Chapter 1:

Introduction: Parallelism = Opportunities + Challen ges

The Power and Potential of Parallelism
To begin, consider what parallelism is and how it might be used to advantage.

Parallelism, A Familiar Concept

In a parallel computation multiple instructions are executed simultaneotistyisTa
familiar concept. Juggling is a parallel task that people can performyteuttions” are
catching and tossing an object such as a ball. House construction is a panailigl act
because several workers can perform separate tasks simultaneously, siviciy as w
plumbing, furnace duct installation, etc. Most manufacturing—cars, hairdryers) froze
dinners—is performed in parallel using a pipeline (assembly line) in which maisyoéini
the product are under construction at once. A call center, where many employees are
servicing customers at the same time, is also a business that appitdipm.

Though familiar, these forms of parallelism are different. The call geéoteexample,
differs from home construction in a fundamental way: Calls are generallyandent,

and can be serviced in any order with little interaction among the workers. In
construction, some tasks can be performed simultaneously—wiring and plumbing—while
others are ordered—framing must precede wiring. The ordering restricts hdw muc
parallelism can be applied at once, limiting the speed at which a constructiart paoie

be completed. It also increases the degree of interaction among the workers.
Manufacturing pipelines are different still, because they generally haveostiering
constraints with the separate stages often being performed sequethapgrallelism
comes by having many instances of the product in process at once. And juggling is an
instance of event-driven parallelism, where the event—a falling ball—s#use

execution of instructions—catching, throwing—to respond appropriately to the event.
Such familiar properties will also arise in our consideration of paraiapatation.

Parallelism in Existing Computer Programs

The main motivation for executing program instructions in parallel is to conlet
computation faster. But most programs in existence today are incapable of much
improvement through parallelism, because they were written assuming thetioas

will be executed in order, one at a time; thaséguentially. The semantics of most
programming languages embed sequential execution, and the resulting prograrig typica
rely so heavily on this property for their correctness that it is rare to @indisant
opportunities for parallel execution. To be sure, there are some opportunities, akevhen t
expressiorfa + b) * (c + d) must be evaluated; assuming these are simple
variables, the subexpressidrs + b) and(c + d) areindependent of each other,

so they can be computed simultaneously. Such opportunities, known as Instruction Level

Parallelism or ILP, provide small improvements in performance; most moderessors
already exploit ILP using hardware mechanisms.

Indeed, one reason that we have continued to write sequential programs is because
computer architects have been so successful at applying simple parallejuesHikie
ILP. (The idea of ILP is simple; its implementation in hardware is noigyThave used
the steady improvements in silicon technology to add several kinds of parallelism into
sequential processor design. First, architects provide separate wigsched for
instructions and for data. The separation prevents instruction and data meferarnyces
from interfering. Second, instruction interpretation uses a pipeline, wéticihefs and
decodes future instructions while the current instruction is being execntethearesults
of past instructions are still being written to memory. Further, the processaes is
(initiate) more than one instruction at a time, they prefetch instructions amdhuat
speculatively perform operations in parallel even if they cannot be sure thatilhse
needed, and they use highly parallel circuits to perform basic arithmetatiope such
as addition and multiplication. In short, modern processors are highly parallehsyste

The key point for programmers is that all of this parallelism has been tram$pare
available to sequential programs. Such parallelism, together with imgedsck speeds,
has allowed each succeeding generation of processor chip to execute instrut¢gons fas
while preserving the illusion of sequential execution. But the prospects for finding new
opportunities to apply parallelism while preserving sequential semargitisnéed.

More seriously, existing parallel techniques have largely reached the pointioistiing
returns, in terms of both power consumption and performance, so given current
technologies, sequential program execution is nearing its maximum speed.

To continue achieving significant performance improvements, we must move beyond the
single sequence of instructions typical of existing programs. We need programs that have
multiple separate instruction streams that operate on the computatiotasaoukly.

This approach will require new programming techniques, the topic of this book.

Multi-core Computers, an Opportunity

Though performance improvements for a single processor may be reaching a limit, the
self-fulfilling prophesy of Moore’s Law continues to deliver improved transisto

densities. Chip manufacturers have used this opportunity to place more than one
instruction execution engine, together with its caches, on a single chip. Thisrsties
rapidly acquired the naneere, because it represents the core components of a typical
sequential processor. Early chips had 2, 4 or 8 cores, but this number increaseshwith ea
generation.

The advent of the first multi-core chips in 2005/2006 prompted a community-wide
discussion about the “end of the free lunch.” The key observations of the discussion were
» Software developers have enjoyed steadily improving performance for decades—
the “free lunch"—thanks to advances in silicon technology and architecture
design, as just described

» Programmers, not needing to be concerned with performance, have changed their
technigues and methodologies little over the years; (the object-orienteligpara
is a notable exception)
» Existing software generally cannot exploit multi-core chips directly
* Programmers do not now know how to write parallel programs
» Programs that do not exploit multi-core chips are not now realizing any
performance improvements and will not in the future
The uncomfortable conclusion was that programs needed to change, and programmers
do, too.

Though the conclusion might be viewed by some as bad news, there was corresponding
good news. Specifically, if a computation is rewritten to be parallel and if thégba
program is alsacalable, meaning that it is capable of using progressively more
processors, then as silicon technology advances and more cores are added tagature ch
the revised program will stay on the performance curve. Non-scalable Iparadjeams,
though they might exploit a specific number of cores, will not enjoy the continued
benefits of silicon technology advances. It is important, therefore, to ackeable
parallelism.

