The Programming Interface

Libraries and languages make parallel programming possible,
but rarely easy

Commentary on Infix form of PP

What was your experience with formulating a
parallel prefix computation as an infix
operation?
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From last time: Tree Algorithms

Trees are an important component of

computing
The “"Schwartz tree” has been logical
Trees as data structures are complicated because
they are typically more dynamic
Pointers are generally not available
Work well with work queue approach
As usual, we try to exploit locality and minimize

communication
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Breadth-first Trees

Common in games, searching, etc

Split: Pass 1/2 to other processor, continue

Stop when processors exhausted
Responsible for tree that remains
|deal when work is localized
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Depth-first

Common in graph algorithms

Get descendants, take one and assign others
to the task queue
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Coordination Among Nodes

Tree algorithms often need to know how
others are progressing
Interrupt works if it is just a search: Eureka!!
Record a-p cut-offs in global variable
Other pruning data, e.g. best so far, also global
Classic error is to consult global too frequently

Rethink: What is tree data structure’s role?
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Complications

If coordination becomes too involved,
consider alternate strategies:

Graph traverse => local traverse of partitioned graph

o\

Local computation uses sequential tree algorithms
directly ... stitch together
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Full Enumeration

Trees are a useful data structure for recording

spatial relationships: K-D trees

L

9
Generally, decomposition is unnecessary “all
the way down” -- but this optimization

implies two different regimes
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Cap Reduces Communication

The nodes near root can be stored
redundantly

Each process
keeps copy of “cap”
nodes

A AN A AR AN ARARVAY

Processors consult local copy -- alert others to
changes
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Summary of Parallel Algorithms

Reconceptualizing is often most effective
Focus has not been on ||lism, but on other
stuff

Exploiting locality

Balancing work

Reducing inter-thread dependences
We produced general purpose solution
mechanisms: UD-reduce and UD-scan
We like trees, but recognize that direct
application is not likely
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The Programming Interface

"l don't know what the technical characteristics
of the standard language for scientific and
engineering computation will be in the year

2000. .. but | know it will be called Fortran.”
John Backus, c. 1980

The Situation Today

| have argued that a key property of a ||
programming system is that it embody an
accurate (CTA) model of computation
Recall why:

Wrong model leads to picking wrong algorithm

Communication costs -- they cannot be ignored

|| programs must port, so pick universal model
So, which of our present languages do that?
Today, we'll see.
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Parallel Programming Context

5/7/10

At least 100 serious parallel programming
languages have been developed in the last 2
decades ... why isn't the problem solved?

Generalizing ...

Most languages focused on a “silver bullet” solution, but
the problem is more complex

Just a few of the languages were fully implemented
To be taken seriously, a language must
Run serious applications fast

Run on “all” parallel machines

Have substantial support (docs, compilers with libraries, tools
such as debuggers and IDEs, 1-800 #)

(c) 2010 Larry Snyder 13

Not Surprisingly ...

5/7/10

No new languages crossed the bar
Performance challenge ...

Serious applications programs are huge -- it is time consuming
to write an equivalent program in any language, and it may
require domain knowledge

Production programs are often well optimized -- competing
on performance implies an effective compiler and
performance debugging tools

“Linear speedup” goal (P processors will yield a P-fold speed
-up) is naive, but widely assumed

Doing well on one program is not persuasive
Portability challenges are similar
Will any programmer learn a new language?
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Where We Stand Today

Today, with few exceptions, we program
using library-based facilities rather than
languages

Sequential language + message passing in MPI
or PVM

Sequential language + thread packages such as
P-threads, or equivalently, Java-threads
OpenMP with a pragma-aware compiler for a
sequential programming language

Consider each briefly before discussing new
developments
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Message Passing

Message passing is “the lowest of the low”,
but remains in widespread use because ...
It works -- embodies the CTA || model
It is required for clusters, supercomputers, etc.
Achieving performance is definitely possible
Portability is essential for long-lived programs
What is it?
Variations on primitive send/receive
Process spawning, broadcast, etc.

