
1 

Chapter 1:  

Introduction: Parallelism = Opportunities + Challen ges 
 

The Power and Potential of Parallelism 
To begin, consider what parallelism is and how it might be used to advantage. 

Parallelism, A Familiar Concept 
In a parallel computation multiple instructions are executed simultaneously. This is a 
familiar concept. Juggling is a parallel task that people can perform; the “instructions” are 
catching and tossing an object such as a ball. House construction is a parallel activity, 
because several workers can perform separate tasks simultaneously, such as wiring, 
plumbing, furnace duct installation, etc. Most manufacturing—cars, hairdryers, frozen 
dinners—is performed in parallel using a pipeline (assembly line) in which many units of 
the product are under construction at once. A call center, where many employees are 
servicing customers at the same time, is also a business that applies parallelism.  
 
Though familiar, these forms of parallelism are different. The call center, for example, 
differs from home construction in a fundamental way: Calls are generally independent, 
and can be serviced in any order with little interaction among the workers. In 
construction, some tasks can be performed simultaneously—wiring and plumbing—while 
others are ordered—framing must precede wiring. The ordering restricts how much 
parallelism can be applied at once, limiting the speed at which a construction project can 
be completed. It also increases the degree of interaction among the workers. 
Manufacturing pipelines are different still, because they generally have strict ordering 
constraints with the separate stages often being performed sequentially; the parallelism 
comes by having many instances of the product in process at once. And juggling is an 
instance of event-driven parallelism, where the event—a falling ball—causes the 
execution of instructions—catching, throwing—to respond appropriately to the event. 
Such familiar properties will also arise in our consideration of parallel computation.  

Parallelism in Existing Computer Programs 
The main motivation for executing program instructions in parallel is to complete the 
computation faster. But most programs in existence today are incapable of much 
improvement through parallelism, because they were written assuming the instructions 
will be executed in order, one at a time; that is, sequentially. The semantics of most 
programming languages embed sequential execution, and the resulting programs typically 
rely so heavily on this property for their correctness that it is rare to find significant 
opportunities for parallel execution. To be sure, there are some opportunities, as when the 
expression (a + b) * (c + d) must be evaluated; assuming these are simple 
variables, the subexpressions (a + b) and (c + d) are independent of each other, 
so they can be computed simultaneously. Such opportunities, known as Instruction Level 
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Parallelism or ILP, provide small improvements in performance; most modern processors 
already exploit ILP using hardware mechanisms.  
 
Indeed, one reason that we have continued to write sequential programs is because 
computer architects have been so successful at applying simple parallel techniques like 
ILP. (The idea of ILP is simple; its implementation in hardware is not!) They have used 
the steady improvements in silicon technology to add several kinds of parallelism into 
sequential processor design. First, architects provide separate wires and caches for 
instructions and for data. The separation prevents instruction and data memory references 
from interfering. Second, instruction interpretation uses a pipeline, which fetches and 
decodes future instructions while the current instruction is being executed, and the results 
of past instructions are still being written to memory. Further, the processors issue 
(initiate) more than one instruction at a time, they prefetch instructions and data, they 
speculatively perform operations in parallel even if they cannot be sure that they will be 
needed, and they use highly parallel circuits to perform basic arithmetic operations such 
as addition and multiplication. In short, modern processors are highly parallel systems.  
 
The key point for programmers is that all of this parallelism has been transparently 
available to sequential programs. Such parallelism, together with increasing clock speeds, 
has allowed each succeeding generation of processor chip to execute instructions faster, 
while preserving the illusion of sequential execution. But the prospects for finding new 
opportunities to apply parallelism while preserving sequential semantics are limited.  
More seriously, existing parallel techniques have largely reached the point of diminishing 
returns, in terms of both power consumption and performance, so given current 
technologies, sequential program execution is nearing its maximum speed. 
 
To continue achieving significant performance improvements, we must move beyond the 
single sequence of instructions typical of existing programs. We need programs that have 
multiple separate instruction streams that operate on the computation simultaneously. 
This approach will require new programming techniques, the topic of this book.  

Multi-core Computers, an Opportunity  
Though performance improvements for a single processor may be reaching a limit, the 
self-fulfilling prophesy of Moore’s Law continues to deliver improved transistor 
densities. Chip manufacturers have used this opportunity to place more than one 
instruction execution engine, together with its caches, on a single chip. This structure has 
rapidly acquired the name core, because it represents the core components of a typical 
sequential processor. Early chips had 2, 4 or 8 cores, but this number increases with each 
generation.  
 
The advent of the first multi-core chips in 2005/2006 prompted a community-wide 
discussion about the “end of the free lunch.” The key observations of the discussion were  

• Software developers have enjoyed steadily improving performance for decades—
the “free lunch”—thanks to advances in silicon technology and architecture 
design, as just described 
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• Programmers, not needing to be concerned with performance, have changed their 
techniques and methodologies little over the years; (the object-oriented paradigm 
is a notable exception) 

• Existing software generally cannot exploit multi-core chips directly 
• Programmers do not now know how to write parallel programs  
• Programs that do not exploit multi-core chips are not now realizing any 

performance improvements and will not in the future 
The uncomfortable conclusion was that programs needed to change, and programmers 
do, too. 
 
