CSES524 Parallel Algorithms

Lawrence Snyder
www.cs.washington.edu/CSEP524

30 March 2010

Computation
CSEb524 Parallel '

Lawrence Snyder
www.cs.washington.edu/CSE524

30 March 2010

Programming

C
CSE524 Parallel Algerithas.

Lawrence Snyder
www.cs.washington.edu/CSE524

30 March 2010

Course Logistics

1 Teaching Assistants: Matt Kehrt and
Adrienne Wang

L1 Text: Lin&Snyder, Principles of Parallel
Programming, Addison Wesley, 2008
B There will also be occasional readings

[J Class web page is headquarters for all data

[0 Take lecture notes -- the slides will be online
sometime after the lecture

— Informal class; ask questions immediately ——

Expectations

[0 Readings: We will cover much of the book; please
read the text before class

[0 Lectures will layout certain details, arguments ...
discussion is encouraged

[0 Most weeks there will be graded homework to be
submitted electronically PRIOR to class

O Am assuming most students have access to a
multi-core or other parallel machine

0 Grading: class contributions, homework assignments;
no final is contemplated at the moment

Part |: Introduction

Goal: Set the parameters for studying parallelism

Why Study Parallelism?

1 After all, for most of our daily computer
uses, sequential processing is plenty fast

M |t is a fundamental departure from the “normal”
computer model, therefore it is inherently cool

B The extra power from parallel computers is
enabling in science, engineering, business, ...

B Multicore chips present a new opportunity

B Deep intellectual challenges for CS -- models,
programming languages, algorithms, HW, ...

10,000,000

F a CtS 1,000,000
= 100,000
Single
Processor
1,000
Opportunity
Moore’s law 100 A
continues, so - ;|] s
use more gates 1 - T |
/y / $% e
1% ‘. i 82 |
1 { ’1 I i . L :clock.Spe:d(?:IIoI:z) %
Figure courtesy of Kunle A APomf:Ierl(mc
Olukotun, Lance Hammond, SESchEloci(IEE)
Herb Sutter & Burton Smith 0

1970 1975 1980 1985 1990 1985 2000 2005 2010

Size vs Power
ARM

O Powerb (Server)
H 389mm”2
B 120W@1900MHz
O Intel Core2 sc (laptop)
® 130mm”"2
® 15W@1000MHz
O ARM Cortex A8 (automobiles)
B 5mm”2
= 0.8W@800MHz
O Tensilica DP (cell phones / printers)
® 0.8mm”2
® 0.09W@600MHz
O Tensilica Xtensa (Cisco router)

B 0.32mm"2for3! Each processor operates with 0.3-0.1 efficiency
B 0.05SW@600MHz of the |argest chip: more threads, lower power

Topic Overview

[0 Goal: To give a good idea of parallel computation
B Concepts -- looking at problems with “parallel eyes”
B Algorithms -- different resources; different goals

B | anguages -- reduce control flow; increase
independence; new abstractions

B Hardware -- the challenge is communication, not
instruction execution

B Programming -- describe the computation without
saying it sequentially

B Practical wisdom about using parallelism

Everyday Parallelism

[J Juggling -- event-based computation

[J House construction -- parallel tasks, wiring
and plumbing performed at once

[J Assembly line manufacture -- pipelining,
many instances in process at once

] Call center -- independent tasks executed
simultaneously

How do we describe execution of tasks? ————

Parallel vs Distributed Computing

[0 Comparisons are often matters of degree

Characteristic Parallel Distributed
Overall Goal |Speed Convenience
Interactions Frequent Infrequent
Granularity Fine Coarse
Reliable Assumed Not Assumed

Parallel vs Concurrent

[0 In OS and DB communities execution of
multiple threads is logically simultaneous

1 In Arch and HPC communities execution of
multiple threads is physically simultaneous

[The issues are often the same, say with
respect to races

[Parallelism can achieve states that are
impossible with concurrent execution
because two events happen at once

Consider A Simple Task ...

[0 Adding a sequence of nhumbers A[0],...,A[n-1]

[J] Standard way to express it
sum = 0;
for (i=0; i<n; i++) {
sum += A[i];
}
[J Semantics require: (...((sum+A[0])+A[1])+...)+A[n-1]
B Thatis, sequential

[1 Can it be executed in parallel?