Some observers, especially in the graphics community, no doubt find the discussion of
the need for parallel computation curious, because they have been using parallelism for
years. Graphics processing units (GPUSs, a.k.a. graphics cards) have been the standard
technique for accelerating the rendering pipeline. Though the GPU might &een li

niche co-processor of little interest for general computer applicatidvanees in silicon
technology have enabled the GPGPU, the general-purpose graphics processing unit. With
a generation cycle of roughly 18 months, the GPU has steadily morphed into a GPGPU.
The generality has increased with each generation, and parallel programmers have
applied them to a long list of compute-intensive non-graphics applications. Like multi
core chips, exploiting the potential of GPGPUs requires knowledge of parallel
programming.

Even More Opportunities to Use Parallel Hardware

The opportunities to use parallelism discussed so far involve a small nafber
processors. But there are many opportunities that are more ambitious.

The Fastest Super computers. The Top 500 List of Fastest Supercomputers describes
the latest speed records, together with a description of architectures seésné
supercomputer trends. This list can be found at www.top500.0rg.

Supercomputers

The problems of interest at the national research labs, the military gacctaporations
have traditionally required supercomputers, which by definition are the worldstfast
computers. Twenty years ago, supercomputers were custom-made single processor
systems, but single-processor systems last appeared on the Top 500 List ovesten year
ago in November of 1996, when there were just three of them, ranking #265, #374, and

#498. Today, the Top 500 List is dominated by parallel computers with many thousands
of processors. In many ways, supercomputer programmers form the largest, most
experienced community of parallel programmers.

Clusters

It is often observed that no matter how fast a single computer is, connedciing tvore

of them together produces a faster computer in the sense that the combiniee wac

execute more instructions per unit time. Of course, well written paratigtgms are

needed to exploit the added speed. Clusters have been popular since the 1990s, because
they are relatively inexpensive to build from commodity parts. The low price not only
makes them attractive for small groups—Ilabs or small firms—it gives gheemendous
price/performance advantage over other forms of high-end computing. In the latest Top
500 List of fastest computers (November 2006), clusters represented 72.2% of the lis

Server Farms

The expansion of the Internet and the popularity of remote services, such asigearchi
have created huge installations of networked computers. In terms of total number of
instructions executed per second, these centers represent a huge comprgatanzd.
The typical computations—the processing of search queries, for example—are
independent of each other; further they use distributed—as opposed to parallel—
programming techniques (see the section after next). Nevertheless)ubeseetworked
systems are being used to analyze the features of their workload; the solopigns a
parallel programming techniques.

Grid Computing

Generalizing still further, the collection of computers need not be in thelsaat®n,

nor administered by the same organization, after all, the computers connedted by t
Internet represent an enormous computing resource. By analogy with the power grid, a
computing grid seeks to provide a single convenient computing service, even though the
underlying computer typically consists of physically dispersed machines governed by
multiple administrative organizations. Many technical issues rem#onebgrids become
commonplace, but they are a topic of active research.

We see then, that there are ample opportunities to use a parallel program beyewd the f
processors on a single silicon chip. These large computer systems motivateites to w
scalable parallel programs.

Parallelism vs. Distributed Computing

As suggested above, distributed computing and parallel computing are different.
The goal of parallel computing has traditionally been to provide performance—either
terms of processor power or memory—that a single processor cannot providaeethus t
goal is to solve a single problem on multiple processors. The goal of distributed
computing is to provide convenience, where convenience includes high availability,
reliability, and physical distribution (being able to access the distribysteins from

many different locations).

In parallel computation the interaction between processors is frequismpicaly fine

grained with low overhead, and is assumed to be reliable. In distributed computation the
interaction is infrequent, is heavier weight, and is assumed to be unreliablélPar
computation values short execution time; distributed computation values long up time.

Obviously, parallel and distributed computing are closely related. Some feateir@s
matter of degree—frequency of interaction between processors—and we haven't
specified the crossover point. Some features are a matter of emphasis—speed ve
reliability—and we know that both properties are important to both types of systems. It
follows then, that the two kinds of computing represent distinct, but nearby points in a
multidimensional space. The more one knows about parallel computation (or distribut
computation, but that’s not the emphasis of this book), the more easily one can move
around in the parallel-distributed space. Learning the basics of paatelutation will

be valuable even for programmers with no need to improve speed.

Finally, there is one reason besides speed to exploit parallelism: Some camp et
more easily expressed as parallel computations. For example, usecegafe typically
best written as a collection of threads, with one thread responsible focimgnaith the
user: it lops waits for user input and dispatches other threads to respondiajgdyopr
With such an organization, the code that displays a widget is greatly simplifi@asledt
needn’t concern itself with the responsibility of polling for a user moudle ttlat might
come at any point in time.

As we shall see, the abstractions used to organize and manage parallel tongputa
make using multiple instruction streams convenient and safe. When flow of control is
unpredictable, parallelism can help even when the resulting instruction sequencas are
executed simultaneously.

Thus, while we emphasize fast solution of one problem, we acknowledge that ¢here ar
other uses of parallelism.