Though the conclusion might be viewed by some as bad news, there was corresponding 
good news. Specifically, if a computation is rewritten to be parallel and if the parallel 
program is also scalable, meaning that it is capable of using progressively more 
processors, then as silicon technology advances and more cores are added to future chips, 
the revised program will stay on the performance curve. Non-scalable parallel programs, 
though they might exploit a specific number of cores, will not enjoy the continued 
benefits of silicon technology advances. It is important, therefore, to achieve scalable 
parallelism.  
 
Some observers, especially in the graphics community, no doubt find the discussion of 
the need for parallel computation curious, because they have been using parallelism for 
years. Graphics processing units (GPUs, a.k.a. graphics cards) have been the standard 
technique for accelerating the rendering pipeline. Though the GPU might seem like a 
niche co-processor of little interest for general computer applications, advances in silicon 
technology have enabled the GPGPU, the general-purpose graphics processing unit. With 
a generation cycle of roughly 18 months, the GPU has steadily morphed into a GPGPU. 
The generality has increased with each generation, and parallel programmers have 
applied them to a long list of compute-intensive non-graphics applications. Like multi-
core chips, exploiting the potential of GPGPUs requires knowledge of parallel 
programming.  

Even More Opportunities to Use Parallel Hardware 
The opportunities to use parallelism discussed so far involve a small number of 
processors. But there are many opportunities that are more ambitious. 

Supercomputers 
The problems of interest at the national research labs, the military and large corporations 
have traditionally required supercomputers, which by definition are the world’s fastest 
computers.  Twenty years ago, supercomputers were custom-made single processor 
systems, but single-processor systems last appeared on the Top 500 List over ten years 
ago in November of 1996, when there were just three of them, ranking #265, #374, and 

The Fastest Supercomputers. The Top 500 List of Fastest Supercomputers describes 
the latest speed records, together with a description of architectures and analyses of 
supercomputer trends.  This list can be found at www.top500.org. 



4 

#498.  Today, the Top 500 List is dominated by parallel computers with many thousands 
of processors.  In many ways, supercomputer programmers form the largest, most 
experienced community of parallel programmers. 

Clusters 
It is often observed that no matter how fast a single computer is, connecting two or more 
of them together produces a faster computer in the sense that the combined machine can 
execute more instructions per unit time. Of course, well written parallel programs are 
needed to exploit the added speed.  Clusters have been popular since the 1990s, because 
they are relatively inexpensive to build from commodity parts. The low price not only 
makes them attractive for small groups—labs or small firms—it gives them a tremendous 
price/performance advantage over other forms of high-end computing.  In the latest Top 
500 List of fastest computers (November 2006), clusters represented 72.2% of the list. 

Server Farms  
The expansion of the Internet and the popularity of remote services, such as searching, 
have created huge installations of networked computers. In terms of total number of 
instructions executed per second, these centers represent a huge computational resource. 
The typical computations—the processing of search queries, for example—are 
independent of each other; further they use distributed—as opposed to parallel—
programming techniques (see the section after next). Nevertheless, these huge networked 
systems are being used to analyze the features of their workload; the solutions apply 
parallel programming techniques. 

Grid Computing 
Generalizing still further, the collection of computers need not be in the same location, 
nor administered by the same organization; after all, the computers connected by the 
Internet represent an enormous computing resource.  By analogy with the power grid, a 
computing grid seeks to provide a single convenient computing service, even though the 
underlying computer typically consists of physically dispersed machines governed by 
multiple administrative organizations.  Many technical issues remain before grids become 
commonplace, but they are a topic of active research. 
 
We see then, that there are ample opportunities to use a parallel program beyond the few 
processors on a single silicon chip. These large computer systems motivate us to write 
scalable parallel programs. 

Parallelism vs. Distributed Computing 
As suggested above, distributed computing and parallel computing are different.  
The goal of parallel computing has traditionally been to provide performance—either in 
terms of processor power or memory—that a single processor cannot provide; thus the 
goal is to solve a single problem on multiple processors.  The goal of distributed 
computing is to provide convenience, where convenience includes high availability, 
reliability, and physical distribution (being able to access the distributed system from 
many different locations).   
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In parallel computation the interaction between processors is frequent, is typically fine 
grained with low overhead, and is assumed to be reliable. In distributed computation the 
interaction is infrequent, is heavier weight, and is assumed to be unreliable. Parallel 
computation values short execution time; distributed computation values long up time.  
 
Obviously, parallel and distributed computing are closely related. Some features are a 
matter of degree—frequency of interaction between processors—and we haven’t 
specified the crossover point. Some features are a matter of emphasis—speed versus 
reliability—and we know that both properties are important to both types of systems. It 
follows then, that the two kinds of computing represent distinct, but nearby points in a 
multidimensional space. The more one knows about parallel computation (or distributed 
computation, but that’s not the emphasis of this book), the more easily one can move 
around in the parallel-distributed space. Learning the basics of parallel computation will 
be valuable even for programmers with no need to improve speed.   
 
Finally, there is one reason besides speed to exploit parallelism: Some computations are 
more easily expressed as parallel computations. For example, user interfaces are typically 
best written as a collection of threads, with one thread responsible for interacting with the 
user:  it lops waits for user input and dispatches other threads to respond appropriately.  
With such an organization, the code that displays a widget is greatly simplified because it 
needn’t concern itself with the responsibility of polling for a user mouse click that might 
come at any point in time.   
 
