Part IV: Programming
Strategies

Goal: Introduce scalable algorithms and strategies for developing scalable
solutions

Red Blue Discussion

Regarding the Red/Blue computation
How did you allocate the array? Why?
How was the work assigned?

How do the threads communicate?

Data and Task Parallelism

Many definitions ... parallelize the data or work?

In a data parallel computation the parallelism is applied
by performing the same (or similar) operations to
different items of data at the same time; the parallelism
grows with the size of the data

In a task parallel computation the parallelism is applied
by performing distinct computations -- or tasks -- at the
same time; with the number of tasks fixed, the
parallelism is not scalable

Peril-L ...

A pseudo-language to assist in discussing
algorithms and languages
Don’t panic--the name is just a joke
Goals:

Be a minimal notation to describe parallelism

Be universal, unbiased towards languages or
machines

Allow reasoning about performance (using the
CTA)

Base Languageis C

Peril-L uses C as its notation for scalar
computation, but any scalar language is OK
Advantages

Well known and familiar

Capable of standard operations & bit twiddling
Disadvantages

Low level
No goodies like OO

Threads

The basic form of parallelism is a thread
Threads are specified by

forall |

<int var> in (<index range spec>) {<body> }

Semantics: spawn k threads running body

printf ("Hello, World, from thread %i\n", thID);

forall thID in (1..12) { |

}

Thread Model is Asynchronous

Threads execute at their own rate

The execution relationships among threads
are not known or predictable

To cause threads to synchronize, we have

|barrier;
Threads arriving at barriers suspend
execution until all threads inits forall
arrive there; then they’re all released
Reference tothe forall indexidentifies
the thread

Memory Model

Two kinds of memory: local and global
All variables declared in a thread are local

Any variable w/ underlined name is global
Names (usually indexed) work as usual

Local variables use local indexing
Global variables use global indexing
Memory is based on CTA, so performance:
Local memory references are unit time
Global memory references take A time

Memory Read Write Semantics

Local Memory behaves like the RAM model
Global memory

Reads are concurrent, so multiple processors can
read a memory location at the same time

Writes must be exclusive, so only one processor
can write a location at a time; the possibility of
multiple processors writing to a location is not
checked and if it happens the result is
unpredictable

Example: Try 1

Shared memory programs are expressible
The first (erroneous) Count 3s program is

int *array, length, count, t;
. initalize globals here ...

forall thID in (0..t-1) {

int i, length per=length/t;

int start=thID*length per;

for (i=start; i<start+length per; i++) {

if (array[i] == 3)

count++;

}

}

Variable usage is now obvious

Why Is This Not Shared Memory?

Peril-L is not a shared memory model
because:

It distinguishes between local and global memory
costs ... that's why it's called “global”

Peril-L is not a PRAM because
It is founded on the CTA

By distinguishing between local and global
memory, it distinguishes their costs

It is asynchronous

Getting Global Writes Serialized

To insure the exclusive write Peril-L has

|exclusive { <body> }

The semantics are that a thread can execute
<body> only if no other thread is doing so; if
some thread is executing, then it must wait
for access; sequencing through exclusive
may not be fair

Example: Try 4

The final (correct) Count 3s program

int *array, length, count, t;
forall thID in (0..t-1) {
int i, priv_count=0; len_per_th=length/;;
int start=thID * len per th;
for (i=start; i<start+len per th; i++) {
if (arrayl[i] == 3)
priv_count++;

}

exclusive {count += priv_count; }

}

Full[Empty Memory

Memory usually works like information:
Reading is repeatable w/o “emptying” location
Writing is repeatable w/o “filling up” location

Matter works differently
Taking something from location leaves vacuum
Placing something requires the location be empty

Full/Empty: Applies matter idea to memory

... FJE variables help serializing

Treating memory as matter

A location can be read only if it's filled
A location can be written only it's empty

Location contents | Variable Read |Variable Write
Empty
Full

Scheduling stalled threads may not be fair

Reduce and Scan

Aggregate operations use APL syntax
Reduce: <op>/<operand> for <op>in {+, *, &&, ||,
max, min}; asin +/priv_sum
Scan: <op>\<operand> for <op>in {+, *, &&, ||,
max, min}; asin+\local finds