System Level Parallelism

Return for a moment to our earlier argument that to enjoy the benefits fraftejem

we must move beyond a single sequence of instructions. This argument is reiéviant

a single application. When we view a desktop computer’s software from a system level
however, we see many tasks executing at once. The operating system orchegdtrates the
concurrent execution, which heretofore meant that several tasks were in ptaress a

but with only one executing at a time, that is, multitaskiAg. obvious question to ask

is, “Why not simply run these separate tasks on the extra processors?” It nmslees se
because their concurrent design ensures that whatever interactiorgasziramong

them will be handled in a safe way.

! Because certain I/0 devices like disk controlleestgpically separate from the main execution eagin
there has long been true parallel execution betwseprocessor and its external devices.

The first answer is that for the large scale parallelism just éestrihere are not nearly
enough tasks to keep large processors busy. But, for small amounts of parallelism as is
typical of today’s multi-core chips, the separate tasks can be run on separass@rs
Indeed, it has been suggested that continuously executing tasks like securitges@iwa
the OS itself!) would be good candidates for the extra processors. But there feagbe
opportunities than might at first appear. First, many applications don'’t stress theauteard
now—word processors perform spell checking continuously in the background and never
fall behind the typist. Second, much of the multitasking in an operating system comes
from switching to a new task when the currently executing task requests a time-
consuming, external operation, such as a page fault, disk or network I/O, etc. The task
that made the request, call it task A, must wait for that operation to complete ap matt
what. If the task that would have been run in a single processor system, calBit isk
already completed thanks to the parallel execution of independent tasks, therathere m
be nothing to do but idle; task B completed sooner, but task A didn’t because it was 1/0
constrained.

The main reason that running multiple tasks on the separate parallel proisessbothe
silver bullet, however, is because it doesn’t usually speed an individual appli¢atd
in those cases where improved performance is needed, it is essentialréhbethe
multiple streams of instructions that work on the application and use myitgaessors
effectively.

Examining Sequential and Parallel Programs

The emphasis of previous sections has stressed the potential advantagele availa
hardware. And it has been asserted that existing sequential programs cannot take
advantage of, say, multi-core computers. It is time to consider how to realizendftsbe
of parallel hardware.

Parallelizing Compilers

Knowing that a compiler translates the programs we write into the machineiists

of the computer we use, and not knowing (at least for most of us) how this magical
translation is done, it is reasonable to wonder why someone doesn't just eaitgier

that translates existing programs into a form suitable for parallel éxecatter all, the
sequential program specifies the computation, and all that needs to be done is to
transform the same operations into a parallel form. The idea to compile sequential
programs for parallel machines was among the first approaches tried, and it cdotinues

be a dream. Unfortunately, the dream seems beyond reach, despite over three decades of
intense research.

The reason for pessimism is that scalable parallel algorithms are lyegeaditatively
different from the sequential algorithms found in existing programs. We wiltidegbis
situation by saying that solving a problem in parallel requ@ines adigm shift in the

solution approach. Since compilers transform programs in ways that preserve thei
correctness, they do not change the essential features of the algorithm. (Figure 1.1
illustrates the phases of a generic compiler.) Compilers change the ftrenpybgram

code; they can remove unnecessary instructions, as for example, when 0 is added to a

variable; they can add helpful instructions, say, to check that array indicgasarends;
they can move instructions around, say hoisting them out of loops when the value
computed isn’t affected by the iteration; and they can perform other amazing
transformations. But, the general operation of the algorithm is preserved. Whetaer it
sequential or parallel in the source form, it will be the same in the objeatt for

Thus, although automatic parallelization by compiler would be wonderful, we must
consider other approacRebirst, consider how algorithms for the same task might differ.

Source Lexical Abstract Linearize Intermediate
Program & Syntax Tree As 3-adress Representation |:>
Sytactic Code
Analysis
Program tl=a
t2=0
If_Stmt vee compare(t1,t2)
if_neqgoto L1
Expr Assgn_Stmt t3=x
| t4=2
Equal_test Left H S Expr t5 = t3/t4
e \0 | | x=15
a X Division L1: ..
X 2
Mla%hi'tﬂe Optimized o COdet Assembly Link Binary
ndp enerate +
Optim- Code |:> Reg Alloc + |:> Code |:> |:>
ization Peep Opt
tl=a Id 8,a_offset(fp) 100101110
test_eq_0(t1) bnez 8,L1 111001000
if neqgoto L1 Id 9,x_offset(fp) 000101110
12 =x sra 9,2 011010111
t3=12>>1 st 9,x_offset(fp)
X =13 L1: ...

L1:...

Figure 1.1. Generic compilation process. In the first phattes familiar source program is scanned
(lexical analysis) and parsed (syntactic analysgsylting in a program representation known as an
Abstract Syntax Tree. In this form the progranyjgetchecked to insure, for example, that variahtes
declared. Next, the program is transformed intoe@ar sequence of simple instructions known asc3ess
code. The resulting intermediate representatiomigoved (grandly called, optimization). The reggt
code is transformed into machine specific assemddie. It is then a trivial matter to transform thsult
into binary and assign virtual addresses.

A Paradigm Shift

To make clear how we see sequential and parallel algorithms to be differepareom
alternative algorithms for finding the sum of a sequence of numbers. This example is
sufficiently simple that therare compiler techniques to identify it and generate a more
parallel solution, but we choose it because it illustrates the concepfaeatuiide between

a sequential solution and a parallel solution.