As we shall see, the abstractions used to organize and manage parallel computations 
make using multiple instruction streams convenient and safe. When flow of control is 
unpredictable, parallelism can help even when the resulting instruction sequences are not 
executed simultaneously.   
 
Thus, while we emphasize fast solution of one problem, we acknowledge that there are 
other uses of parallelism. 

System Level Parallelism 
Return for a moment to our earlier argument that to enjoy the benefits from parallelism 
we must move beyond a single sequence of instructions. This argument is relevant within 
a single application. When we view a desktop computer’s software from a system level, 
however, we see many tasks executing at once. The operating system orchestrates their 
concurrent execution, which heretofore meant that several tasks were in process at once, 
but with only one executing at a time, that is, multitasking.1 An obvious question to ask 
is, “Why not simply run these separate tasks on the extra processors?” It makes sense 
because their concurrent design ensures that whatever interactions are required among 
them will be handled in a safe way.  
 

                                                 
1 Because certain I/O devices like disk controllers are typically separate from the main execution engine, 
there has long been true parallel execution between the processor and its external devices. 
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The first answer is that for the large scale parallelism just described, there are not nearly 
enough tasks to keep large processors busy. But, for small amounts of parallelism as is 
typical of today’s multi-core chips, the separate tasks can be run on separate processors. 
Indeed, it has been suggested that continuously executing tasks like security software (or 
the OS itself!) would be good candidates for the extra processors. But there may be fewer 
opportunities than might at first appear. First, many applications don’t stress the hardware 
now—word processors perform spell checking continuously in the background and never 
fall behind the typist. Second, much of the multitasking in an operating system comes 
from switching to a new task when the currently executing task requests a time-
consuming, external operation, such as a page fault, disk or network I/O, etc. The task 
that made the request, call it task A, must wait for that operation to complete no matter 
what. If the task that would have been run in a single processor system, call it task B, is 
already completed thanks to the parallel execution of independent tasks, then there may 
be nothing to do but idle; task B completed sooner, but task A didn’t because it was I/O 
constrained. 
 
The main reason that running multiple tasks on the separate parallel processors is not the 
silver bullet, however, is because it doesn’t usually speed an individual application. And 
in those cases where improved performance is needed, it is essential that there be 
multiple streams of instructions that work on the application and use multiple processors 
effectively. 

Examining Sequential and Parallel Programs 
The emphasis of previous sections has stressed the potential advantages available in 
hardware. And it has been asserted that existing sequential programs cannot take 
advantage of, say, multi-core computers. It is time to consider how to realize the benefits 
of parallel hardware.  

Parallelizing Compilers 
Knowing that a compiler translates the programs we write into the machine instructions 
of the computer we use, and not knowing (at least for most of us) how this magical 
translation is done, it is reasonable to wonder why someone doesn’t just write a compiler 
that translates existing programs into a form suitable for parallel execution. After all, the 
sequential program specifies the computation, and all that needs to be done is to 
transform the same operations into a parallel form. The idea to compile sequential 
programs for parallel machines was among the first approaches tried, and it continues to 
be a dream. Unfortunately, the dream seems beyond reach, despite over three decades of 
intense research.  
 
The reason for pessimism is that scalable parallel algorithms are generally qualitatively 
different from the sequential algorithms found in existing programs. We will describe this 
situation by saying that solving a problem in parallel requires a paradigm shift in the 
solution approach. Since compilers transform programs in ways that preserve their 
correctness, they do not change the essential features of the algorithm. (Figure 1.1 
illustrates the phases of a generic compiler.) Compilers change the form of the program 
code; they can remove unnecessary instructions, as for example, when 0 is added to a 
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variable; they can add helpful instructions, say, to check that array indices are in bounds; 
they can move instructions around, say hoisting them out of loops when the value 
computed isn’t affected by the iteration; and they can perform other amazing 
transformations. But, the general operation of the algorithm is preserved. Whether it was 
sequential or parallel in the source form, it will be the same in the object form. 
 
Thus, although automatic parallelization by compiler would be wonderful, we must 
consider other approaches2. First, consider how algorithms for the same task might differ. 
 

Figure 1.1.  Generic compilation process. In the first phases, the familiar source program is scanned 
(lexical analysis) and parsed (syntactic analysis), resulting in a program representation known as an 
Abstract Syntax Tree. In this form the program is type-checked to insure, for example, that variables are 
declared. Next, the program is transformed into a linear sequence of simple instructions known as 3-address 
code. The resulting intermediate representation is improved (grandly called, optimization). The resulting 
code is transformed into machine specific assembly code. It is then a trivial matter to transform the result 
into binary and assign virtual addresses. 
 

A Paradigm Shift 

To make clear how we see sequential and parallel algorithms to be different, compare 
alternative algorithms for finding the sum of a sequence of numbers.  This example is 
sufficiently simple that there are compiler techniques to identify it and generate a more 
parallel solution, but we choose it because it illustrates the conceptual difference between 
a sequential solution and a parallel solution. 

                                                 
2 For those who wish to pursue the dream of automatic parallelization, this book should 
be helpful in pointing out the challenges that must be faced. 
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Summation  
To begin we assume that the sequence has n data values,  
 

x0, x1, x2, …, xn-1 
 
and that these have been stored in an array, x.  

