 Parallel Algorithe.

Lawrence Snyder
www.cs.washington.edu/CSE524

30 March 2010

Course Logistics

- Teaching Assistants: Matt Kehrt and Adrienne Wang
\square Text: Lin\&Snyder, Principles of Parallel Programming, Addison Wesley, 2008 - There will also be occasional readings
\square Class web page is headquarters for all data
\square Take lecture notes -- the slides will be online sometime after the lecture

Informal class; ask questions immediately

Expectations

\square Readings: We will cover much of the book; please read the text before class
\square Lectures will layout certain details, arguments ... discussion is encouraged
\square Most weeks there will be graded homework to be submitted electronically PRIOR to class
\square Am assuming most students have access to a multi-core or other parallel machine
\square Grading: class contributions, homework assignments; no final is contemplated at the moment

Part I: Introduction

Goal: Set the parameters for studying parallelism

Why Study Parallelism?

\square After all, for most of our daily computer uses, sequential processing is plenty fast

- It is a fundamental departure from the "normal" computer model, therefore it is inherently cool
- The extra power from parallel computers is enabling in science, engineering, business, ...
- Multicore chips present a new opportunity
- Deep intellectual challenges for CS -- models, programming languages, algorithms, HW, ...

Facts

Single Processor

Opportunity
 Moore's law continues, so use more gates

Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter \& Burton Smith

Size vs Power

\square Power5 (Server)

- $389 \mathrm{~mm}{ }^{\wedge} 2$
- 120W@1900MHz
$\square \quad$ Intel Core2 sc (laptop)
- $130 \mathrm{~mm}^{\wedge} 2$
- 15W@1000MHz
\square ARM Cortex A8 (automobiles)
- $5 \mathrm{~mm}{ }^{\wedge} 2$
- $0.8 \mathrm{~W} @ 800 \mathrm{MHz}$
\square Tensilica DP (cell phones / printers)
- $0.8 \mathrm{~mm}^{\wedge} 2$
- 0.09W@600MHz

\square Tensilica Xtensa (Cisco router)
- $0.32 \mathrm{~mm}^{\wedge} 2$ for $3!$ Each processor operates with 0.3-0.1 efficiency
- 0.05W@600MHz of the largest chip: more threads, lower power

Topic Overview

\square Goal: To give a good idea of parallel computation

- Concepts -- looking at problems with "parallel eyes"
- Algorithms -- different resources; different goals
- Languages -- reduce control flow; increase independence; new abstractions
- Hardware -- the challenge is communication, not instruction execution
- Programming -- describe the computation without saying it sequentially
- Practical wisdom about using parallelism

Everyday Parallelism

\square Juggling -- event-based computation
\square House construction -- parallel tasks, wiring and plumbing performed at once
\square Assembly line manufacture -- pipelining, many instances in process at once
\square Call center -- independent tasks executed simultaneously

How do we describe execution of tasks?

Parallel vs Distributed Computing

\square Comparisons are often matters of degree

Characteristic	Parallel	Distributed
Overall Goal	Speed	Convenience
Interactions	Frequent	Infrequent
Granularity	Fine	Coarse
Reliable	Assumed	Not Assumed

Parallel vs Concurrent

$\square \ln$ OS and DB communities execution of multiple threads is logically simultaneous
\square In Arch and HPC communities execution of multiple threads is physically simultaneous
\square The issues are often the same, say with respect to races
\square Parallelism can achieve states that are impossible with concurrent execution because two events happen at once

Consider A Simple Task ...

\square Adding a sequence of numbers $A[0], \ldots, A[n-1]$
\square Standard way to express it

$$
\begin{aligned}
& \text { sum }=0 ; \\
& \text { for }(i=0 ; i<n ; i++)\{ \\
& \text { sum }+=A[i] ;
\end{aligned}
$$

\square Semantics require: $(\ldots(($ sum $+A[0])+A[1])+\ldots)+A[n-1]$

- That is, sequential
\square Can it be executed in parallel?

Parallel Summation

\square To sum a sequence in parallel

- add pairs of values producing 1 st level results,
- add pairs of 1 st level results producing 2nd level results,
- sum pairs of 2 nd level results ...
\square That is,

$$
(\ldots((A[0]+A[1])+(A[2]+A[3]))+\ldots+(A[n-2]+A[n-1])) \ldots)
$$

Express the Two Formulations

\square Graphic representation makes difference clear

- Same number of operations; different order

The Dream ...