2 For those who wish to pursue the dream of automatic parallelization, this book should
be helpful in pointing out the challenges that must be faced.

Summation
To begin we assume that the sequencenttga values,

X01 Xl! X21 ey Xn-l
and that these have been stored in an axray,

Iterative Sum

Perhaps the most intuitive solution is to initialize a variable, calimy to 0 and then
iteratively add the elements of the sequence. Such a computation is typically
programmed using a loop with an index value to reference the elements of thesgquen
asin

sum = O;

for (i=0; i<n; i++)

{
}

sum += x[i];

ab~hwWwNPRE

This computation can be abstracted as a graph showing the order in which the numbers
are combined; see Figure 1.2. Such solutions might be considered the natural way to
think of algorithms.

68 _— 76
66 —
52~
36
26
RN
& 4 16 10 16 14 2 8

Figure 1.2. Summing in sequence. The order of combining aesszpiof numbers (6, 4, 16, 10, 16, 14, 2,
8) when adding them to an accumulation variable.

Of course, addition over the real numbers is an associative and commutativeoperat
implying that its values need not be summed in the order specified, least indexdstgrea
index. We can add them in another order—perhaps one that admits more parallelism—
and get the same answer.

Nonassociativity. Strictly speaking, addition is not associative on the fixed precision
representation of floating point number, because it only approximates the realsnEof so
sequences of values, adding the numbers in different orders will produce different
answers. We ignore such issues and reorder computations to improve performance
reasoning that (a) under most circumstances the sequence’s order wasyarbibe
first place, and, (b) in those cases where it is not arbiérayumerical precision is a
potential issue, error management is required throughout the computation.

Pair-wise Summation

Another, more parallel order of summation is to add even/odd pairs of data values
yielding the intermediate sums,

(Xo + Xl), (Xz + X3), (X4 +X5), (Xe +X7),
which are added in pairs,
((Xo+X1) + (X2 +X3)), (X4 +Xs5) + (X6 +X7)), ...

yielding more intermediate sums, which are also added in pairs, etc. This scéutiba
visualized as inducing a tree on the computation, where the original data values a
leaves, the intermediate nodes are the sum of the leaves below them, raod ghthe
overall sum; see Figure 1.3.

76

/\

36 40

10/\26 3 /\1
/\ /\ 16A 14 ZAS

6 4 16 10

Figure 1.3. Summing in pairs. The order of combining a seqaerfciumbers (6, 4, 16, 10, 16, 14, 2, 8)
by (recursively) combining pairs of values, therpaf results, etc.

Comparing Figures 1.2 and 1.3, we see that because the two solutions produce the same
number of computations and the same number of intermediate sums, there is no time
advantage to either solution when using one processor. However, with a parallel
computer that has at ledtn/2 processors, all of the additions at the same level of the

tree can be computed simultaneously, yielding a solution with time complexitg that i
proportional to logn. The strategy significantly improves the lineamisequential time.

Like the sequential solution the pair-wise approach is a very intuitive way to thonk a

the computation.

Expressing the Summation

The iterative summation was illustrated using C code, but not the pair-wise sammat
We might have written it as

for (s=0; s<log2(n); s++)

{

for (i=0; i<n; i=i+2"(s+l))

x[i1] = x[i] + x[i+2"s];

}

sum = x[0];

O~NO U WN P

which can be verified to add the eight numbers of our example with stsipes], 2

and 4. The solution has the unfortunate property of trashing dney, and it presumes
is a power of two, but there is a more serious problem from the perspectivellel para
computation. The parallel portion of the summation—the inner loop (lines 3-6)—is
expressed iteratively, that &s a sequence of operations. We want them to be performed
simultaneously.

Of course, C is a sequential programming language with no easy way to express
parallelism. Often, the constructibror al | is added to a language to indicate that a set
of operations can be performed in any order, including in parallel. We express the indice
for the index variable as a triple| : u: b, wherel is the lower limitu is the upper

limit andb is the stride. Thus, we can write

for (s=0; s<log2(n); s++)
forall i in 0:n-1:2"(s+1))

x[i] = x[i] + x[i+2"s];

}

sum = x[0] ;

O~NO U WN PR

By usingf or al | , we relax the semantics of order implied by the conventional
iteration. The outer loop should remaih@ , because we need the successive levels of
the tree to be executed in order.

Given the availability of this new programming statement, we might have simply
rewritten the original iteration usirfgpr al | rather thanf or . But there are benefits in
having discovered the tree solution.

Prefix Summation

Closely related to the sum is the prefix sum, also knovaassin many parallel
programming languages. It begins with the same sequemceabies,

XO’ Xll X21 ey Xn-l

10

but the desired computation is the sequence

yO’ yll y21 ey yn-l

such that each; is the sum of the firstelements of the input, that is,

Vi = sti Xj

Solving the prefix sum in parallel is less obvious than summation, because all of the
intermediate values of the sequential solution are needed. It seems as thaughnber
advantage to, nor much possibility of, finding better solutions. But the prefix sum can be
improved.

The observation is that the summing by pairs approach can be modified to compute the
prefix values. The idea is that each leaf processor steroauld compute the valug, if

it only knew the sum of all elements to its left, i.e. its prefix; in the coursamming by
pairs, we know the sum of all substrees (see Figure 1.3), and if we save thattinfgrma
we can figure out the prefixes. We start at the root, whose prefix—that is, thef allm
elements before the elements of the sequence—is 0. This is also the prefigfof its |
subtree, and the total for its left subtree is the prefix for the right subjppsying this

idea inductively, we get the following set of rules:

» Compute the grand total at the root by pair-wise sum, as before.