Iterative Sum 
Perhaps the most intuitive solution is to initialize a variable, call it sum, to 0 and then 
iteratively add the elements of the sequence.  Such a computation is typically 
programmed using a loop with an index value to reference the elements of the sequence, 
as in 
 

1  sum = 0; 
2  for (i=0; i<n; i++)  
3  { 
4      sum += x[i];  
5  } 

 
This computation can be abstracted as a graph showing the order in which the numbers 
are combined; see Figure 1.2. Such solutions might be considered the natural way to 
think of algorithms. 
 

 
Figure 1.2.  Summing in sequence. The order of combining a sequence of numbers (6, 4, 16, 10, 16, 14, 2, 
8) when adding them to an accumulation variable. 
 
Of course, addition over the real numbers is an associative and commutative operation, 
implying that its values need not be summed in the order specified, least index to greatest 
index. We can add them in another order—perhaps one that admits more parallelism—
and get the same answer.  

2 4 6 8 10 16 14 16 
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26 
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36 

68 76 
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Pair-wise Summation 
Another, more parallel order of summation is to add even/odd pairs of data values 
yielding the intermediate sums,  
 

(x0 + x1), (x2 + x3), (x4 + x5), (x6 + x7), … 
 
which are added in pairs,  
 
     ((x0 + x1) + (x2 + x3)), ((x4 + x5) + (x6 + x7)), … 
 
yielding more intermediate sums, which are also added in pairs, etc. This solution can be 
visualized as inducing a tree on the computation, where the original data values are 
leaves, the intermediate nodes are the sum of the leaves below them, and the root is the 
overall sum; see Figure 1.3. 
 

 
Figure 1.3.  Summing in pairs. The order of combining a sequence of numbers (6, 4, 16, 10, 16, 14, 2, 8) 
by (recursively) combining pairs of values, then pairs of results, etc. 
 
Comparing Figures 1.2 and 1.3, we see that because the two solutions produce the same 
number of computations and the same number of intermediate sums, there is no time 
advantage to either solution when using one processor. However, with a parallel 
computer that has at least P=n/2 processors, all of the additions at the same level of the 
tree can be computed simultaneously, yielding a solution with time complexity that is 
proportional to log n. The strategy significantly improves the linear-in-n sequential time.  
Like the sequential solution the pair-wise approach is a very intuitive way to think about 
the computation. 

Nonassociativity. Strictly speaking, addition is not associative on the fixed precision 
representation of floating point number, because it only approximates the reals. For some 
sequences of values, adding the numbers in different orders will produce different 
answers. We ignore such issues and reorder computations to improve performance, 
reasoning that (a) under most circumstances the sequence’s order was arbitrary in the 
first place, and, (b) in those cases where it is not arbitrary and numerical precision is a 
potential issue, error management is required throughout the computation. 

2 4 6 8 10 16 14 16 

10 26 30 10 

36 40 

76 
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Expressing the Summation 
The iterative summation was illustrated using C code, but not the pair-wise summation. 
We might have written it as 
 

1  for (s=0; s<log2(n); s++) 
2  { 
3      for (i=0; i<n; i=i+2^(s+1)) 
4      { 
5          x[i] = x[i] + x[i+2^s]; 
6      } 
7  ) 
8  sum = x[0]; 

 
which can be verified to add the eight numbers of our example with strides (s) of 1, 2 
and 4. The solution has the unfortunate property of trashing the x array, and it presumes n 
is a power of two, but there is a more serious problem from the perspective of parallel 
computation. The parallel portion of the summation—the inner loop (lines 3-6)—is 
expressed iteratively, that is, as a sequence of operations. We want them to be performed 
simultaneously. 
 
Of course, C is a sequential programming language with no easy way to express 
parallelism. Often, the construction forall is added to a language to indicate that a set 
of operations can be performed in any order, including in parallel. We express the indices 
for the index variable i as a triple, l:u:b, where l is the lower limit, u is the upper 
limit and b is the stride. Thus, we can write  
 

1  for (s=0; s<log2(n); s++) 
2  { 
3      forall i in 0:n-1:2^(s+1) ) 
4      { 
5          x[i] = x[i] + x[i+2^s]; 
6      } 
7  ) 
8  sum = x[0]; 

 
By using forall, we relax the semantics of order implied by the conventional 
iteration. The outer loop should remain a for, because we need the successive levels of 
the tree to be executed in order. 
 
Given the availability of this new programming statement, we might have simply 
rewritten the original iteration using forall rather than for. But there are benefits in 
having discovered the tree solution. 
 
Prefix Summation 
Closely related to the sum is the prefix sum, also known as scan in many parallel 
programming languages. It begins with the same sequence of n values, 
 

x0, x1, x2, …, xn-1 
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but the desired computation is the sequence 
 

y0, y1, y2, …, yn-1 
 
such that each yi is the sum of the first i elements of the input, that is, 
 

yi = Σj≤i xj 
 
Solving the prefix sum in parallel is less obvious than summation, because all of the 
intermediate values of the sequential solution are needed. It seems as though there is no 
advantage to, nor much possibility of, finding better solutions. But the prefix sum can be 
improved. 
 