To be portable, use reduce & scan rather

than programming them
exclusive {count += priv count; } “WRONG’

count = +/priv_count;
—

Reduce/Scan and Memory

When reduce/scan involve local memory
priv_count= +/priv_count;

The local is assignzed the global sum

Thisis an implied broadcast

priv_count= +\priv_ count;

The local is assign-ed the prefix sum to that pt
No implied broadcast

Peril-L Summary

Peril-L is a pseudo-language
No implementation is implied, though
performance is
Discuss: How efficiently could Peril-L run on
previously discussed architectures?
CMP, SMPbus, SMPx-bar, Cluster, BlueGenelL
Features: C, Threads, Memory (G/L/f/e), /, \

Using Peril-L

The point of a pseudocode is to allow detailed
discussion of subtle programming points
without being buried by the extraneous
detail

To illustrate, consider some parallel
computations ...

Tree accumulate

Balanced parens

4/21110 © 2010 Larry Snyder, CSE 19

[
E

Slick Tree Accumulate Using F/E

Idea: Let values percolate up
based on availability in F/E
memory

LN

| Bd BEd EBf BN Ed Ef B
N

I N N N N N HN
))))) e T
L1]l2][3]l4lls][e 7] 8]

0 oflalloffclalle]]

index (in hex)

10

Naive F/E Tree Accumulation

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {

3 int val2accum; int stride = 1; val2accum: locally computed val
4 nodeval'[index] = vallaccum; Assign initially to tree node

5 while (stride < P) { Begin logic for tree

6 if (index % (2*stride) == 0) {

7 nodeval' [index]=nodeval' [index]+nodeval' [index+stride];
8 stride = 2*stride;

9

10 else {

1 break; Exit, if not now a parent

12

13 }

14}

Naive F/E Tree Accumulation

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {
3 int val2accum; int stride = 1; val2accum: locally computed val
4 nodeval'[index] = vallaccum; Assign initially to tree node
5 while (stride < P) { Begin logic for tree
6 if (index % (2*stride) == 0) {
7 nodeval' [index]=nodeval' [index]+nodeval' [index+stride];
8 stride = 2*stride;
9
10 ;lse { 8 9 index
]12 break; Exit, if not now a parent 0 1 0dd?
}

13) D nodeval’
14} time

Round 1 of Tree Accum ...

0o 1 2 3 4 5 6 7 8 9 a b ¢ d e f
index (in hex)

0o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0
index % (2 * stride)

9PoPosEEGsasgegs

1

nodeval[index]

But What If P, is Slow, P_ Fast?

0o 1 2 3 4 5 6 7 8 9 a b ¢ d e f
index (in hex)

0o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0
index % (2 * stride)

EEemeleslsaleoieeleoie
L | ||||H||

nodeval[index]

12

Introuce Barrier to Synch Levels

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {

3 int val2accum; int stride = 1; val2accum: locally computed val
4 nodeval'[index] = vallaccum; Assign initially to tree node

5 while (stride < P) { Begin logic for tree

6 if (index % (2*stride) == 0) {

7 nodeval' [index]=nodeval' [index]+nodeval' [index+stride];
8 stride = 2*stride;

9 }

10

1

12 barrier;

13 }

14}

Barrier Stops Until Stable State

0o 1 2 3 4 5 6 7 8 9 a b ¢ d e f
index (in hex)

0o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0o 1
index % (2 * stride)

G

nodeval[index]

13

The Problem With Barriers

In many places barriers are essential to the
logic of a computation, but ...
In many cases they are just an
implementational device to overcome (for
example) false dependences
Avoid them when possible

They force the ||-ism to drop to zero

Often costly even when all threads arrive at once

4/21110 © 2010 Larry Snyder, CSE 27

Asynchronous Tree Accumulate

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {

3 1int wval2accum; int stride = 1;

4 while (stride < P) { Begin logic for tree

5 if (index % (2*stride) == 0) {

6 val2accum=val2accum+nodeval' [index+stride];

7 stride = 2*stride;

8 }

9 else {

10 nodeval' [index]=val2accum; Assign val to F/E memory
1 break; Exit, if not now a parent
12}

13 }

14 }

14

The “full” Applies To Root Only

0o 1 2 3 4 5 6 7 8 9 a b ¢ d e f
index (in hex)

0o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0o 1
index % (2 * stride)

