
Cray

Chapel: Status/Community

Brad Chamberlain
Cray Inc.

CSEP 524
May 20, 2010

Outline

Chapel Context

Global-view Programming Models

Language Overview

Status, Collaborations, Future Work

Cray

The Chapel Team
 Interns

• Hannah Hemmaplardh (`10–UW)

• Jonathan Turner (`10 – Boulder)

• Jacob Nelson (`09 – UW)

• Albert Sidelnik (`09 – UIUC)

• Andy Stone (`08 – Colorado St)

• James Dinan (`07 – Ohio State)

• Robert Bocchino (`06 – UIUC)

• Mackale Joyner (`05 – Rice)

 Alumni
• David Callahan

• Roxana Diaconescu

• Samuel Figueroa

• Shannon Hoffswell

• Mary Beth Hribar

• Mark James

• John Plevyak

• Wayne Wong

• Hans ZimaSung-Eun Choi, David Iten, Lee Prokowich,

Steve Deitz, Brad Chamberlain,

and half of Greg Titus

Chapel Work

 Chapel Team’s Focus:
• specify Chapel syntax and semantics

• implement open-source prototype compiler for Chapel

• perform code studies of benchmarks, apps, and libraries in Chapel

• do community outreach to inform and learn from users/researchers

• support users of code releases

• refine language based on all these activities

implement

outreach

support

release

code

studies

specify

Chapel

Cray

Compiling Chapel

Chapel

Source

Code

Chapel

Executable

Chapel

Standard

Modules

Chapel

Compiler

Chapel Compiler Architecture

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

1-sided Messaging,

Threading Libraries

Runtime Support

Libraries (in C)Chapel

Standard

Modules

Internal Modules

(written in Chapel)

Chapel-to-C

Compiler

Cray

Chapel and the Community

 Our philosophy:
• help the parallel community understand what we are doing

• develop Chapel as an open-source project

• encourage external collaborations

• over time, turn language over to the community

 Goals:
• to get feedback that will help make the language more useful

• to support collaborative research efforts

• to accelerate the implementation

• to aid with adoption

Chapel Release

 Current release: version 1.1 (April 15th, 2010)

 Supported environments: UNIX/Linux, Mac OS X, Cygwin

 How to get started:
1. Download from: http://sourceforge.net/projects/chapel

2. Unpack tar.gz file

3. See top-level README

 for quick-start instructions

 for pointers to next steps with the release

 Your feedback desired!

 Remember: a work-in-progress
it’s likely that you will find problems with the implementation

this is still a good time to influence the language’s design

Cray

Implementation Status (v1.1)

 Base language: stable (some gaps and bugs remain)

 Task parallel:
• stable multi-threaded implementation of tasks, sync variables

• atomic sections are an area of ongoing research with U. Notre Dame

 Data parallel:
• stable multi-threaded data parallelism for dense domains/arrays

• other domain types have a single-threaded reference implementation

 Locality:
• stable locale types and arrays

• stable task parallelism across multiple locales

• initial support for some distributions: Block, Cyclic, Block-Cyclic

 Performance:
• has received much attention in designing the language

• yet minimal implementation effort to date

Selected Collaborations (see chapel.cray.com for complete list)

Notre Dame/ORNL (Peter Kogge, Srinivas Sridharan, Jeff Vetter):

Asynchronous Software Transactional Memory over distributed memory

UIUC (David Padua, Albert Sidelnik):

Chapel for hybrid CPU-GPU computing

BSC/UPC (Alex Duran):

Chapel over Nanos++ user-level tasking

U/Malaga (Rafa Asenjo, Maria Gonzales, Rafael Larossa):

Parallel file I/O for whole-array reads/writes

University of Colorado, Boulder (Jeremy Siek, Jonathan Turner):

Concepts/interfaces for improved support for generic programming

PNNL/CASS-MT (John Feo, Daniel Chavarria):

Hybrid computing in Chapel; performance tuning for the Cray XMT; ARMCI port

ORNL (David Bernholdt et al.; Steve Poole et al.):

Chapel code studies – Fock matrices, MADNESS, Sweep3D, coupled models, …

U Oregon, Paratools Inc.:

Chapel performance analysis using Tau

(Your name here?)

Cray

Collaboration Opportunities (see chapel.cray.com for more details)

 memory management policies/mechanisms

 dynamic load balancing: task throttling and stealing

 parallel I/O and checkpointing

 exceptions; resiliency

 language interoperability

 application studies and performance optimizations

 index/subdomain semantics and optimizations

 targeting different back-ends (LLVM, MS CLR, …)

 runtime compilation

 library support

 tools
• debuggers, performance analysis, IDEs, interpreters, visualizers

 database-style programming

 (your ideas here…)

Chapel and Education

 If I were to offer a parallel programming class, I’d want to

teach about:
• data parallelism

• task parallelism

• concurrency

• synchronization

• locality/affinity

• deadlock, livelock, and other pitfalls

• performance tuning

• …

 I don’t think there’s a good language out there…
…for teaching all of these things

…for teaching some of these things at all

…until now: I think Chapel has the potential to play a crucial role here

Cray

Our Next Steps

 Expand our set of supported distributions

 Continue to improve performance

 Continue to add missing features

 Expand the set of codes that we are studying

 Expand the set of architectures that we are targeting

 Support the public release

 Continue to support collaborations and seek out new ones

 Continue to expand our team

Summary

Chapel strives to greatly improve Parallel Productivity

via its support for…
…general parallel programming

…global-view abstractions

…control over locality

…multiresolution features

…modern language concepts and themes