Parallel Summation

[0 To sum a sequence in parallel
B add pairs of values producing 1st level results,

B add pairs of 1st level results producing 2nd
level results,

B sum pairs of 2nd level results ...
[That is,

(---((A[O]+A[1]) + (A[2]+A[3])) + ... + (A[n-2]+A[n-1]))...)

Express the Two Formulations

[0 Graphic representation makes difference

clear
68_-76 76
52 36 40
36 /\ /\
26 10 2 3 1
WX\ R R R R
6/\4 16 10 16 14 2 8f|6 4 16 10 16 14 2 8

B Same number of operations; different order

The Dream ...

[0 Since 70s (llliac IV days) the dream has
been to compile sequential programs into
parallel object code
B Three decades of continual, well-funded

research by smart people implies it's hopeless
O For a tight loop summing numbers, its doable

0 For other computations it has proved extremely
challenging to generate parallel code, even with
pragmas or other assistance from programmers

What'’s the Problem?

1 It’s not likely a compiler will produce parallel
code from a C specification any time soon...

[J Fact: For most computations, a “best”
sequential solution (practically, not
theoretically) and a “best” parallel solution
are usually fundamentally different ...

® Different solution paradigms imply computations
are not “simply” related

B Compiler transformations generally preserve the
solution paradigm

Therefore... the programmer must discover the || solution

A Related Computation

[0 Consider computing the prefix sums

for (i=1; i<n; i++) { Alil is the sum of the
Ali] += Afi-1]; firsti + 1 elements

:
[J Semantics ...
B A[O]is unchanged
B A1l =Al]+A[0]
B Al2] = A[2] + (A[1] + A[O])

B An-1] = Atn-ﬂ + (A[n-2] + (... (A[11+A[0]) ...)
i What advantage can ||ism give? i

Comparison of Paradigms

[0 The sequential solution computes the prefixes ...
the parallel solution computes only the last

68_-76 76

66— /\

527 36 40

SGX

26x 10
10

10 A\

6 4 16 10 16 14 2 s8f|6 4 16 10 16 14 2 8
[0 Or does it?

5
~g
~a

10

Parallel Prefix Algorithm

Compute sum going up i Invariant: Parent data
Figure prefixes going down 6 is sum of elements to
garep going o[o+36 left of subtree
36 40
0| o+10 36| 36+30
10 26 30 10
o| o+ 10[10+16 36| 36+16 66| 66+2

[6] 6+0 | | 4+6 [4] [16]16+10] [10+26 [10] [16] 16+36] [14+52[14] [2] 2+66 | | 8+68 [8]

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Fundamental Tool of || Pgmming

[0 Original research on parallel prefix

algorithm published by
R. E. Ladner and M. J. Fischer
Parallel Prefix Computation
Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm
requires 2/og n time, twice as
much as simple tournament

global sum, not linear time

Applies to a wide class of operations

11

Parallel Compared to Sequential
Programming

[1 Has different costs, different advantages
[0 Requires different, unfamiliar algorithms
[0 Must use different abstractions

[J More complex to understand a program’s
behavior

[J More difficult to control the interactions of
the program’s components

[J Knowledge/tools/understanding more
primitive

Consider a Simple Problem

[0 Countthe 3sin array[] of length values

0 Definitional solution ...
B Sequential program

count = 0;
for (i=0; i<length; i++)
{
if (array[i] == 3)
count += 1;

}

12

Write A Parallel Program

[Need to know something about machine ...
use multicore architecture

RAM
Memory
I
How would you L2
solve it in parallel? —
L1 | L1
PO || P1

Divide Into Separate Parts

[0 Threading solution -- prepare for MT procs
length=16 t=4

lalslol203l3ls lalolslsl2l2 311 [o]
Thread 0 Thread 1 Thread 2 Thread 3

array

int length_per_thread = length/t;
int start = id * length_per_thread;
for (i=start; i<start+length_per_thread; i++)
{
if (array[i] == 3)
count += 1;

Divide Into Separate Parts

[0 Threading solution -- prepare for MT procs
length=16 t=4

array L2 13 1o 1203 [3[1 [ofo [1 03 2] [3]1 [o]
Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;
int start = id * length_per_thread;
for (i=start; i<start+length_per_thread; i++)
{
if (array[i] == 3)
count += 1;
}