Programming goodies: reduce, scan, processor
groups
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Realities of Message Passing

In message passing
There are few abstractions to simplify the work
Programmers must do everything except the
physical layer
Experiments show that compared to “designed
from first principles” parallel languages, MPI
programs are 6 times larger ... the extra code is

the subtle, difficult to get right, and timing
-sensitive

Consider dense matrix multiplication

5/7110 (c) 2010 Larry Snyder 17

MM in MPI -- 1

MPI_Status status; A “master--slave” solution
main(int argc, char **argv) {
int numtasks, [* number of tasks in partition */
taskid, [* a task identifier */
numworkers, /* number of worker tasks */
source, [* task id of message source */
dest, [* task id of message destination */
nbytes, /* number of bytes in message */
mtype, [* message type */
intsize, [* size of an integer in bytes */
dbsize, [* size of a double float in bytes */
rows, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine rows sent to each worker */
iy i Kk, [* misc */
count;
double a[NRA][NCA], [* matrix A to be multiplied */
b[NCA][NCB], [* matrix B to be multiplied */
c[NRA][NCB]J; [* result matrix C */
5/7110 (c) 2010 Larry Snyder 18




intsize = sizeof(int);
dbsize = sizeof(double);

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;

/ mastertaskxwxwxwxwxwxwxxxxxxl
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++) Create test data --

alilljl= i+j; . ! .
for (i=0; i<NCA; i++) actually inputting data is
for'(jfo;j<'NCB;j++) harder
blil[jl= i*j;
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MM in MPI -- 3

/* send matrix data to the worker tasks */

averow = NRA/numworkers;

extra = NRA%numworkers;

offset = o;

mtype = FROM_MASTER;

for (dest=1; dest<=numworkers; dest++) {
rows = (dest <= extra) ? averow+1 : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
count = rows*NCA;
MPI_Send(&al[offset][o], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

offset = offset + rows;

}

5/7110 (c) 2010 Larry Snyder 20
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MM in MPI -- 4

/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++)  {
source =i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);
}

/

if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCA;
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

worker task /
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MM in MPI -- 5

count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {
c[illk] = 0.0;
for (j=0; j<NCA; j++)
c[il[k] = c[il[k] + alil[j] * b{jIIK]; < Actual Multiply
}

mtype = FROM_WORKER;

MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

} /* end of worker */

91 “Net” Lines

5/7110 (c) 2010 Larry Snyder 22
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MPI Collective Communication

Reduce and scan are called collective operations
Reduce/scan apply to nodes, not values

Basic operations +, *, min, max, &&, ||

Processor groups simplify collective ops on logical
structures like “rows”, “leaves”, etc

MPI allows user-defined scans ... these have probably
never been used!

Bottom Line: Message passing is painful to use but it
works ... which makes it a solution of choice

5/7110 (c) 2010 Larry Snyder 23

Threading Libraries

The P-threads library, designed for concurrency, is now

also used for parallelism

Sharing is implemented by referencing shared memory
As mentioned, the memory not sequentially consistent

Not CTA; P-threads use RAM performance model, a greater
concern as latencies have increased

Tends to promote very fine-grain sharing (recall count _3s
example), which limits the work that can be used to amortize
the overhead costs such as thread creation, scheduling, etc.

Scaling potential is limited

5/7110 (c) 2010 Larry Snyder 24
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Threading Is Subtle

It is difficult to get threaded programs right

Programmers are responsible for protecting all
data references

Avoiding deadlock requires discipline and care --
and mistakes are easy to make, especially when
optimizing

Timing errors can remain latent for a very long
time before emerging

5/7110 (c) 2010 Larry Snyder 25

Sample P-thread Code: Dot-Product

# define NUMTHRDS 4
double sum;

double a[256], b[256];

int status;

int n = 256;

pthread_t thds[]NUMTHRDS];
pthread_mutex_t mutex_sum;

int main (int argc, char *argv[] );

void *dotprod (void *arg);
int main (int argc, char *argv[]) {
inti;
pthread_attr_t attr;
for(i=o;i<n;i++){
alil=i*o.5;
blil=i*2.0;