\square Since 70s (Illiac IV days) the dream has been to compile sequential programs into parallel object code

- Three decades of continual, well-funded research by smart people implies it's hopeless
\square For a tight loop summing numbers, its doable
\square For other computations it has proved extremely challenging to generate parallel code, even with pragmas or other assistance from programmers

What's the Problem?

\square It's not likely a compiler will produce parallel code from a C specification any time soon...
\square Fact: For most computations, a "best" sequential solution (practically, not theoretically) and a "best" parallel solution are usually fundamentally different ...

- Different solution paradigms imply computations are not "simply" related
- Compiler transformations generally preserve the solution paradigm
Therefore... the programmer must discover the || solution

A Related Computation

\square Consider computing the prefix sums

$$
\begin{gathered}
\text { for }(\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)\{ \\
\mathrm{A}[\mathrm{i}]+=\mathrm{A}[\mathrm{i}-1] ;
\end{gathered}
$$

$A[i]$ is the sum of the first $i+1$ elements
\square Semantics ...

- $A[0]$ is unchanged
- A[1] $=A[1]+A[0]$
- $A[2]=A[2]+(A[1]+A[0])$
- $A[n-1]=A[n-1]+(A[n-2]+(\ldots(A[1]+A[0]) \ldots)$

What advantage can ||ism give?

Comparison of Paradigms

\square The sequential solution computes the prefixes ... the parallel solution computes only the last

- Or does it?

Parallel Prefix Algorithm

Fundamental Tool of || Pgmming

\square Original research on parallel prefix algorithm published by
R. E. Ladner and M. J. Fischer

Parallel Prefix Computation
Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm requires $2 \log n$ time, twice as much as simple tournament global sum, not linear time

Applies to a wide class of operations

Parallel Compared to Sequential Programming

- Has different costs, different advantages
\square Requires different, unfamiliar algorithms
\square Must use different abstractions
\square More complex to understand a program's behavior
\square More difficult to control the interactions of the program's components
\square Knowledge/tools/understanding more primitive

Consider a Simple Problem

\square Count the 3s in array [] of length values
\square Definitional solution ...

- Sequential program

```
count = 0;
for (i=0; i<length; i++)
{
    if (array[i] == 3)
        count += 1;
    }
```


Write A Parallel Program

\square Need to know something about machine ... use multicore architecture

Divide Into Separate Parts

\square Threading solution -- prepare for MT procs

$$
\text { length=16 } t=4
$$

array $\underbrace{$| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thread 1 | | | | | | | | | | | | | | | |}$_{\text {Thread 0 }} \underbrace{}_{\text {Thread 2 }} \underbrace{}_{\text {Thread 3 }}$

int length_per_thread = length/t; int start = id * length_per_thread; for (i=start; i<start+length_per_thread; i++)
\{
if (array[i] $==3$)

$$
\text { count += } 1 \text {; }
$$

\}

Divide Into Separate Parts

\square Threading solution -- prepare for MT procs

$$
\text { length=16 } t=4
$$

$\underbrace{$| 2 | 3 | 0 | 2 | 3 | $\mathbf{3}$ | 1 | 0 | 0 | 1 | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thread 1 | | | | | | | | | | | | | | | |}$_{\text {Thread 0 }}$

int length_per_thread = length/t; int start = id * length_per_thread; for (i=start; i<start+length_per_thread; i++)
\{
if (array[i] == 3)

$$
\text { count += } \text {; }
$$

Doesn't actually get the right answer

Races

\square Two processes interfere on memory writes

Thread 1	count $\Leftrightarrow 0$	Thread 2
load		
		load increment
	$\begin{aligned} & \text { count } \Leftrightarrow 1 \\ & \text { count } \Leftrightarrow 1 \end{aligned}$	store

Races

\square Two processes interfere on memory writes

Thread 1	count $\Leftrightarrow 0$	$\underline{\text { Thread 2 }}$
load		load increment
increment store	count $\Leftrightarrow 1$ count $\Leftrightarrow 1$	store