Doesn’t actually get the right answer

Races

[0 Two processes interfere on memory writes

Thread 1 Thread 2
count « 0
load
load
increment time
increment
store
count =« 1

store
count « 1
e e S e S S S S Sttt

14

Races

[0 Two processes interfere on memory writes

Thread 1 Thread 2
count « 0
load
load
increment time
increment
store

count « 1
store

count « 1

Try 1

Protect Memory References

[0 Protect Memory References

mutex m;
for (i=start; i<start+length_per_thread; i++)
{
if (array[i] == 3)
{
mutex_lock(m);
count += 1;
mutex_unlock(m);
}
}

15

Protect Memory References

[0 Protect Memory References

mutex m;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)
{

mutex_lock(m);
count += 1;
mutex_unlock(m);
}
}

Try 2

Correct Program Runs Slow

[1 Serializing at the mutex

Performance i
t=1 t=2

serial Try 2

B The processors wait on each other

16

Closer Look: Motion of count, m

O Lock Reference and Contention

RAM mutex m;
Memory for (i=start; i<start+length_per_thread; i++)
{
L2 if (array[i] == 3)

mutex_lock(m);
L1l count += 1;
mutex_unlock(m);

PO | P1 }}

Accumulate Into Private Count

[0 Each processor adds into its own memory;
combine at the end

for (i=start; i<start+length_per_thread; i++)

if (array[i] == 3)
{
private_count[t] += 1;
}
}

mutex_lock(m);
count += private_count[t];
mutex_unlock(m);

17

Accumulate Into Private Count

[0 Each processor adds into its own memory;
combine at the end

for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)
{

private_count[t] += 1;
}
}

mutex_lock(m);
count += private_count][t];
mutex_unlock(m);

Try 3

Keeping Up, But Not Gaining

[0 Sequential and 1 processor match, but it's
a loss with 2 processors

Performance 1
i " 1
t=1 t=2
serial Try 3

False Sharing

[J Private var = private cache-line

|private_count[0] |private_count[1] |

RAM

Memory
I

private count[0] L2 private count[0]

private count[1] private_count[1]

L1 | L1

Thread modifying | PQ || P1{ |Thread modifying

private count[0] private count[1]

Force Into Different Lines

[0 Padding the private variables forces them
into separate cache lines and removes
false sharing

struct padded_int
{ int value;
char padding[128];
} private_count[MaxThreads];

19

Force Into Different Lines

[0 Padding the private variables forces them
into separate cache lines and removes

false sharing

{ int value;

struct padded_int

char padding[128];
} private_count[MaxThreads];

Try 4

Success!!

[0 Two processors are almost twice as fast

Performance
&

serial

-

t=1

Try 4

2]
t=2

Is this the best solution???

20

Count 3s Summary

[0 Recapping the experience of writing the
program, we

Wrote the obvious “break into blocks” program
We needed to protect the count variable

We got the right answer, but the program was
slower ... lock congestion

Privatized memory and 1-process was fast
enough, 2- processes slow ... false sharing

Separated private variables to own cache line

Finally, success

Break

[J During break think about how to generalize
the “sum n-integers” computation for n>8,
and possibly, more processors

21

Variations

[0 What happens when more processors are
available?
B 4 processors
B 8 processors
B 256 processors
B 32,768 processors

Our Goals In Parallel Programming

[0 Goal: Scalable programs with performance
and portability
B Scalable: More processors can be “usefully”
added to solve the problem faster

B Performance: Programs run as fast as those
produced by experienced parallel
programmers for the specific machine

B Portability: The solutions run well on all parallel
platforms

22

Program A Parallel Sum

[0 Return to problem of writing a parallel sum
[0 Sketch solution in class whenn> P =8
[J Use a logical binary tree?

Program A Parallel Sum

[0 Return to problem of writing a parallel sum
[J Sketch solution in class whenn> P =8

[J Assume communication time = 30 ticks

[0 n=1024

[J compute performance

23

Program A Parallel Sum

[0 Return to problem of writing a parallel sum
[0 Sketch solution in class whenn> P =8

1 and communication time = 30 ticks

[0 n=1024

[0 compute performance

[J Now scale to 64 processors

Program A Parallel Sum

[0 Return to problem of writing a parallel sum
[0 Sketch solution in class whenn> P =8

[0 and communication time = 30 ticks

[0 n=1024

[J compute performance

[J Now scale to 64 processors

— 1 This analysis will become standard, intuitive ——

24

Matrix Product: || Poster Algorithm

1 Matrix multiplication is most studied parallel
algorithm (analogous to sequential sorting)
[J Many solutions known
B |llustrate a variety of complications
B Demonstrate great solutions
[J Our goal: explore variety of issues
B Amount of concurrency
B Data placement
B Granularity

— Exceptional by requiring O(n3) ops on O(n?) data —

Recall the computation...