}

Creating Data

r'y

5/7110 (c) 2010 Larry Snyder 26
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P-threads Dot #2

pthread_mutex_init ( &mutex_sum, NULL );
pthread_attr_init ( &attr);
pthread_attr_setdetachstate ( &attr, PTHREAD_CREATE_JOINABLE );

for (i=0;i<NUMTHRDS; i++) {
pthread_create ( &thds[i], &attr, dotprod, (void *)i);

}

pthread_attr_destroy ( &attr);

for (i=0; i< NUMTHRDS; i++) §
pthread_join (thds[i], ( void ** ) &status );

}

printf (" Sum = %f\n", sum);
pthread_mutex_destroy ( &mutex_sum);
pthread_exit (NULL);

return o;

5/7/10 (c) 2010 Larry Snyder
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P-threads

void *dotprod ( void *arg ) {
inti, my_first, my_last, myid;
double sum_local;
myid = (int) arg;
my_first = myid * n/ NUMTHRDS;
my_last = (myid + 1) * n/ NUMTHRDS;

sum_local = o;
for (i =my_first; i <= my_last; i++) {

}
pthread_mutex_lock ( &mutex_sum );
sum = sum + sum_|ocal;

pthread_mutex_unlock ( &mutex_sum );

pthread_exit ((void *)o0);

5/7/10 (c) 2010 Larry Snyder

sum_local = sum_local + a[i] * b[i]; < Actual Multiply

28
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OpenMP

Developed as easy access to multi-threading
Has second life with multi-core (Intel and others push)
Approach
Add pragmas to C or Fortran code
Pragma-aware compiler links in appropriate library calls
Pragma-unaware compiler -- no change from sequential
All responsibility for parallel == sequential left to programmer
Main benefit: little effort, some benefit
Main liability: tight binding to sequential semantics

5/7110 (c) 2010 Larry Snyder 29

Note OpenMP Conflict

The program is sequential

When there is no compiler to interpret the pragmas, the
code is sequential

When there is no parallelism available, the sequential
code runs

When there is a compiler AND parallel processors the
sequential code runs

But, we often observe that there IS usually a
conceptual difference between sequential
and parallel algorithms

5/7110 (c) 2010 Larry Snyder 30
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Sample Code -- Dot Product

double dotProduct() {
int I; double sum_p;
double result = 0;
#pragma omp parallel shared(a, b, result) private(sum_p)

sum_p=0;
#pragma omp parallel for private(i)
for(i=0; i<n; i++) {
sum_p += a[i]*b[i];

#pragma omp critical

result += sum_p;

}

return result;

}
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OpenMP Compiler

[Program [Class| 1thread [ 2threads | 4 threads
W [ 119.19(1.00)[ 6128 (1.95)[ 36.65 (3.25)

4 Processor Sun -
. . [ A [2900.02 (1.00) [1546.70 (1.87) [1024.93 (2.83)
Enterprlse running ce | W [1461000[ 605@4D[ 312468)

A [ 49.65(1.00)| 26.01(191)| 15.14(328)

the NAS PB written [W [ 3336(1.00)| 1674 (199) 845 (395)

EP
. . A [ 267.39(1.00)| 133.73 (2.00)| 67.98 (3.93)
In C W|th OpenMP r LY [ 607(100) 320(1.90)[ 1.85(3.28)
Block Tridiagonal
OC, dago a s W [ 076(1.00)[ 047(1.62)[ 0.38(2.00)
Conjugate Qradlent AGD| 1705(1.00)| 925(184)| 581 (293)
Embarrassingly || w W [ 19490 (1.00) | 10142 (1.92)[ 54.43 (3.58)

Fast Fourier Trans A [1810.94 (1.00) [ 775.63 (233) [ 411.07 (4.41)