* On completion, imagine the root receiving a 0 from its (nonexistent) parent.

» All non-leaf nodes receiving a value from their parent, relay that value tdefieir
child, and send their right child the sum of the parent’s value and their leftschild’
value computed on the way up; these are the prefixes of their child nodes.

* Leaves add the value—the prefix—received from above.

The values moving down the tree are the prefixes for the child nodes. (See Figure 1.4,
where downward moving prefix values are shown in the white square.)

11

36 40

0 0+10 36 | 36+30

10 26 30 10

10+16 36+16 66+2

TN /TN /T

0 0+6
6+0 4+6

4 16 | 16+10 10+26 | 10 16 | 16+36 14+52 | 14 2 2+66 8+68 8

Figure 1.4. Computing the prefix sum. The gray node valuesymaed going up the tree, are from the
pair-wise sum algorithm; the white values, the igef, are computed going down the tree by a simyée
send the value from the parent to the left chitif the sum from the left child to the value frore garent
and send it to the right child.

The computation is known as the parallel prefix computation. It requires an up ancke

a down sweep in the tree, but all operations at each level in a sweep can be gerforme
concurrently. At most two add operations are required at each node, one going up and
one coming down, plus the routing logic. Thus, the parallel prefix also has logarithmic
time complexity. Many seemingly sequential operations yield to the parallel prefix
approach.

An essential difference illustrated between the sequential and patgdiethms is that
we organized the parallel algorithms to remove order in the computation.

Parallelism Using Multiple Instruction Streams

In this section, we illustrate the complexities of parallel programgray developing a
parallel program that solves a trivial problem. It will take us four toeget a satisfactory
result.

We begin by describing one way to conceptualize an instruction stream.

The Concept of a Thread

A thread, or thread of execution, is a unit of parallelism. As we will discuss in Chapter 3,
a thread has everything that it needs to execute a stream of instructipmgate

12

program text, a call stack, and a program counter-- but it shares accessoity nvém
other threads. Thus, multiple threads can cooperate to compute on some global data

For example, the iterative summation loop discussed above could be the basis ft a thre
if we rewrite it as follows

for (i=start; i<end; i++) Caution: Incomplete Solution

1
2 {
3 sum += x[i];
4 }

The loop index would be local and the arraywould be shared. (Whether the other
names are local or global depends on how the thread is completed.) This allows multiple
streams of instructions to work on a problem at once, introducing one form of
parallelism.

A Multithreaded Solution to Counting 3’s

To understand the obstacles to writing correct, efficient and scalabldedrpeograms,
consider the problem of counting the number of 3's in an array. This computation can be
trivially expressed in most sequential programming languages; what isectusolve it
using threads?

The Parallel Computer

To simplify matters, let's assume that we will execute our parallelgorogn a multi-

core chip with two processors, see Figure 1.5. The processors are labeled PO and P1.
They are shown adjacent to their (private) Level 1 caches, labeled L1h@ isdast
(compared to the RAM) memory for storing instructions and data while a program runs
The Level 2 cache is memory intermediate in speed between the fast L1and sdiver R
It is also intermediate in size between the smaller L1 and the largdr Rformation
shared by both processors is exchanged in the L2 cache.

RAM
Memory

L2

L1 L1

PO P1

Figure 1.5. Organization of a multi-core chip. Two process®8,and P1, have a private L1 cache, and
share an L2 cache.

13

First Solution

We will use a threads programming model in which each thread executes on a dedicate
processor, and the threads communicate with one another through shared memory (L2).

Thus, each thread has its own process state, but all threads share memoeyssaié fil
The serial code to count the number of 3's is shown below:

1int *array;
2 int length;
3 int count;

4
5 int count3s ()

6 {

7 int i;

8 count = 0;

9 for (i=0; i<length; i++)
10 {

11 if (array[i] == 3)

12 {

13 count ++;

14 }

15 }

16 return count;

17 }

To implement a parallel version of this code, we can partition the array sattrat
thread is responsible for counting the number of 3'stiafthe array, whereis the
number of threads. Figure 1.6 shows graphically how we might divide the wd#dfor
threads antength=16.

| engt h=16 t =4
array ?2 3 0 ?2 3 3 1 0 0 1 3 ?2 2 3 1 0
- A A A J
' ' ' Y~
Thread 0 Thread 1 Thread 2 Thread 3

Figure 1.6. Schematic diagram of data allocation to threadlecAtions are consecutive indices.