L3 I 2 2 e] 2] s] s [T 2
Ll BT e L JETL el JEAL Jal JEA[]
A I | | O
(KX | N D5 D I I

nodeval[index]

Critique of Tree Accumulate

Both the synchronous and asynchronous
accumulates are available to us, but we
usually prefer the asynch solution

Notice that the asynch solution uses data
availability as its form of synchronization

4/21110 © 2010 Larry Snyder, CSE 30

15

Peril-L For ((xxx))

1 char *symb[n];

2 forall pID in (0..P-1) {

3 int i, len per th=length/P;

4 int start=pID * len per th;

5 int o0=0, c¢=0;

6 for (i=start; i<start+len per th; i++) {
7 if (symb[i] == "(")

8 ot++;

9 if (symb[i] == ")") {

10 o--;

11 if (o < 0) {

12 c++; o = 0;

13 }

14 }

15 1}

4/21110 © 2010 Larry Snyder, CSE 31

4/21110 © 2010 Larry Snyder, CSE 32

16

Thinking About Parallel Algorithms

Computations need to be reconceptualized
to be effective parallel computations
Three cases to consider

Unlimited parallelism -- issue is grain

Fixed |[ism -- issue is performance

Scalable parallelism -- get all performance that
is realistic and build in flexibility

Consider the three as an exercise in
Learning Peril-L
Thinking in parallel and discussing choices

The Problem: Alphabetize

Assume a linear sequence of records to be
alphabetized
Technically, this is parallel sorting, but the full
discussion on sorting must wait
Solutions

Unlimited: Odd/Even

Fixed: Local Alphabetize

Scalable: Batcher’s Sort

17

Unlimited Parallelism (O/E Sort, |)

1 bool continue = true;

2 rec L[n]; The data is global
3 while (continue) do {

4 forall (i in (1:n-2:2)){ Stride by 2

5 rec temp;

6 if (strcmp(L([i].x,L[i+1].x)>0){ Iso/even pair misordered?
7 temp = L[1i]; Yes, fix

8 L[i] = L[i+1];

9 L[i+1] = temp;

10 }

11}

Unlimited Parallelism (O/E Sort, II)

12 forall (i in (0:n-2:2)) { Stride by 2

13 rec temp;

14 Dbool done = true; Set up for termination test

15 if (stremp(L[i].x,L[i+1].x)>0){ Iselodd pair misordered?
16 temp = L[i];

Yes, interchange
17 L[i] = L[i+1];
18 L[i+1] = temp;
19 done = false; Not done yet
20 }
21 continue= ! (&&/ done); Were any changes made?
22 }
23 }

18

Reflection on Unlimited Parallelism

Is solution correct ... are writes exclusive?
What's the effect of process spawning
overhead?

How might this algorithm be executed for
n=10,000, P=1000

What is the performance?

Are the properties of this solution clear from
the Peril-L code?

1 More Problem w/Unlimited Model

The criticism of fine-grain logical processes is
they will usually be emulated; it's much
slower than doing the work directly.

Can we compile logical threads to tight code?
Possibly, but consider this model

/= (| || == || || == || || E= | || E= | || E=) | E=m | (|| ==

Imagine data shifts left one item ... what's the
cost for 100,000 local values?

19

Recall ...

We are illustrating the Peril-L notation for
writing machine/language independent
parallel programs
The “unlimited parallel solution” is O/E Sort
All data references were to global data
Threads spawned for each half step

Ineffective use of parallelism requiring threads to be
created and implemented literally

Now consider a “fixed parallel solution”

Fixed Algorithm

Postulate a process for handling each letter of
the alphabet -- 26 Latin letters
Logic
Processes scan records counting how many
records start w/their letter handle
Allocate storage for those records, grab & sort
Scan to find how many records ahead precede

20

Cartoon of Fixed Solution

Move locally

Sort
Return

Fixed Part 1: Introduce 2 functions

1 rec Llnl; The data is global

2 forall (index in (0..25)) { A thread for each letter

3 int myAllo = mySize (L, 0); Number of local items

4 rec LocL[] = localize(L[]); Makedatalocally ref-able
5 int counts[26] = 0; Count # of each letter

6 int i, j, startPt, mylet;

7 for (i=0; i<myAllo; i++) { Count number w/each letter
8 counts|[letRank (charAt (LocL[i].x,0))]1++;