The observation is that the summing by pairs approach can be modified to compute the 
prefix values. The idea is that each leaf processor storing xi could compute the value, yi, if 
it only knew the sum of all elements to its left, i.e. its prefix; in the course of summing by 
pairs, we know the sum of all substrees (see Figure 1.3), and if we save that information, 
we can figure out the prefixes. We start at the root, whose prefix—that is, the sum of all 
elements before the elements of the sequence—is 0. This is also the prefix of its left 
subtree, and the total for its left subtree is the prefix for the right subtree. Applying this 
idea inductively, we get the following set of rules: 
 

• Compute the grand total at the root by pair-wise sum, as before. 
• On completion, imagine the root receiving a 0 from its (nonexistent) parent.  
• All non-leaf nodes receiving a value from their parent, relay that value to their left 

child, and send their right child the sum of the parent’s value and their left child’s 
value computed on the way up; these are the prefixes of their child nodes. 

• Leaves add the value—the prefix—received from above. 
 
The values moving down the tree are the prefixes for the child nodes. (See Figure 1.4, 
where downward moving prefix values are shown in the white square.) 
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Figure 1.4.  Computing the prefix sum. The gray node values, computed going up the tree, are from the 
pair-wise sum algorithm; the white values, the prefixes, are computed going down the tree by a simple rule: 
send the value from the parent to the left child; add the sum from the left child to the value from the parent 
and send it to the right child. 
 
The computation is known as the parallel prefix computation. It requires an up sweep and 
a down sweep in the tree, but all operations at each level in a sweep can be performed 
concurrently. At most two add operations are required at each node, one going up and 
one coming down, plus the routing logic. Thus, the parallel prefix also has logarithmic 
time complexity. Many seemingly sequential operations yield to the parallel prefix 
approach.  
 
An essential difference illustrated between the sequential and parallel algorithms is that 
we organized the parallel algorithms to remove order in the computation.  

Parallelism Using Multiple Instruction Streams 

In this section, we illustrate the complexities of parallel programming by developing a 
parallel program that solves a trivial problem. It will take us four tries to get a satisfactory 
result.  
 
We begin by describing one way to conceptualize an instruction stream. 

The Concept of a Thread 
A thread, or thread of execution, is a unit of parallelism.  As we will discuss in Chapter 3, 
a thread has everything that it needs to execute a stream of instructions-- a private 
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program text, a call stack, and a program counter-- but it shares access to memory with 
other threads.  Thus, multiple threads can cooperate to compute on some global data. 
 
For example, the iterative summation loop discussed above could be the basis for a thread 
if we rewrite it as follows 

 
1  for (i=start; i<end; i++)       Caution: Incomplete Solution 
2  { 
3      sum += x[i];  
4  } 

 
The loop index i would be local and the array x would be shared. (Whether the other 
names are local or global depends on how the thread is completed.) This allows multiple 
streams of instructions to work on a problem at once, introducing one form of 
parallelism. 

A Multithreaded Solution to Counting 3’s 
To understand the obstacles to writing correct, efficient and scalable threaded programs, 
consider the problem of counting the number of 3's in an array.  This computation can be 
trivially expressed in most sequential programming languages; what is required to solve it 
using threads?  

The Parallel Computer 
To simplify matters, let's assume that we will execute our parallel program on a multi-
core chip with two processors, see Figure 1.5.  The processors are labeled P0 and P1. 
They are shown adjacent to their (private) Level 1 caches, labeled L1. A cache is fast 
(compared to the RAM) memory for storing instructions and data while a program runs. 
The Level 2 cache is memory intermediate in speed between the fast L1and slower RAM. 
It is also intermediate in size between the smaller L1 and the larger RAM. Information 
shared by both processors is exchanged in the L2 cache. 
 

 
 Figure 1.5.  Organization of a multi-core chip. Two processors, P0 and P1, have a private L1 cache, and 
share an L2 cache. 

L2 

RAM 
Memory 

L1 L1 

P0 P1 
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First Solution 
We will use a threads programming model in which each thread executes on a dedicated 
processor, and the threads communicate with one another through shared memory (L2).  
Thus, each thread has its own process state, but all threads share memory and file state. 
The serial code to count the number of 3's is shown below: 
 

 1 int *array; 
 2 int length; 
 3 int count; 
 4 
 5 int count3s () 
 6 {  
 7    int i; 
 8    count = 0; 
 9    for (i=0; i<length; i++) 
10    { 
11    if (array[i] == 3) 
12    { 
13       count++; 
14    } 
15    } 
16    return count; 
17 } 

 
To implement a parallel version of this code, we can partition the array so that each 
thread is responsible for counting the number of 3's in 1/t of the array, where t is the 
number of threads.  Figure 1.6 shows graphically how we might divide the work for t=4 
threads and length=16. 

 
Figure 1.6.  Schematic diagram of data allocation to threads. Allocations are consecutive indices. 
 
We can implement this logic with the function thread_create(), which takes two 
arguments—the name of a function to execute and an integer that identifies the thread's 
ID—and spawns a thread that executes the specified function with the thread ID as a 
parameter. The resulting program is shown in Figure 1.7. 
 
 1 int t;  /* number of threads */ 
 2 int *array; 
 3 int length; 
 4 int count; 
 5 
 6 void count3s () 
 7 { 

 2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0 array 

length=16  t=4 

 Thread 0  Thread 1  Thread 2  Thread 3 
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 8    int i; 
 9    count = 0; 
10    /* Create t threads */ 
11    for (i=0; i<t; i++) 
12    { 
13       thread_create (count3s_thread, i); 
14    } 
15  
16    return count; 
17 } 
18 
19 void count3s_thread (int id) 
20 { 
21   /* Compute portion of the array that this thread should work on */ 
22     int length_per_thread = length/t; 
23     int start = id * length_per_thread; 
24 
25     for (i=start; i<start+length_per_thread; i+) 
26     { 
27        if (array[i] == 3) 
28     { 
29        count++; 
30     } 
31     } 
32 } 

 
Figure 1.7 . The first try at a Count 3s solution using threads. 
 
