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Announcements

o Out of email contact from tonight to project 
turn-in

o Project turn-in is by email to me (and Nathan) 
in .pdf or .doc.
n Deadline is 4 June 2007 @ 5:00 PM PDT
n Including your code as plain text in an appendix 

is OK, but I don’t want your dev directories
n I will be reading these personally, so it may take 

a while
Course Reviews Tonight
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Agenda

o Platform independent communication
o GPGPU

o Cell
o FPGA
o Transactional Memory
o One Last Cool Idea: Fetch & Add
o Wrap-up … what did you learn?
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Insulating from Comm Mechanism

o Writing scalable programs is possible, but 
avoid locking in on a particular comm mech

o What is a suitable abstraction for machine 
independent communication?
n Assignment (Load/store) is the basic mechanism
n Use ZPL’s Ironman as an analogy

o Plan:
n Use global view, package comm behind procs

n Instantiate procs to machine-specific mechanism
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Ironman Basics

o Abstract comm as 4 functions protecting 
an assignment: D := S
n Destination Ready  DR() -- target location 

has been used for the last time before comm
n Source Ready SR() -- source value to be X-

mitted has been computed
n Destination Needed DN() -- X-mitted value is 

now needed, and if not there, must stall
n Source Volatile SV() -- source value location 

about to be reused
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Ironman Basics

Portion of 
A on Pi+1

Portion of 
A on Pi

Source Location Volatile 

Destination Data Needed 

Source Data Ready 

Destination Location Ready 

...
C:= 
…A@...;
DR(A);

k compute steps
DN(A);
D:=…A@...;
...

...
A := B;
SR(A);

k compute steps
SV(A);
A := C;
...

Data Transmitted
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Binding Ironman Functions

o The machine’s primitive communication 
facilities are bound to each function to 
implement the assignment 

 Copying message 
passing  
(nCUBE, iPSC) 

Asynchronous 
message passing 
MPI Asynch 

Put-based 1-sided 
commun ication 
(Cray T3D, T3E) 

Shared memory 
with coherency, 
SMPs 

Destination Loc Ready  mpi_irecv()  post_ready  post_ready 

Source Data Ready csend() mpi_isend() wait_ready 
shmem_put 
post_done  

wait_ready 
fluff:= A 
post_done 

Destination Data Needed crecf() mpi_wait()  wait_done  wait_done 

Source Volatile   mpi_wait()    
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Key Ideas of ‘Personal Ironman’

o The D := S assignment is a pair-wise 
communication between two processors
n Functions protect it, so it “fires when ready”

n Stalls are placed where needed, but are local

o Because communication is data-driven, the 
only delay in processing is based on either
n The availability of the data
n The availability of a place to put it

It’s locally negotiated interaction
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Other Parallel Architectures

o CMPs, SMPs, clusters, supercomputers do 
not exhaust parallel architectures

o Cell, General Purpose Graphics 
Processing Units (GPGPUs), processors 
with attached FPGAs are a popular parallel 
configuration

processor

co-processor

Host

Auxiliary

Note heterogeneous structure

Mem
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Attached Processor Key Properties 

o These engines benefit from Si advances 
more than standard processors

o They exploit …
n Kernel processing … only speeding inner loop; 

leave all other processing/orchestrating to 
CPU

n Data streaming from memory to get high 
throughput … moving lots of data fast permits 
cheap computations on each item

n Specialized circuit designs at the expense of 
generality, making VLSI pay big
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GPGPUs

o GPGPUs are hot!
Without knowing

what the table rows
mean, we can see
the advance eclipses
standard processor
improvements

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Thanks to David Blythe
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Typical GPU Architecture

o GPGPUs have a standard pipelined graphics 
processing architecture

o Though GPGPUs have very general capabilities 
now, they retain this graphics terminology