Integer Sort e W [ 1356 (1.00)[ 6.58 (2.06) 3.34(4.06)

iy A [ 10129 (1.00)[ 50.68 (2.00)| 26.67 (3.80)
LU Decomposmon W [ 329.05(1.00) [ 175.04 (1.88) [ 110.83 (2.97)

Multigrid Iteration P [TA [2127.84 L00) [1157.58 (184) | 762.07 @79)
Sparse Matrix-Vector

(
(
(
(
(
(
[ A [ 11396 (1.00)| 6055 (1.88)[ 34.73 (3.28)
(
(
(
(
(
(
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Critique of OpenMP

The easy cases work well; harder cases are
probably much harder

Requires that the semantics of sequential
computation be preserved

Directly opposite of our thesis in this course that
algorithms must be rethought

Compilers must enforce the sequentially
consistent memory model

Limited abstractions

5/7/10 (c) 2010 Larry Snyder
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HPF: High Performance Fortran

Philosophy
Automatic parallelization won't work

For data parallelism, what's important is data placement
and data motion

Give the compiler help:

Allow slow migration from legacy codes
The directives are only hints
Basic idea
Processors operate on only part of overall data
Directives say which processor operates on which data

Much highe(r level than message passing

5/7/10 c) 2010 Larry Snyder

Extends Fortran with directives to guide data distribution

34
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HPF History

The beginning
Designed by large consortium in the early 9o's

Participation by academia, industry, and national
labs

All major vendors represented
Convex, Cray, DEC, Fujitsu, HP, IBM, Intel, Meiko, Sun, Thinking
Machines

Heavily influenced by Fortran-D from Rice
D stands for “"Data” or “Distributed”

HPF 2.0 specified in 1996

5/7110 (c) 2010 Larry Snyder 35

Strategic Decisions

Context

Part of early 9o’s trend towards consolidating
supercomputing research

To reduce risk, fund a few large projects rather
than a lot of small risky projects

Buoyed by the success of MPI

Aware of the lessons of vectorizing compilers
Compilers can train programmers by providing feedback

5/7110 (c) 2010 Larry Snyder 36
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Vectorizing Compilers

Basic idea

Instead of looping over elements of a vector,

perform a single vector instruction
Vector code

Exam ple — Execute 4 instructions once
for (i=0; i<100; i++) — 2 vector Loads
A[i] = B[i] + C[i]; — 1 vector Add
— 1 vector Store
Scalar code

Execute 4 insts 100 times, 2 Loads, 1 Add, 1 Store

Advantages?

5/7110 (c) 2010 Larry Snyder 37

Rules for Writing Vectorizable Code

1. Avoid conditionals in loops
for (i=0,’ 1<100, i++) for (i:O,' l<100; i++)

if (A[i] > MaxFloat) A[i] = min(A[i],MaxFloat)
A[i] = MaxFloat;

2. Promote scalar functions

Foo (A, B);

— One function call

— Body of this function
call can be easily
vectorized

Lots of function calls inside a tight loop

for (i=0; i<100; i++)
foo (A[i], B[i]);

Function call boundaries inhibit vectorization

5/7110 (c) 2010 Larry Snyder 38
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Guidelines for Writing Vectorizable

Code (cont)

3. Avoid recursion
4. Choose appropriate memory layout

Depending on the compiler and the hardware,
some strides are vectorizable while others are not
Other guidelines?
The point
These are simple guidelines that programmers
can learn
The concept of a vector operation is simple

5/7110 (c) 2010 Larry Snyder 39

Strategic Decisions (cont)

A community project

Compiler directives don‘t change the program’s
semantics

They only affect performance

Allows different groups to conduct research on
different aspects of the problem

Even the “little guy” can contribute

5/7110 (c) 2010 Larry Snyder 40
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Fortran 9o

An array language
Can operate with entire arrays as operands
Pairwise operators
Reduction operators

Uses slice notation

arrayld(low: high: stride) representsthe elements of
arrayl starting at 1ow, ending at high, and skipping
every stride-1 elements