9 }

10 counts[index] = +/ counts[index]; Figure no. of each letter
11 mylLet = counts[index]; Number of records of my letter
12 rec Temp[myLet]; Alloc local mem for records

21

Fixed Part 2

13 j§ = 0; Index for local array

14 for (i=0; i<n; i++) { Grab records for local abetize
15 if (index==letRank (charAt (L[i].x,0)))

16 Temp [j++]1= L[1i]; Save record locally

17)

18 alphabetizeInPlace (Templ[]); Alphabetize within this letter
19 startPt=+\mylLet; Scan counts # records ahead

of these; scan synchs, so
OK to overwrite L, post-sort

20 j=startPt-mylet; Find my start index in global
21 for (i=0; i<count; 1i++) { Return records to global mem
22 Llj++]=Temp[i];

23 }

24

Reflection on Fixed ||lism

Is solution correct ... are writes exclusive?

Is “moving the data twice” efficient?

How might this algorithm be executed for
n=10,000, P=1000

What is the performance?

Are the properties of this solution clear from
the Peril-L code?

22

Scalable Sort

Batcher’s algorithm -- not absolute best, but
illustrates a dramatic paradigm shift

Bitonic Sort is based on a bitonic sequence:
a sequence with increasing and decreasing
subsequences

=

Ascending Descending Lower Upper
Bitonic Bitonic

Merging 2 sorted sequences makes bitonic

Batcher’s Sort

0000 ooot 0010 0011 0100 010 ona o

Sklp I’eCUI’Sive Start; N . [I0J40008] (27 26 25)ONNASHIB] (21 06 16)[0BI28R38] (11 03 13| ISANARY (32 22 0¢
start w/ local sort o0 S - - _

Contr0| by thl’ead |D 0 195 10 4-'31 27 26 25 10115 1'8];:»'| 16 06) |08 28 3'3]_-: 11 03] (18 33 3'91 3 22 0¢
of paired
processes o) ' = |

(p,d) controls it: start 2 (0" v s 176 27 <o) 130 76 22] S 19 13 0¢
at (-,0), d counts

r) s P y s .
[0510 25] (26 27 40)§21° 98 16] (15 06 01)[03°08 19] 13 28 33)[39 33 1] (22 13 04

[) [I} i]
[01 05 06] (10 15 16118 21 25] (26 27 20|39 38 33] (31 28 22)[19 13 11] (08 02 03
up, p down from e
|
d-l 2.3 [01 05 06] 1 16§11 13 18] (03 04 08) |23 38 38] (22 28 31)[19 21 28] (26 27 40
p = process pairs e MW == MW
3 0105 06] (02 04 081193 18] [10 15 16) (3921 25] (22 26 27][33 38 39 (22 31 40

d = direction is dth bit

p) Y ; p .
10103 041 (05 05 08) 10 91931 115 16 18) (38020220 (25 26 27][28 89 88] (32 33 40

23

Throazs

Bitonic Sort, Closer Look

As bits 0000 001 0010 0011 o100 010 011

aput: [IONE0NRSE (27 26 25)00005018] (21 06 16)108028038] (11 03 13| Saasl (32 22 ¢
p.d

(LR (Tt | BB LR | LR
-0 [05 10 48] (27 26 25007 35 18][21 16 06) |08 28 38] (13 11 03][19 37 39] (32

§ y '
[05 10 28] (26 27 40)§21 98 18] (15 06 01)[03 08 1] (13 28 33)[39 33 31] (22

R I

' _
2) (05 10 181007 06 5018 21 28] (26 27 <0][38 3 31138 28 22][11 08 08) (15 1

r -

c
0.2) (0108081110 15 16)§18 21 28] 126 27 <0) {398

4/21110 © 2010 Larry Snyder, CSE

. { .
32] (31 28 2211913 19)(08 04 C

Logic of Batcher’s Sort

Assumption: 2* processes, ascending result
Leave data in place globally, find position
Reference data locally, say k items
Create (key, input position) pairs & sort these
Processes are asynch, though alg is synchronous

Each process has a buffer of size k to exchange data -- write to
neighbor’s buffer

Use F/E var to know when to write (other buffer empty) and
when to read (my buffer full)

Merge to keep (lo or hi) half data, and insure sorted
Go till control values end; use index to grab original rec