Vertex 
Buffer
Vertex 
Buffer

Frame 
Buffer
Frame 
Buffer

Texture 
Map

Texture 
Map

Vertex
Processor

Vertex
Processor RasterizerRasterizer Fragment

Processor

Fragment
Processor

Fragment processor is compute engine
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Programming Model

o GPGPUs are deeply pipelined
n Computation must be element-wise over 2D 

data
n Internal latencies favor interleaving operations
n Huge data space amortizes pipe fill/drain

o Stream model most appropriate
o Programming tools retain strong graphics 

flavor -- need to translate to those terms

Accelerator is array language translating to GPGPUs
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Cell

o Architecture
n CPU
n Synergistic

Processing
Elements

n EIB rated at
307 GB/s
but 204 GB/s
is more realistic
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Cell
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Programming

o Cell is programmed with C/C++ under 
Linux using GCC

o Presently poorly supported by tools

o Primary goal is to decompose computation 
into streams and then orchestrate data flow 
into and out of the processor

o Everything must be “by hand” and profiling 
is fundamental to know what’s happening

The kind of computer an architect would think up!
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Programming Matrix Multiplication

o Complexity seems dramatic

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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Attached FPGA

o Field Programmable Gate Array (Xilinx, 
Altera)
n “Programmable hardware”

n Ideal for ints, bit-twiddling, etc.
n Very dramatic “regime change” between CPU 

and attached engine
n FPGAs are supported “well” for circuit 

designers, but tools low level compared to IDE
n Drop into “Opteron slot” for fast system build

Mostly for special purpose
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Comparative Results

o All approaches improve on serial computers 
when the inner loop is compute intensive

o Matched Filter Computation

1.03.05 secCPU 3.2GHzXeon

8.00.38 secCell

3.11.00 secGPU Nvidia 7900

3.910.78 secFPGA Cray XD-1

Speed-upTime per SigImplementation
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CSE524 Bottom Line

o Attached processors provide enormous power for 
low price, but they …
n Use a different programming paradigm than our CTA-

based view
n Have no pretense of being general purpose
n Should be programmed as though configuring 

hardware or building a hybrid machine

o Strengths are fast data streaming and leveraging 
VLSI

o Liabilities are programming challenges and rigidity 
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Transactional Memory-A Hot Idea

o You all know parallel programming is tough

o How to make it easier? Raise abstractions!
o Transactional Memory: Return of old idea

n Databases concurrently manage external data 
consistently using multiple computers; well studied

n Apply idea to concurrent management of the internal 
memory image

n Transaction: Atomically change memory to new state or 
do nothing at all

n Say the goal not how to achieve it

Idea: David Lomet in 1977
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Atomic

An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)
no interleaved computation;
no unfair starvation

void deposit (int x){
synchronized (this){

int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit (int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp; 

}}
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Transactions

o The code executing atomically is everything 
(dynamically) between braces, including foo() .

atomic {

if (x != null) x.foo();

y = true;

}

o Three choices: commit; abort; not terminate
o Optimistic: Little overhead  if no conflict
o Avoid races and deadlocks due to lock acquisition
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Transactions Advantages

o In DB transactions have ACID properties
n A = atomicity … sequence of operations never 

interrupted or incomplete; commit or abort
n C= consistency …changes leave memory in 

consistent state relative to application; for 
example new_balance==old_balance+deposit

n I = isolation … transaction works correctly with 
any combination of other transactions

n D = durability … result persists; not appropriate 
for multithreading memory case
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DB & TM Transactions Are Different 

o DBs use disks, meaning the SW support for
DB transactions not time-critical; referencing 
memory is too brief (and frequent) to allow 
for heavy-weight protection

o TM need not be durable (last) since data 
doesn’t outlast execution; simplifying

o TM must retrofit into a rich world of legacy 
code … must coexist with all other 
mechanisms; pervasive changes not feasible
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Atomic Doesn’t Solve Everything

o It’s not difficult to mess up using atomic
Thread 1 Thread 2
atomic { atomic {

while (!flagA) flagA = true;

flagB = true; while (!flagB);

} }

flags have to be true at the start of block

o This code not serializable, i.e. there is no 
correct serial execution
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TM Promising, But NRFPT

o Transactions are no panacea
n Neither hardware nor software implementations 

have proved themselves

o Very Nice Monograph: Larus & Rajwar
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y20