The stride is an optional operand

Converts many loops into array statements

5/7110 (c) 2010 Larry Snyder 41

Example Computation

Jacobi lteration

The elements of an array, initialized to 0.0 except
for 1.0's along its southern border, are iteratively
replaced with the average of their 4 nearest
neighbors until the greatest change between two

iterations is less than some epsilon.
01010
01010
|0
0toto
0
1

o |Oo|o|o
o |lo|lo|o

= J]Oo |Oo|o (o |o

1
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Jacobi Iteration in Fortran 9o

Example

The following statement computes the averaging
step in the Jacobi iteration

next(2:n, 2:n) = ( +
+
curr(2:n, 1l:n-1)+

curr(2:n, 3:n+l)) / 4

next curr

5/7110 (c) 2010 Larry Snyder 43

Block Data Distribution

Keywords in caps

Block distribution of 1B array

Number of virtual processors

I'd -
'HPF$_)PROCESSORS PROCS (4) ~Name of array
'HPF$ DISTRIBUTE arraylD(BLOCK) ONTO PROCS

Block distribution of 2D array

'HPF$ PROCESSORS PROCS (4)
'HPF$ DISTRIBUTE array2D (BLOCK,BLOCK) ONTO PROCS

5/7/10 (c) 2010 La* 44
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Block-Cyclic Data Distribution

Block-cyclic distribution

'HPF$ PROCESSORS PROCS (4) -

'HPF$ DISTRIBUTE array2D(BLOCK, CYCLIC) ONTO PROCS

Block-cyclic distribution

'HPF$ DISTRIBUTE array2D(CYCLIC, BLOCK) ONTO PROCS
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Alignment Directives

Arrays can be aligned with one another

Aligned elements will reside on the same physical
processor

Alignment can reduce communication
Can align arrays of different dimensions

'HPF$ ALIGN a (i) WITH b(i-1)

- [T I T N [ N |
o [N [ O T WO T D |

5/7110 (c) 2010 Larry Snyder 46
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Comm Implied by Distribution

This alignment and assignment require all elements

to be communicated to a different processor
'HPF$ ALIGN a( WITH b (

.

The following induces no communication

'HPF$ ALIGN a( WITH b (

v izi izi lzl ¢=

(c) 2010 Larry Snyder

5/7/10
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FORALL Loops vs. DO Loops

For the given initial

Initial values
values, what do
the following a [7]8]9T10[11]
compute?
Final values
FORALL (i = 2:5)
S Y [7]7]8]9Ti0]
END FORALL a [7]7]8]9]10]
DO (i = 2:5) Final values

= -1
END DO a

5/7/10 (c) 2010 Larry Snyder
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5/7/10

Independent Loops

INDEPENDENT directive
Loop iterations are independent

No implied barriers Dependence graph

'HPFS$ INDEPENDENT
DO (i = 1:3)

a(i) = b(i)
c(i) = d(i)
END DO

Fortran90 equivalent?
— None

(c) 2010 Larry Snyder
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FORALL Loops vs. Independent

Loops
Is there a difference?

FORALL . INDEPENDENT

barrier

ol @

(&
OO
—1®

barrier

barrier

v

g‘ a
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Evaluation

Your thoughts on HPF?
Is this a convenient language to use?

Can programmers get good performance?
No performance model
To understand locality and communication, need

to understand complex interactions among

distributions Does the following code induce communication?
. a(i) = b(i)
Procedure calls are particularly bad
Many hidden costs

Small changes in distribution can have large
o Performangce impact 52
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Evaluation (cont)

No performance model
Complex language => Difficult language to
compile
Large variability among compilers
Kernel HPF: A subset of HPF “guaranteed” to be fast
An accurate performance model is essential

Witness our experience with the PRAM
Common user experience

Play with random different distribution in an
attempt try to get good performance

5/7110 (c) 2010 Larry Snyder 53

Evaluation (cont)

Language is too general
Difficult to obey an important system design
principle:
“*Optimize the common case”
What is the common case?
Sequential constructs inherited from Fortranyy
and Fortrango cause problems