24

Data Transfer

Use one buffer per processor plus to F/E
variables: free' and ready"
free'is full when neighbor’s buffer can be filled
ready' is empty until local buffer is filled

P P,

free' ready’' free' ready'
BufK D BufK D

I e

Data Transfer

Use one buffer per processor plus to F/E
variables: free' and ready'
free'is full when neighbor’s buffer can be filled
ready' is empty until local buffer is filled

P P,

free' ready’' D free' ready' -

BufK I:l BufK I:l
]]

25

Data Transfer

Use one buffer per processor plus to F/E
variables: free' and ready"
free'is full when neighbor’s buffer can be filled
ready' is empty until local buffer is filled

P, P,
free' ready’' free' ready'
BufK D BufK 5

Data Transfer

Use one buffer per processor plus to F/E
variables: free' and ready'
free'is full when neighbor’s buffer can be filled
ready' is empty until local buffer is filled

P P,

free' ready’' free' ready'
BufK D BufK 5

L1

26

Data Transfer

Use one buffer per processor plus to F/E
variables: free' and ready"
free'is full when neighbor’s buffer can be filled
ready' is empty until local buffer is filled

P P,

free' ready’' D free' ready' D

BufK D BufK D
] (I

Details on Data Transfer

20 alphabetizeInPlace (K[],bit(index,0)); Local sort, up or
down based on bit 0

21 for(d=1l; d<=m; d++) { Main loop, m phases

22 for(p=d-1; p<0; p--) { Define p for each sub-phase
23 stall=free' [neigh (index,p)1; Stall till I can give data
24 for (i=0; i<size; i++) { Send my data to neighbor
25 BufK[neigh (index,p)] [1]1=KI[i];

26 }

27 ready' [neigh (index, p)]=true; Release neighbor to go
28 stall=ready' [index]; Stall till my data is ready
29 ... Merge two buffers, keeping half

30 }

31 1}

27

Bitonic Sort In Text

Details are in the book ...

Discussion Question: What, if any, is the
relationship between Bitonic Sort and Quick
Sort?

http://www.tools-of-computing.com/tc/CS
/Sorts/bitonic_sort.htm

Sample Sort

The idea of sending data to where it belongs
is a good one ... the Fixed Solution works out
where that is, and Batcher’s Sort uses a
general scheme
Can we figure this out with less work?

Estimate where the data goes by sampling
Send a random sampling of a small number (log
n?) of values from each process to p,

p, sorts the values and picks the P-1 “cut points”,
sends them back to all processors

28

Sample Sort (Continued)

After receiving the “cut points” each
process...

Sends its values to the process responsible for
each range

Each process sorts

A scan of the actual counts can place the “cut
points” into the right processes

An adjustment phase “scooches” the values into
final position

Cartoon of Sample Sort Solution

Sample v values from all processors to p,
p, sorts and figures P-1 cutpoints
Move them there

I

Adjust position

29

Reflection on Scalable |[ism

Is solution correct ... are writes exclusive?

If data not preassigned, how does one get it
How might this algorithm be executed for
n=10,000, P=1000

What is the performance?

Are the properties of this solution clear from
the Peril-L code?

Summary

Peril-L is a useful notation for sketching a
solution —you will probably implement it w/o
much language support

Ideally, we should have language support

Hopefully, it helps working out subtle points, like
synchronization behavior
In algorithm design, maximizing parallelism
is much less important that minimizing
process-interactions

4/21110 © 2010 Larry Snyder, CSE 60

HW for Next Week

Work out the basic logic of Sample Sort and
program it in Peril-L

Focus only on finding the “cuts,” determining
where the data goes, and “adjusting” for
balanced final allocation

Data is initially placed where you want it — but say
where that is

Assume any “local” functions you wish, such as
loc sort () thatsortsdatalocallyinplace

nis a multiple of P, whose values are inn and P

4/21110 © 2010 Larry Snyder, CSE 61

HW Goals

The purpose of this assignment is
Familiarity with Peril-L
Understand the ideas behind Sample sort
Turnin
Peril-L code with “coarse grain” commenting

Your thoughts about the usefulness of the CTA in
developing the algorithm, and any comments
about Peril-L

4/21110 © 2010 Larry Snyder, CSE 62

31