Try 1

Protect Memory References

\square Protect Memory References

```
mutex m;
for (i=start; i<start+length_per_thread; i++)
    {
    if (array[i] == 3)
        {
            mutex_lock(m);
            count += 1;
            mutex_unlock(m);
        }
    }
```


Protect Memory References

\square Protect Memory References

```
mutex m;
for (i=start; i<start+length_per_thread; i++)
    {
    if (array[i] == 3)
        {
            mutex_lock(m);
                count += 1;
            mutex_unlock(m);
        }
    }
```

Try 2

Correct Program Runs Slow

\square Serializing at the mutex

- The processors wait on each other

Closer Look: Motion of count, m

\square Lock Reference and Contention


```
mutex m;
    for (i=start; i<start+length_per_thread; i++)
    {
    if (array[i] == 3)
        {
            mutex_lock(m);
            count += 1;
            mutex_unlock(m);
        }
    }
```


Accumulate Into Private Count

\square Each processor adds into its own memory; combine at the end

```
for (i=start; i<start+length_per_thread; i++)
    {
        if (array[i] == 3)
        {
            private_count[t] += 1;
            }
    }
mutex_lock(m);
    count += private_count[t];
mutex_unlock(m);
```


Accumulate Into Private Count

\square Each processor adds into its own memory; combine at the end

```
for (i=start; i<start+length_per_thread; i++)
    {
        if (array[i] == 3)
        {
            private_count[t] += 1;
            }
    }
mutex_lock(m);
    count += private_count[t];
mutex_unlock(m);
```


Keeping Up, But Not Gaining

\square Sequential and 1 processor match, but it's a loss with 2 processors

Performance
0.91
serial

$$
\begin{array}{ll}
0.91 \\
t=1 & 1.15 \\
t=2
\end{array}
$$

serial
Try 3

False Sharing

\square Private var \neq private cache-line

Force Into Different Lines

\square Padding the private variables forces them into separate cache lines and removes false sharing

```
struct padded_int
\{ int value;
char padding[128];
\} private_count[MaxThreads];
```


Force Into Different Lines

\square Padding the private variables forces them into separate cache lines and removes false sharing

```
struct padded_int
\{ int value;
char padding[128];
\} private_count[MaxThreads];
```


Try 4

Success!!

\square Two processors are almost twice as fast

Performance

0.91
serial

$$
{ }^{0.91} \operatorname{Try~}^{4}{ }^{\frac{0.51}{\mathrm{t}=2}}
$$

Is this the best solution???

Count 3s Summary

\square Recapping the experience of writing the program, we

- Wrote the obvious "break into blocks" program
- We needed to protect the count variable
- We got the right answer, but the program was slower ... lock congestion
- Privatized memory and 1-process was fast enough, 2- processes slow ... false sharing
- Separated private variables to own cache line

Finally, success

Break

\square During break think about how to generalize the "sum n-integers" computation for $n>8$, and possibly, more processors

Variations

\square What happens when more processors are available?

- 4 processors
- 8 processors
- 256 processors
- 32,768 processors

Our Goals In Parallel Programming

\square Goal: Scalable programs with performance and portability

- Scalable: More processors can be "usefully" added to solve the problem faster
- Performance: Programs run as fast as those produced by experienced parallel programmers for the specific machine
- Portability: The solutions run well on all parallel platforms

Program A Parallel Sum

\square Return to problem of writing a parallel sum
\square Sketch solution in class when $n>P=8$
\square Use a logical binary tree?

Program A Parallel Sum

\square Return to problem of writing a parallel sum
\square Sketch solution in class when $n>P=8$
\square Assume communication time $=30$ ticks
$\square n=1024$
\square compute performance

Program A Parallel Sum

\square Return to problem of writing a parallel sum
\square Sketch solution in class when $n>P=8$
\square and communication time $=30$ ticks
$\square n=1024$
\square compute performance
\square Now scale to 64 processors

Program A Parallel Sum

\square Return to problem of writing a parallel sum
\square Sketch solution in class when $n>P=8$
\square and communication time $=30$ ticks
$\square n=1024$
\square compute performance
\square Now scale to 64 processors

This analysis will become standard, intuitive

Matrix Product: || Poster Algorithm

\square Matrix multiplication is most studied parallel algorithm (analogous to sequential sorting)
\square Many solutions known

- Illustrate a variety of complications
- Demonstrate great solutions
\square Our goal: explore variety of issues
- Amount of concurrency
- Data placement
- Granularity

Exceptional by requiring $O\left(n^{3}\right)$ ops on $O\left(n^{2}\right)$ data

Recall the computation...