[0 Matrix multiplication of (square n x n)
matrices A and B producing n x n result C
where Crs = EISKSn Ark*Bks

=

25

Extreme Matrix Multiplication

[0 The multiplications are independent (do in
any order) and the adds can be done in a

free

O(n) processors
for each result
element implies
O(n®) total

Time: O(log n)

I2 I3]
* * *

Oo O3 On

+

Strassen Not Relevant

O(log n) MM in the real world ...

Good properties

B Extremely parallel ... shows limit of

concurrency

B Very fast -- log, n is a good bound ... faster?

Bad properties

B Ignores memory structure and reference

collisions

B |gnores data motion and communication costs

B Under-uses processors -- half of the
processors do only 1 operation

26

Where is the data?

[0 Data references collisions and communication costs
are important to final result ... need a model ... can
generalize the standard RAM to get PRAM

Po [P | Pl Pl P.| Ps| Ps] [P

Memory

Parallel Random Access Machine

1 Any number of processors, including n°

[0 Any processor can reference any memory in “unit
time”

[0 Resolve Memory Collisions

B Read Collisions -- simultaneous reads to location are OK
B Write Collisions -- simultaneous writes to loc need a rule:
O Allowed, but must all write the same value
[0 Allowed, but value from highest indexed processor wins
O Allowed, but a random value wins
0 Prohibited

Caution: The PRAM is not a model we advocate -——

27

PRAM says O(log n) MM is good

[0 PRAM allows any # processors => O(n?) OK

[1 A and B matrices are read simultaneously,
but that's OK

1 C is written simultaneously, but no location
is written by more than 1 processor => OK

PRAM model implies O(log n) algorithm is
best ... but in real world, we suspect not

We return to this point later

Where else could data be?

[J Local memories of separate processors ...
P, |I[P, P, |IPs [P, |Ps |IPs [P,

| | | | | | | |
Mem || Mem|| Mem|| Mem|| Mem|| Mem|| Mem || Mem

I e 1l 1 I 117 | e

Point-to-point Network

[0 Each processor could compute block of C
B Avoid keeping multiple copies of A and B
Architecture common for servers

28

Data Motion

[0 Getting rows and columns to processors

PO I31 PO I:)1 Po P1
I:’2 P3 == I:’2 P3 PZ I:’3
C A B
PO
B Allocate matrices in blocks a8

B Ship only portion being used

Blocking Improves Locality

[0 Compute a b x b block of the result

c A B

[0 Advantages
B Reuse of rows, columns = caching effect
B Larger blocks of local computation = hi locality

29

Caching in Parallel Computers

[0 Blocking = caching ... why not automatic?

B Blocking improves locality, but it is generally a manual
optimization in sequential computation

B Caching exploits two forms of locality
[0 Temporal locality -- refs clustered in time
O Spatial locality -- refs clustered by address

0 When multiple threads touch the data, global

reference sequence may not exhibit clustering
features typical of one thread -- thrashing

Sweeter Blocking

L1 It's possible to do even better blocking ...

r rows {

C A B

[0 Completely use the cached values before
reloading

30

Best MM Algorithm?

[J We haven’t decided on a good MM solution

1 A variety of factors have emerged
B A processor’s connection to memory, unknown
B Number of processors available, unknown

B | ocality--always important in computing--
0 Using caching is complicated by multiple threads
[0 Contrary to high levels of parallelism

[0 Conclusion: Need a better understanding of
the constraints of parallelism

— Next week, architectural details + model of |lism | —

Assignment for Next Time

[0 Reproduce the parallel prefix tree labeling
to compute the bit-wise & scan

[Try the “count 3s” computation on your
multi-core computer

B Implementation Discussion Board ... please
contribute — success, failure, kibitzing, ...

B https://catalysttools.washington.edu/gopost/
board/snyder/16265/

31