We can implement this logic with the functibhr ead_cr eat e() , which takes two
arguments—the name of a function to execute and an integer that identifies ttis threa
ID—and spawns a thread that executes the specified function with the thread ID as
parameter. The resulting program is shown in Figure 1.7.

int t; /* nunber of threads */
int *array;
int length;
int count;

void count3s ()

{

NOoO O~ WNPE

14

8 int i;

9 count = 0O;

10 /* Create t threads */

11 for (i=0; i<t; i++)

12 {

13 thread _create (count3s_thread, i);
14 }

15

16 return count;

17 }

18

19 void count3s_thread (int id)

20 {

21 /* Conpute portion of the array that this thread should work on */
22 int length_per_thread = length/t;

23 int start =id * length_per_thread,
24

25 for (i=start; i<start+l ength_per_thread; i+)
26 {

27 if (array[i] == 3)

28 {

29 count ++;

30 }

31 }

32}

Figure 1.7 . The first try at a Count 3s solution using threads

Unfortunately, this seemingly straightforward code will not produce the corregeans
because there israce or race condition in the statement that increments the value of
count on line 29. A race occurs when multiple threads can access the same memory
location at the same time. In this case, the problem arises becaustetherdtéhat
incrementcount is typically implemented on modern machines as a series of primitive
machine instructions:

 Loadcount into a register
* Incrementount
» Storecount back into memory

Thus, when two threads execute @oauint 3s_t hr ead() code, these instructions

might be interleaved as shown in Figure 1.8. The result of the interleaved executions is
thatcount < 1 rather than 2. Of course, many other interleavings can also produce
incorrect results, but the fundamental problem is that the incremeouait is not an
atomic operation, that is, uninterruptible.

15

Thread 1 Thread 2

count <« 0
load load

increment _
time

increment
store count < 1 ,

count = 1 store

Figure 1.8. One of several possible interleaving in time dérences to the unprotected variabtauint
illustrating a race.

Second Solution: Try 2

We can solve this problem by usingnatex to providemutual exclusion. A mutex is an
object that has two states—locked and unlocked—and two methansk{) and

unl ock(). The implementation of these methods ensures that when a thread attempts
to lock a mutex, it checks to see if it is presently locked our unlocked. If locked,st wait
until the mutex is in an unlocked state, before locking it, that is, setting it to #ezlloc

state. By using a mutex to protect code that we wish to execute atomically—often
referred to as a critical section—we guarantee that only one threadeacitessritical

section at any time. For the Count 3s problem, we simply lock a mutex before
incrementingcount , and we unlock the mutex after incrementrayint , resulting in

our second try at a solution, see Figure 1.9.

1 mutex m

2

3 void count3s_thread (int id)

4 {

5 /* Conpute portion of the array that this thread should work on */
6 int length _per thread = length/t;

7 int start = id * length_per_thread,

8

9 for (i=start; i<start+l ength_per_thread; i+)
10 {

11 if (array[i] == 3)

12 {

13 mut ex_| ock(m ;

14 count ++;

15 nmut ex_unl ock(nj;

16 }

17 }

18 }

Figure 1.9. The second try at a Count 3s solution showingcthent 3s_t hr ead() with mutex
protection for theeount variable.

16

With this modification, our second try is a correct parallel program. Unfortynateive
can see from the graph in Figure 1.10, our parallel program is much slower than our
original sequential code. With one thread, execution time is five times dloavethe
original serial code, so the overhead of using the mutexs is harming performance
drastically. Worse, when we use two threads, each running on its own processor, our
performance is even worse than with just one thread; here lock contention further
degrades performance, as each thread spends additional time waiting faictde cr
section to become unlocked.

Performance 6.81

Figure 1.10 . Performance of the second Count 3s solution.

Third Solution: Try 3

Recognizing the problem of lock overhead and lock contention, we can try implementing
a third version of our program that operates at a larger granularity or unit of sharing.
Instead of accessing a critical section every ttment must be incremented, we can
instead accumulate the local contribution to count in a private variable,

privat e_count and only access the critical section of updatingnt once per

thread. Our new code for this third solution is shown in Figure 1.11.

1 private_count[MaxThr eads];

2 mutex m
3
4 void count3s_thread (int id)
5 {
6 /* Conpute portion of array for this thread to work on */
7 int length _per thread = length/t;
8 int start =id * |length_per_thread,
9
10 for (i=start; i<start+length_per_thread; i++)
11 {
12 if (array[i] == 3)
13 {
14 private_count[t]++;
15 }
16 }
17 nut ex_| ock(m;
18 count += private_count[t];

17

19 mut ex_unl ock(m ;
20 }

Figure 1.11. Thecount 3s_t hread() for the third Count 3s solution usingai vat e_count array
elements.

In exchange for a tiny amount of extra memory, our resulting program now executes
considerably faster, as shown by the graph in Figure 1.12.

Performance
0.91 0.91 1.15
[] []
t=1 t=2
serial Try 3

Figure 1.12 . Performance results for the third Count 3s sofuti

We see that with one thread our execution is the same the serial code, sotour lates
changes have effectively removed locking overhead. However, with two threads there i
still performance degradation. This time, the performance problem is moceiltliidi

identify by simply inspecting the source code. We also need to understand some details
of the underlying hardware. In particular, our hardware uses a protocol to maintain the
coherence of its caches, that is, to assure that both processors “seaidimesaory

image: If processor 0 modifies a value at a given memory location, the hardWare wi
invalidate any cached copy of that memory location that resides in processor 1's L1
cache, thereby preventing processor 1 from accidentally accessing alsialef\the

data. This cache coherence protocol becomes costly if two processors take turns
repeatedly modifying the same data, because the data will ping pong between the two
caches.

Fourth Solution: Try 4

In our code, there does not seem to be any shared modified data. However, the unit of
cache coherence is known asaahe line, and for our machine the cache line size is 128
bytes. Thus, although each thread has exclusive access t@eitivext e _count [0]
orprivate_count|[1], the underlying machine places them on the same 128 byte
cache line, and this cache line ping pongs between the caghes\east e _count [0]

and private_count[1] are repeatedly updated. (See Figure 1.13.) This
phenomenon in which logically distinct data shares a physical cache line is known as
false sharing. To eliminate false sharing, we can pad our array of private counters so that
each resides on a distinct cache line. See Figure 1.14.