For example, the following code forces compiler to
perform matrix transpose  rorarLL (i=1:n, j=1:n)

a(i, Jj) = a(j, i)
END FORALL

5/7110 (c) 2010 Larry Snyder 54
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ZPL

Philosophy
Provide performance portability for data-parallel
programs
Allow users to reason about performance

Start from scratch
Parallel is fundamentally different from sequential

Be willing to throw out conveniences familiar to
sequential programmers

Basicidea
An array language
Implicitly parallel

CS380P Lecture 17 Introduction to ZPL 55

ZPL History

The beginning
Designed by a small team beginning in 1993
Compiler and runtime released in 1997

Claims

Portable to any MIMD parallel computer
Performance comparable to C with message
passing
Generally outperforms HPF
Convenient and intuitive

CS380P Lecture 17 Introduction to ZPL 56
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Recall Our Example Computation

Jacobi Iteration

The elements of an array, initialized to 0.0 except
for 1.0's along its southern border, are iteratively
replaced with the average of their 4 nearest
neighbors until the greatest change between two
iterations is less than some epsilon.

0
0
0
T

oo |o|o

o oo o
=l (el (ol o} o} (e}
(@}
4
= | o4O O |O |O
1
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program Jacobi;

config var n : integer = 512;
epsilon : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;
Naming Convention: 1t! Reductions:
Arrays begin with upper case letters |°t| max<< returns the maximum
Scalars begin with lower case letters of an array expression
[north of R] A := 0.0; [west of K] A = 1.0;
[east of R] A := 0.0; [south of R] A := 0.0;
repeat
Temp = (A@north + AQReast + AQRwest + A@south)/4.0;
err = max<< abs(Temp - A);
A := Temp;
until err < epsilon;
end;
end;
CS380P Le Introduction to ZPL
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Jacobi Iteration—The Region

program Jacobi;

config var n : integer = 512;
epsilon : float = 0.00001;
region R=[1..n, 1..n];
var Ag Temp : [R] float;
err : float;
directiom north = [-1, 0]; south = [ 1, 01;
east = [ 0, 11; west = [ 0, -1];
procedu®€ Jacobi () ;
[R] begin
A := 0.0;
[north of R] A := 0.0; [west of R] A :=1.0;
[east of R] A := 0.0; [south of R] A := 0.0;
repeat
Temp := (AQnorth + AQReast + AQRwest + A@south)/4.0;
err = max<< abs(Temp - 3);
A := Temp;
until err < epsilon;
end;
end;
end;
= ( + GHE + R+ )/ 4.0
CS380P Lecture 17 Introduction to ZPL 59

region R=[1l..n, 1..n];
var A, Temp : [R] float; +
direction north =-f=1, 0]; south = [ 1, 0];
east = [ 0, 1]; west = [ 0, -1];
[R] begin +
repeat
Temp := (AQ@north + AReast + A@west + A@south)/4.0;
err := max<< abs(Temp - A);
A = Temp;
until err < epsilon;
end;

= ( +E + R + )/ 4.0
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Jacobi Iteration—The Border

region R=[1l..n, 1..n];
var A, Temp : [R] float;
direction north = [-1, 0]; south = [ 1, 0];
east = [ 0, 11; west = [ 0, -1]1; @
[R] begin
[north of R] A := 0.0;]||[west of R] A :=1.0;
[east of R] A := 0.0;]||[south of R] A := 0.0;
Tepeat
Temp := (AQ@north + AReast + AQ@west + A@south)/4.0;
err = max<< abs (Temp - A);
A = Temp;
until err < epsilon;
end;
CS380P Lecture 17 Introduction to ZPL 61

program Jacobi;

config var n : integer = 512;
epsilon : float = 0.00001;
region R=[1l..n, 1..n];
var A, Temp : [R] float;
err : float;

direction north = [-1, 0]; south
east = ;
procedure Jacobi () ;
[R] begin
A

= 0.0;
[north of R] A := 0.0; [west of R] A : 1.0;
= 0.0; 0.0;
repeat

[east of R] A := [south of R] A

Temp := (A@north + A@east + AQwest + A@south)/4.0;
err := max<< abs(Temp - A);
A := Temp;

until err < epsilon;

end;

o
= ( + i+ R+ )/ 4.0 @

end;
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Recent Notable Efforts: PGAS