\square Matrix multiplication of (square $\mathrm{n} \times \mathrm{n}$) matrices \boldsymbol{A} and \boldsymbol{B} producing $\mathrm{n} \times \mathrm{n}$ result \boldsymbol{C} where $\boldsymbol{C}_{r s}=\sum_{1 \leq k \leq n} \boldsymbol{A}_{r k}{ }^{*} \boldsymbol{B}_{k s}$

B

Extreme Matrix Multiplication

\square The multiplications are independent (do in any order) and the adds can be done in a tree

O(n) processors for each result element implies $\mathrm{O}\left(n^{3}\right)$ total
Time: O(log $n)$

$\mathrm{O}(\log n) \mathrm{MM}$ in the real world...

Good properties

- Extremely parallel ... shows limit of concurrency
- Very fast -- $\log _{2} n$ is a good bound ... faster?

Bad properties

- Ignores memory structure and reference collisions
- Ignores data motion and communication costs
- Under-uses processors -- half of the processors do only 1 operation

Where is the data?

\square Data references collisions and communication costs are important to final result ... need a model ... can generalize the standard RAM to get PRAM

Parallel Random Access Machine

\square Any number of processors, including n^{c}
\square Any processor can reference any memory in "unit time"
\square Resolve Memory Collisions

- Read Collisions -- simultaneous reads to location are OK
- Write Collisions -- simultaneous writes to loc need a rule:
- Allowed, but must all write the same value
\square Allowed, but value from highest indexed processor wins
\square Allowed, but a random value wins
\square Prohibited

Caution: The PRAM is not a model we advocate

PRAM says $\mathrm{O}(\log n) \mathrm{MM}$ is good

\square PRAM allows any \# processors $=>\mathrm{O}\left(n^{3}\right)$ OK
$\square \boldsymbol{A}$ and \boldsymbol{B} matrices are read simultaneously, but that's OK
$\square \boldsymbol{C}$ is written simultaneously, but no location is written by more than 1 processor $=>$ OK

PRAM model implies $\mathbf{O}(\log n)$ algorithm is best ... but in real world, we suspect not

We return to this point later

Where else could data be?

\square Local memories of separate processors ...

\square Each processor could compute block of \boldsymbol{C} - Avoid keeping multiple copies of \boldsymbol{A} and \boldsymbol{B} Architecture common for servers

Data Motion

\square Getting rows and columns to processors

A

Blocking Improves Locality

\square Compute $\mathrm{a} b \times b$ block of the result

\square Advantages

- Reuse of rows, columns = caching effect
- Larger blocks of local computation = hi locality

Caching in Parallel Computers

\square Blocking $=$ caching \ldots why not automatic?

- Blocking improves locality, but it is generally a manual optimization in sequential computation
- Caching exploits two forms of locality
\square Temporal locality -- refs clustered in time
\square Spatial locality -- refs clustered by address
\square When multiple threads touch the data, global reference sequence may not exhibit clustering features typical of one thread -- thrashing

Sweeter Blocking

\square It's possible to do even better blocking ...

\square Completely use the cached values before reloading

Best MM Algorithm?

\square We haven't decided on a good MM solution
\square A variety of factors have emerged

- A processor's connection to memory, unknown
- Number of processors available, unknown
- Locality--always important in computing--
\square Using caching is complicated by multiple threads
\square Contrary to high levels of parallelism
\square Conclusion: Need a better understanding of the constraints of parallelism

Next week, architectural details + model of ||ism

Assignment for Next Time

\square Reproduce the parallel prefix tree labeling to compute the bit-wise \& scan

- Try the "count 3 s " computation on your multi-core computer
- Implementation Discussion Board ... please contribute - success, failure, kibitzing, ...
- https://catalysttools.washington.edu/gopost/bo ard/snyder/16265/