18

Cache Line |private_count[O] | private_count[1]

RAM
Memory
Cache line reference by P i Cache line reference by P1
private count| O] L2 private_count]| O]
private_count[1] | private_count[1]
L1 L1
Thread modifying PO P1 | Thread modifying
private_count[0] l private_count[1]

Figure 1.13. False Sharing. A cache line moves from RAM toltBeache, and then to the L1 cache
when a thread referencesijitsi vat e_count . When the other thread referenceit$ vat e_count ,
the copy in the other L1 is invaldiated, writen k& the L2 cache, and then fetched into the dtfier
cache. The line ping-pongs between the L1 cacheshanlL2 cache, because although the references to
privat e_count don't collide, they use the same cache line.

1 struct padded_i nt

2 {

3 int val ue;

4 char paddi ng[32];

5 } private_count[MaxThr eads];

6

7 void count3s_thread (int id)

8 {

9 /*Compute portion of the array this thread should work on */
10 int length_per_thread = length/t;
11 int start =id * length_per_thread,
12
13 for (i=start; i<start+l ength per _thread; i++)
14 {

15 if (array[i] == 3)

16 {

17 private_count[t]++;

18 }

19 }

20 nmut ex_| ock(m;

21 count += private_count[t].val ue;
22 nmut ex_unl ock(nj;

23}

Figure 1.14. Thecount 3s_t hread() for the fourth solution to the Count 3s computagishowing
the private count elements padded to force thebe tallocated to different cache lines.

With this padding, the fourth solution removes both the overhead and contention of using
mutexes, and we have finally achieved success, as shown in Figure 1.15.

19

Performance
0.91 0.91
0.51
N s
t=1 t=2
serial Try 4

Figure 1.15. Performance for the fourth solution to the CounpBblem shows that one processor has
performance equivalent to the standard sequeratiatien, and two processors improve the computation
time by a factor off 2.

From this example, we can see that obtaining correct and efficient pprajeams can

be considerably more difficult than writing correct and efficient serial progr The use

of mutexes illustrates the need to control the interaction among praceaseifully. The
use of private counters illustrates the need to reason about the granularity of
parallelism—that is, the frequency with which processes interact wtaoother. The

use of padding shows the importance of understanding machine details, as sometimes
small details can have large performance implications. It is this nom-&ispact of

parallel performance that often makes parallel performance tuning diffiaoklly;we

have seen two examples where we can trade off a small amount of memory #seadcre
parallelism and increased performance.

The Goals: Scalable Performance and Portability

The Count 3s program illustrates both that performance can be achieved through
parallelism and that achieving it can be complicated. Having mastered$§tmassues
facing CMP’s—race conditions, issues of granularity, and false sharing-e#ijsting to
think that parallel programming is concerned only with issues of correctness and
performance. In fact, the goals of this book are broader. Our goal is to help you write
good parallel programs, by which we mean parallel programs with four characderisti

* They are correct

» They achieve good performance

* They are scalable to large numbers of processors

* They are portable across a wide variety of parallel platforms.

The first goal does not require explanation, other than to notice that correza@nesten
be more difficult to achieve in a parallel program than in a sequential program. The
second goal seems pretty clear, but as we will see in Chapter 3, defining whaamwe m
by "good performance” is filled with subtleties.

The third and fourth goals, however, require some elaboration because they @ppear t
overly lofty and often unnecessary. For example, someone who programs for a CMP
with a few cores has little interest in a parallel supercomputer witly thausands of
processors. Indeed, there will always be some markets where the extsenadode
performance will dictate low-level non-portable solutions. But for the vastrityapf
programmers, scalability and portability are important because the landdgzgrallel

20

hardware is changing rapidly. For example, the first CMP's had only two cores per chip,
but Intel has already announced a new chip with 80 cores. Of course, as the number of
cores increases, other micro-architectural features, such as theynsgstem, will have

to change as well. Given this highly fluid hardware landscape, it's best to not be caug
scrambling when new hardware arrives. The solution is to design for scalability and
portability from the beginning, so that programs will enjoy a long lifetime, yuisgjfthe
significant intellectual and economic investment in their creation.

Let's now briefly consider scalability and portability in more detail.

Scalability

To understand the issue of scalability, consider the consequences of programming
decisions when the number of processors increases. For example, the Count 3s program
was parameterized so that the number of threads could vary. This flexibility alleavs us
run the program on a four-core chip with little modification. It would seem that wee ha
produced a general solution that could scale to thousands simply be changing

max Thr eads. But we have not. It's true that the scan of the array, having been broken
into segments, is independent, and therefore, parallel for any number of threads. But the
combining of the intermediate results is not, because all threads updaie thiebal

sum. For a large number of threads, we would again encounter lock contention.
Obviously, our pair-wise sum solution fixes the problem. Scalability requiresbéeal
programming practices.