Greatest potential to assist programmer
comes from hiding communication calls
Compilers can generate the calls
Need interface to specify which are local/global
Concept: Partitioned Global Address Space

Overlay global addressing on separate memories
PGAS tends to use 1-sided comm as simplification

SEEEEEEE
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Extend Languages

Three PGAS languages

CAF UPC Ti

Co-Array Fortran || Universal Parallel C Titanium
Numrich & Reed || El Ghazawi, Carlson & Draper || Yelick

Developed around 2000 +/- & Implemented

Similarities: GAS, comm handled by compiler/rt,
programmer controls work/data assignment

Differences: Most everything else
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Co-Array Fortran

do

e

enddo

5/7/10

Incredibly elegant (for Fortran) extension

k=1,n

dog=1,p

real, dimension(n,n)[p,*]:; a,b,c

Co-array

c(i,j) [myP,myQ]=c{i.j)[myP,myQ]+a(i,k)[myP, q]*b(k,j)[q,myQ]

nddo

myQ
¥
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PC

Data can be allocated either shared or
private; shared is assigned cyclically or BC
Pointers are an issue

Property of pointer

Private

Shared

Property of | Private

Private-Private, p1

Private-Shared, p2

reference Shared

Shared-Private, p3

Shared-Shared, p4

int *pl; /*
shared int *p2; /*
int *shared p3; /*
shared int *shared p4; /*

private ptr pointing
private ptr pointing
shared ptr pointing
shared ptr pointing

(c) 2010 Larry Snyder

locally */
into shared space */
locally */
into shared space */
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UPC Code for Vector Sum

shared int v1([N], v2[N], vlv2sum[N];

void main ()
{
int 1i;
shared int *pl, *p2;
pl=vl;
p2=v2;

Affinity

upc_forall (i=0; i<N; i++, pl++, p2++;1i)
{

viv2sum[i] = *pl + *p2;
}

5/7110 (c) 2010 Larry Snyder 67

Titanium

Java extensions including

“regions, which support safe, performance

-oriented memory management as an alternative
to garbage collection.”

foreach is an unordered iteration, which logically
raises the concurrency:

foreach ( .. ) { }

Used with the concept of a point, tuple of
integers that range over a domain
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Titanium Code for MM

public static void matMul (double [2d] a
double [2d] Db,
double [2d] c¢)

foreach (ij in c.domain())
{
double [1d] aRowi = a.slice(l, ij[11);
double [1d] bColj = b.slice (2, 1ij[21);
foreach (k in aRowi.domain())
{
c[ij] += aRowi[k] * bColj[k]l;
}
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Summarizing PGAS Languages

The languages improve on the alternative-
-base language + MP!

Compiler provides significant help, but the
need to be attuned to subtle detail remains
Deep issues

Global address space+private are good, but how
they “play together” remains unclear

Better abstractions to reduce detail
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New Parallel Languages

DARPA has supported three new “high
productivity” parallel languages

Is productivity really the issue?

Project coupled with design of a new machine
The final competitors:

Cray’s Cascade High Productivity Language,
Chapel

IBM’s X10
Sun’s Fortress
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Chapel

Chapel is a multithreaded language
supporting
Data ||ism, task ||ism, nested ||ism

Optimizations for locality of data and
computation

Object oriented and generic programming
techniques

Parallel implementation is nearing completion
Designed for experts, production
programmers
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Chapel: 1D 4-ary FFT

for(str, span) in genDFTPhases(numElements, radix) {
forall (bankStart, twidindex) in (ADom by 2*span, 0..) {
var wk2 = W(twidIndex),
wk1 = W(2*twidIndex),
wk3 = (wk1.re - 2 * wk2.im * wk1.im,
2 * wk2.im * wk1.re - wk1.im):elemType;
forall lo in bankStart + [0..str) do
butterfly(wk1, wk2, wk3, A[[0..radix)*str + 10]);
wk1 = W(2*twidIndex+1);
wk3 = (wk1.re - 2 * wk2.re * wk1.im, 2 * wk2.re * wk1.re -
wk1.im):elemType;
wk2 *=1.0i;
forall lo in bankStart + span + [0..str) do
butterfly(wk1, wk2, wk3, A[[0..radix]*str + lo]);
}
}
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Fortress