Unfortunately, this seemingly straightforward code will not produce the correct answer 
because there is a race or race condition in the statement that increments the value of 
count on line 29.  A race occurs when multiple threads can access the same memory 
location at the same time.  In this case, the problem arises because the statement that 
increments count is typically implemented on modern machines as a series of primitive 
machine instructions: 
 

• Load count into a register 
• Increment count 
• Store count back into memory 

 
Thus, when two threads execute the Count3s_thread() code, these instructions 
might be interleaved as shown in Figure 1.8. The result of the interleaved executions is 
that count ⇔ 1 rather than 2.  Of course, many other interleavings can also produce 
incorrect results, but the fundamental problem is that the increment of count is not an 
atomic operation, that is, uninterruptible.  
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Figure 1.8.  One of several possible interleaving in time of references to the unprotected variable count 
illustrating a race. 

Second Solution: Try 2 
We can solve this problem by using a mutex to provide mutual exclusion.  A mutex is an 
object that has two states—locked and unlocked—and two methods—lock() and 
unlock().  The implementation of these methods ensures that when a thread attempts 
to lock a mutex, it checks to see if it is presently locked our unlocked. If locked, it waits 
until the mutex is in an unlocked state, before locking it, that is, setting it to the locked 
state.  By using a mutex to protect code that we wish to execute atomically—often 
referred to as a critical section—we guarantee that only one thread accesses the critical 
section at any time.  For the Count 3s problem, we simply lock a mutex before 
incrementing count, and we unlock the mutex after incrementing count, resulting in 
our second try at a solution, see Figure 1.9. 
 
 1 mutex m; 
 2 
 3 void count3s_thread (int id) 
 4 { 
 5   /* Compute portion of the array that this thread should work on */ 
 6    int length_per_thread = length/t; 
 7    int start = id * length_per_thread; 
 8  
 9    for (i=start; i<start+length_per_thread; i+) 
10    { 
11       if (array[i] == 3) 
12       { 
13          mutex_lock(m); 
14       count++; 
15       mutex_unlock(m); 
16    } 
17    } 
18 } 
 
Figure 1.9.  The second try at a Count 3s solution showing the count3s_thread() with mutex 
protection for the count variable. 
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With this modification, our second try is a correct parallel program.  Unfortunately, as we 
can see from the graph in Figure 1.10, our parallel program is much slower than our 
original sequential code.  With one thread, execution time is five times slower than the 
original serial code, so the overhead of using the mutexs is harming performance 
drastically.  Worse, when we use two threads, each running on its own processor, our 
performance is even worse than with just one thread; here lock contention further 
degrades performance, as each thread spends additional time waiting for the critical 
section to become unlocked. 
 

Figure 1.10 . Performance of the second Count 3s solution. 
 

Third Solution: Try 3 
Recognizing the problem of lock overhead and lock contention, we can try implementing 
a third version of our program that operates at a larger granularity or unit of sharing.  
Instead of accessing a critical section every time count must be incremented, we can 
instead accumulate the local contribution to count in a private variable, 
private_count and only access the critical section of updating count once per 
thread.  Our new code for this third solution is shown in Figure 1.11. 

 
 1 private_count[MaxThreads]; 
 2 mutex m; 
 3 
 4 void count3s_thread (int id) 
 5 { 
 6   /* Compute portion of array for this thread to work on */ 
 7    int length_per_thread = length/t; 
 8    int start = id * length_per_thread; 
 9 
10    for (i=start; i<start+length_per_thread; i++) 
11    { 
12       if (array[i] == 3) 
13    { 
14       private_count[t]++; 
15    } 
16    } 
17    mutex_lock(m); 
18    count += private_count[t]; 
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19    mutex_unlock(m); 
20 } 

 
Figure 1.11.  The count3s_thread() for the third Count 3s solution using a private_count array 
elements. 
 
In exchange for a tiny amount of extra memory, our resulting program now executes 
considerably faster, as shown by the graph in Figure 1.12. 
 

Figure 1.12 . Performance results for the third Count 3s solution. 
 
We see that with one thread our execution is the same the serial code, so our latest 
changes have effectively removed locking overhead.  However, with two threads there is 
still performance degradation.  This time, the performance problem is more difficult to 
identify by simply inspecting the source code.  We also need to understand some details 
of the underlying hardware.  In particular, our hardware uses a protocol to maintain the 
coherence of its caches, that is, to assure that both processors “see” the same memory 
image:  If processor 0 modifies a value at a given memory location, the hardware will 
invalidate any cached copy of that memory location that resides in processor 1's L1 
cache, thereby preventing processor 1 from accidentally accessing a stale value of the 
data.  This cache coherence protocol becomes costly if two processors take turns 
repeatedly modifying the same data, because the data will ping pong between the two 
caches. 