More generally, as the number of parallel processors increases, physitaictsforce
design changes that impact how programs perform. For example, communication
latency—the delay encountered when transmitting information among processors—
necessarily increases as the number of processors grows simply because of sglete
limitations. On a single chip different issues apply, but they still aff@rimunication
latency when the number of cores grows large. For a small number of processors,
proximity can make certain operations fast that do not remain fast as thetsiee of
system grows. Exploiting these benefits makes sense when possible, but the program
must avoid relying on them for its success. Well written parallel programexploit the
fast components and avoid over-using the slow components of a parallel computer.

Performance Portability

The problem just discussed—that physical constraints impact the chataxsteri
parallel computers as the number of processors increases—is not lorsteding down
certain operations. The problem is much more insidious.

Architects, grappling with those physical constraints, have created scorealltsfi pa
computer designs. These machines can differ from each other dramatically. balike t
sequential case, where a new computer usually requires only a recompilatien of t
source code to execute respectably well, a program running well on one pareliglena
may have to be rewritten for the next one.

21

To give one example, parallel computers can mostly be divided into one of three classes:
shared memory, typified by multi-core processors, shared address spacel bypifie

various supercomputers, and separately addressed memories (shared nothireg) bty pifi
clusters. This distinction affects every memory reference in a progranhasoat

tremendous impact on how the program should be written. Programs intended to port to
all of these platforms must be robust to these differences in memory strudtiote jsv

not easy to do.

The classification by memory capability specifies the variety along one axie ditee
many other differences among parallel processors. We could solve the pprtabil
problem by simply setting a high enough level of abstraction (high level programming
language) that none of these differences are visible; then, a compilerapiihe high
level specification to the platform. The strategy will make our programs itigerie the
parallel hardware, but it's not a good idea. Generally, though compilers can pdréorm t
mapping, they will usually introduce software layers to implement the alistrsidihe
added software will reduce performance. We cannot divorce ourselves entinelthé
underlying hardware if we want high performance. So, we will use a differeteigstra
described in the next chapter.

Our goal, then, is portability with performance, often cafledor mance portability. It's
not enough for the program to run on different (parallel) machines. It must run well on all
of them.

Principles First

This book does not provide a step-by-step tutorial for writing good parallel programs.
Instead, it emphasizes the principles underlying parallel computation,remgléie

various phenomena and explaining why they represent opportunities or barriers to
successful parallel programming. Our reason for this approach is twofold. bFirst
focusing on principles, we hope to provide enduring knowledge that will outlive the
specifics of the latest hardware or software technology, which as we’ve pointae out
changing rapidly. Second, and more importantly, the parallel programming community
does not yet have all of the answers, so a step-by-step solution is not availaled, Inde
one of our goals is to inspire the next generation of researchers to understand the
limitations of current technology so that they can build the better solutions oifrtawmn

After presenting these principles, we discuss some popular programming lasgnege
tools used for programming contemporary parallel machines. Again, our goal is more
concerned with the principles behind the approach, than it is making the reader into an
expert in the language. Our treatments, therefore, are minimal, and readetsespeuct

to consult reference manuals for more complete and detailed information.

Summary

The chapter began with the observation that parallelism—doing two or more things at
once to achieve a single goal—is a familiar idea that we encounter in aydifgd

Though familiar, parallelism has not been a significant aspect of programmingpiasthe
because sequential computer performance has increased steadily for decades. Such

22

improvements have been due to a combination of technology (Moore’s Law) and the
incorporation of parallelism into sequential processor design by computer aschitect
Because the architectural opportunities have largely been mined, the continued
advancement of technology has made computers with multiple processors standard. This
shift is having a profound effect on computer programming.

We noted that existing sequential programs generally cannot take advantage dék paral
computer. The primary reason is that existing programming languages and standard
programming techniques strongly incorporate the one-after-another processiag of t
traditional von Neumann computer architecture. Parallel solutiondystsated by

several simple computations—summation, parallel prefix and Count 3s—illustrated
features of parallel computations. Though they might not have been the firgirsototi
come to mind, they were still quite intuitive. A change in thinking about computatiion w
be required—we called it a shift in paradigm—~before programmers instiyctigeise
parallel solutions to their computational problems.

In a quick and incomplete survey of parallel hardware, we noted platforms as diverse
chips with two processors to server farms with thousands of processors. Though
dramatically different in scale and design, their parallel featuhg®mnea small set of
fundamental principles. We committed to focusing on those principles with the goal of
empowering programmers to strive for parallel programs that achieve highnpante,
scalability, and performance-portability.

Historical Context

Parallelism has been applied in the design of sequential computers sifics the
commercial machines in the 1950s. A landmark parallel machine was theM|liauwilk

in the 1970s by a team at the University of Illinois, Urbana-Champaign. Though the llliac
IV was successfully programmed in low-level assembly-like code, the taskelbdmg

a compiler to translate sequential (Fortran) programs into a parallel fasrbegun by

David Kuck and colleagues. Investigators throughout the community pursued the goal to
the end of the century.

Exercises

1. Explain the meaning of the following vocabulary related to thread programming:

a. Thread

b. Race or Race Condition

c. Mutex

d. Lock Contention

e. Granularity

f. False Sharing

2. Describe how the pair-wise summation computation can be changed to find the
maximum of the elements gfarray.

3. Reformulate the pair-wise summation program to solve the Count 3s computation
in log n time, assuming=n/2.

4. Reformulate the pair-wise summation program to solve the Count 3s computation
assuming that=1024, butP=8.

23

24

5. Reuwrite the iterative summation program using forall; remember abag rac