Developed at Sun, Fortress pushes the
envelop in expressivity

Focus on new programming ideas rather than
parallel programming ideas: components and
test framework assist with powerful compiler
optimizations across libraries

Textual presentation important -- subscripts and
superscripts -- mathematical forms

Transactions, locality specification, implicit ||ism
Extendibility
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Fortress

conjGrad|[Elt extends Number, nat N,
1 Mat extends Matrix [Elt, N X N],
CO nJ U g ate Vec extends Vector [Elt, N]
. ](A: Mat, x: Vec):(Vec, Elt)
gradient it =25
. z:Vec=0
program in r:Vec=x
p:Vec=r
r:Elt=r"r
Fort ress forj:seq(l: cgit, .. ) do
q=4p
Features i
%7 g
= / = z:=z+0p
ri=r—ogq
Sequential Po=P_
p:=rr
H p
Mathematical B=5
p:=r+Pp
end
(2 |lx—Az)
5/7110 (c) 2010 Larry Snyder 75

X-10

IBM’s X10 is a type safe, distributed object
oriented language in the PGAS family -- its
“accessible to Java programmers”

Many goodies including regions (a la ZPL),

places (for locality), asynch, futures, foreach,
ateach, atomic blocks and global
manipulation of data structures
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X-10 Jacobi Computation

public class Jacobi {
const int N=6;
const double epsilon = 0.002;
const double epsilon2 = 0.000000001;
const region R = [0:N+1, 0:N+1];
const region RInner=[1:N, 1:NJ;
const distribution D = distribution.factory.block(R);
const distribution DInner = D | Rinner;
const distribution DBoundary = D - Rinner;
const int EXPECTED ITERS=97;
const double EXPECTED ERR=0.0018673382039402497;
double[D] B = new double[D] (point pli,j])
{ return DBoundary.contains(p)
? (N-1)/2 : N*(i-1)+(j-1); };
public double read(final int i, final int j) {
return future(DIi,j]) BI[i,jl.force(); }
public static void main(String args[]) {
boolean b= (new Jacobi()).run();
System.out.printin("++++++ " + (b? "Test succeeded." :"Test failed."));
System.exit(b?0:1);
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X-10 Jacobi (continued)

public boolean run() {
int iters = 0;
double err;
while(true) {
double[.] Temp = .
new double[DInner] (point [i,jj) < Actual Multiply
{return (read(i+1,j)+read(i-1,j)
+read(i,j+1)+read(i,j-1))/4.0; };
if((err=((B | DInner) - Temp).abs().sum()) < epsilon)
break;
B.update(Temp);
iters++;
}
System.out.printin("Error="+err);
System.out.printin("lterations="+iters);
return Math.abs(err-EXPECTED ERR) < epsilon2 && iters==EXPECTED ITERS;

5/7110 (c) 2010 Larry Snyder 78

39



Summary

Language is key tool to express parallelism
State of the art is libraries —

threads, message passing, OpenMP
There has been tremendous
experimentation with alternative language
approaches

ZPL, HPF, CAF, UPC, Titanium
The next generation is here

Chapel, X10, Fortress
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HW 6

Using online research become familiar with a
parallel programming language and critique it
NOT allowed: ZPL, Chapel, libraries
The critique must include a small code example
Relevant topics to discuss might include

Execution model (data parallel, task, etc.), mem model
Mechanisms for creating threads, communicating, etc.
Brief history, if known

Evidence of performance, scalability, portability, etc.

Any length OK, but ~2 pages is intended scale; refs
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