Fourth Solution: Try 4 
In our code, there does not seem to be any shared modified data.  However, the unit of 
cache coherence is known as a cache line, and for our machine the cache line size is 128 
bytes.  Thus, although each thread has exclusive access to either private_count[0] 
or private_count[1], the underlying machine places them on the same 128 byte 
cache line, and this cache line ping pongs between the caches as private_count[0] 
and  private_count[1] are repeatedly updated.  (See Figure 1.13.)  This 
phenomenon in which logically distinct data shares a physical cache line is known as 
false sharing.  To eliminate false sharing, we can pad our array of private counters so that 
each resides on a distinct cache line. See Figure 1.14.  

 0.91 
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Figure 1.13.  False Sharing. A cache line moves from RAM to the L2 cache, and then to the L1 cache 
when a thread references its private_count. When the other thread references its private_count, 
the copy in the other L1 is invaldiated, writen back to the L2 cache, and then fetched into the other L1 
cache. The line ping-pongs between the L1 caches and the L2 cache, because although the references to 
private_count don’t collide, they use the same cache line.  
 

 1 struct padded_int 
 2 { 
 3    int value; 
 4    char padding[32]; 
 5 } private_count[MaxThreads]; 
 6 
 7 void count3s_thread (int id) 
 8 { 
 9 /*Compute portion of the array this thread should work on */ 
10    int length_per_thread = length/t; 
11    int start = id * length_per_thread; 
12 
13    for (i=start; i<start+length_per_thread; i++) 
14    { 
15    if (array[i] == 3) 
16    { 
17       private_count[t]++; 
18    } 
19    } 
20    mutex_lock(m); 
21    count += private_count[t].value; 
22    mutex_unlock(m); 
23 } 

 
Figure 1.14.  The count3s_thread() for the fourth solution to the Count 3s computations showing 
the private count elements padded to force them to be allocated to different cache lines. 
 
With this padding, the fourth solution removes both the overhead and contention of using 
mutexes, and we have finally achieved success, as shown in Figure 1.15. 
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Figure 1.15.  Performance for the fourth solution to the Count 3s problem shows that one processor has 
performance equivalent to the standard sequential solution, and two processors improve the computation 
time by a factor off 2. 
 
From this example, we can see that obtaining correct and efficient parallel programs can 
be considerably more difficult than writing correct and efficient serial programs.  The use 
of mutexes illustrates the need to control the interaction among processors carefully.  The 
use of private counters illustrates the need to reason about the granularity of 
parallelism—that is, the frequency with which processes interact with one another.  The 
use of padding shows the importance of understanding machine details, as sometimes 
small details can have large performance implications.  It is this non-linear aspect of 
parallel performance that often makes parallel performance tuning difficult.  Finally, we 
have seen two examples where we can trade off a small amount of memory for increased 
parallelism and increased performance. 

The Goals: Scalable Performance and Portability  
The Count 3s program illustrates both that performance can be achieved through 
parallelism and that achieving it can be complicated.  Having mastered some of the issues 
facing CMP’s—race conditions, issues of granularity, and false sharing—it’s tempting to 
think that parallel programming is concerned only with issues of correctness and 
performance.  In fact, the goals of this book are broader.  Our goal is to help you write 
good parallel programs, by which we mean parallel programs with four characteristics: 
 

• They are correct 
• They achieve good performance 
• They are scalable to large numbers of processors 
• They are portable across a wide variety of parallel platforms. 

 
The first goal does not require explanation, other than to notice that correctness can often 
be more difficult to achieve in a parallel program than in a sequential program.  The 
second goal seems pretty clear, but as we will see in Chapter 3, defining what we mean 
by "good performance" is filled with subtleties.  
 
The third and fourth goals, however, require some elaboration because they appear to be 
overly lofty and often unnecessary.  For example, someone who programs for a CMP 
with a few cores has little interest in a parallel supercomputer with many thousands of 
processors.  Indeed, there will always be some markets where the extreme desire for 
performance will dictate low-level non-portable solutions.  But for the vast majority of 
programmers, scalability and portability are important because the landscape of parallel 
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hardware is changing rapidly.  For example, the first CMP's had only two cores per chip, 
but Intel has already announced a new chip with 80 cores.  Of course, as the number of 
cores increases, other micro-architectural features, such as the memory system, will have 
to change as well.  Given this highly fluid hardware landscape, it's best to not be caught 
scrambling when new hardware arrives.  The solution is to design for scalability and 
portability from the beginning, so that programs will enjoy a long lifetime, justifying the 
significant intellectual and economic investment in their creation. 
 
Let’s now briefly consider scalability and portability in more detail. 

Scalability 
To understand the issue of scalability, consider the consequences of programming 
decisions when the number of processors increases. For example, the Count 3s program 
was parameterized so that the number of threads could vary. This flexibility allows us to 
run the program on a four-core chip with little modification. It would seem that we have 
produced a general solution that could scale to thousands simply be changing 
maxThreads. But we have not. It’s true that the scan of the array, having been broken 
into segments, is independent, and therefore, parallel for any number of threads. But the 
combining of the intermediate results is not, because all threads update the one global 
sum. For a large number of threads, we would again encounter lock contention. 
Obviously, our pair-wise sum solution fixes the problem. Scalability requires scalable 
programming practices. 
 
More generally, as the number of parallel processors increases, physical constraints force 
design changes that impact how programs perform. For example, communication 
latency—the delay encountered when transmitting information among processors—
necessarily increases as the number of processors grows simply because of speed of light 
limitations. On a single chip different issues apply, but they still affect communication 
latency when the number of cores grows large. For a small number of processors, 
proximity can make certain operations fast that do not remain fast as the size of the 
system grows. Exploiting these benefits makes sense when possible, but the program 
must avoid relying on them for its success. Well written parallel programs can exploit the 
fast components and avoid over-using the slow components of a parallel computer.  

Performance Portability 
The problem just discussed—that physical constraints impact the characteristics of 
parallel computers as the number of processors increases—is not limited to slowing down 
certain operations. The problem is much more insidious. 
 
Architects, grappling with those physical constraints, have created scores of parallel 
computer designs. These machines can differ from each other dramatically. Unlike the 
sequential case, where a new computer usually requires only a recompilation of the 
source code to execute respectably well, a program running well on one parallel machine 
may have to be rewritten for the next one.   
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To give one example, parallel computers can mostly be divided into one of three classes: 
shared memory, typified by multi-core processors, shared address space, typified by 
various supercomputers, and separately addressed memories (shared nothing), typified by 
clusters. This distinction affects every memory reference in a program, so it has a 
tremendous impact on how the program should be written. Programs intended to port to 
all of these platforms must be robust to these differences in memory structure, which is 
not easy to do.  
 
The classification by memory capability specifies the variety along one axis. There are 
many other differences among parallel processors. We could solve the portability 
problem by simply setting a high enough level of abstraction (high level programming 
language) that none of these differences are visible; then, a compiler will map the high 
level specification to the platform. The strategy will make our programs insensitive to the 
parallel hardware, but it’s not a good idea. Generally, though compilers can perform the 
mapping, they will usually introduce software layers to implement the abstractions; the 
added software will reduce performance. We cannot divorce ourselves entirely from the 
underlying hardware if we want high performance. So, we will use a different strategy, 
described in the next chapter.  
 
Our goal, then, is portability with performance, often called performance portability. It’s 
not enough for the program to run on different (parallel) machines. It must run well on all 
of them.  

Principles First 
This book does not provide a step-by-step tutorial for writing good parallel programs.  
Instead, it emphasizes the principles underlying parallel computation, explaining the 
various phenomena and explaining why they represent opportunities or barriers to 
successful parallel programming.  Our reason for this approach is twofold.  First, by 
focusing on principles, we hope to provide enduring knowledge that will outlive the 
specifics of the latest hardware or software technology, which as we’ve pointed out are 
changing rapidly.  Second, and more importantly, the parallel programming community 
does not yet have all of the answers, so a step-by-step solution is not available.  Indeed, 
one of our goals is to inspire the next generation of researchers to understand the 
limitations of current technology so that they can build the better solutions of tomorrow. 
 
After presenting these principles, we discuss some popular programming languages and 
tools used for programming contemporary parallel machines. Again, our goal is more 
concerned with the principles behind the approach, than it is making the reader into an 
expert in the language. Our treatments, therefore, are minimal, and readers should expect 
to consult reference manuals for more complete and detailed information.  

Summary 
The chapter began with the observation that parallelism—doing two or more things at 
once to achieve a single goal—is a familiar idea that we encounter in everyday life. 
Though familiar, parallelism has not been a significant aspect of programming in the past 
because sequential computer performance has increased steadily for decades. Such 
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improvements have been due to a combination of technology (Moore’s Law) and the 
incorporation of parallelism into sequential processor design by computer architects. 
Because the architectural opportunities have largely been mined, the continued 
advancement of technology has made computers with multiple processors standard. This 
shift is having a profound effect on computer programming.  
 
We noted that existing sequential programs generally cannot take advantage of a parallel 
computer. The primary reason is that existing programming languages and standard 
programming techniques strongly incorporate the one-after-another processing of the 
traditional von Neumann computer architecture. Parallel solutions, as illustrated by 
several simple computations—summation, parallel prefix and Count 3s—illustrated 
features of parallel computations. Though they might not have been the first solutions to 
come to mind, they were still quite intuitive. A change in thinking about computation will 
be required—we called it a shift in paradigm—before programmers instinctively devise 
parallel solutions to their computational problems.  
 
In a quick and incomplete survey of parallel hardware, we noted platforms as diverse as 
chips with two processors to server farms with thousands of processors. Though 
dramatically different in scale and design, their parallel features rely on a small set of 
fundamental principles. We committed to focusing on those principles with the goal of 
empowering programmers to strive for parallel programs that achieve high performance, 
scalability, and performance-portability.  

Historical Context 
Parallelism has been applied in the design of sequential computers since the first 
commercial machines in the 1950s. A landmark parallel machine was the Illiac IV, built 
in the 1970s by a team at the University of Illinois, Urbana-Champaign. Though the Illiac 
IV was successfully programmed in low-level assembly-like code, the task of developing 
a compiler to translate sequential (Fortran) programs into a parallel form was begun by 
David Kuck and colleagues. Investigators throughout the community pursued the goal to 
the end of the century.  

Exercises 
1. Explain the meaning of the following vocabulary related to thread programming: 

a. Thread 
b. Race or Race Condition 
c. Mutex 
d. Lock Contention 
e. Granularity 
f. False Sharing 

2. Describe how the pair-wise summation computation can be changed to find the 
maximum of the elements of x array. 

3. Reformulate the pair-wise summation program to solve the Count 3s computation 
in log n time, assuming P=n/2. 

4. Reformulate the pair-wise summation program to solve the Count 3s computation 
assuming that n=1024, but P=8. 
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5. Rewrite the iterative summation program using forall; remember about races. 
 