0611CAC002

o A fundamental problem TM will not solve: 
How to scale shared memory computations 
to architectures with much larger λ, which 
are inevitable
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An Alternate Concurrency Primitive
o Rather than using the Test&Set to guard shared 

data, use Fetch&Add
o Fetch&Add is an atomic read-modify-write operation 

on memory -- requires special hardware, to be 
discussed

o Use Fetch&Add as a semaphore and as a scheduler

o Operation:  Fetch&Add(V,e)
o V is a memory location
o e is an integer expression
o Contents of V are returned
o New value of V is V+e
o Operation is atomic

V: 0

Fetch&Add(V,1)

V: 1

0 is returned

V: 0

Fetch&Add(V,1)

V: 1

0 is returned
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Concurrent Fetch&Adds
o When multiple Fetch&Adds are executed 

simultaneously, they are serializable
o Assume  Fetch&Add(V, e1), Fetch&Add(V, e2) 

execute simultaneously
o Assuming an initial value of e0
o Final value is e0+e1+e2
o The 1st process receives either e0 or e0+e2, 

implying it was first (e0) or second (e0+e2)
o The 2nd process receives either e0 or e0+e1, 

implying it was second (e0+e1) or first (e0)

Suppose both execute Fetch&Add(I,1), then one 
gets I back, the other I+1, and final is I+2

Suppose both execute Fetch&Add(I,1), then one 
gets I back, the other I+1, and final is I+2

30

Break
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Fetch&Add Exploits Sharing

o Though earlier solutions attempt to reduce 
sharing to reduce the amount of invalidation and 
acknowledgment, Fetch&Add does better with 
greater sharing

o Sharing is used to schedule or allocate, which is 
then independent activity

o Sharing is concentrated in a few variables 
o Fine grain size is possible

o Since load/store, Test&Set, etc. are 
implementable, it is a “sufficient” primitive  

32

Implementing Fetch&Add

o Fetch&Add assumes a flat shared 
memory as implemented by a “dance hall 
architecture”

P0

PNI

P1

PNI

P2

PNI

P6

PNI

P7

PNI

P3

PNI

P4

PNI

P5

PNI

Interconnection Network

M0

MNI

M1

MNI

M2

MNI

M3

MNI

M4

MNI

M6

MNI

M5

MNI

M7

MNI
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Omega Network
o The interconnection network is an Ω-

network
n Connection between 2 and 6 … follow bits to 

destination lsb to msb
0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

P
ro

ce
ss

or
 ID

H
i M

em
ory B

its
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Notice Details

o The Ω-Network requires O(P log P) routers
o The given network uses 2x2 but 2bx2b work
o Wiring is consistent at each stage

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

Long Wires Are NecessaryLong Wires Are Necessary
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Routing In Ω-Network
o The network is pipelined
o There is a unique path between any 

processor and memory port pair
o Conflicts are possible because there exist 

permutations in which packets collide
o What happens when two packets collide 

at a router?
o Packet is delayed, leaving its “file”
o Pipelining is affected, here comes more

0 0
1 1

The separate packets must be serializedThe separate packets must be serialized
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Two Processors Do Fetch&Add(V,1)
o Simultaneous requests collide in network

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Fetch&Add(V)

Fetch&Add(V)

V

Fetch&Add increases potential for collisionsFetch&Add increases potential for collisions

Hot spotHot spot



19

37

The Bright Idea: Combine Requests

Idea: Combine requests for same dest. In 
limit all nodes could reference same loc.

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

V
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Loads & Stores
o At a switch combine loads and stores to a 

common location as follows
o Load/Load -- forward one of the loads towards the 

memory, and when the value is returned, satisfy both 
o Load/Store -- forward the store, and when the ACK 

arrives back at the switch, return value to satisfy load
o Store/Store -- forward one of the stores, and when 

the ACK arrives back at the switch, return it for both

o Processors are restricted to having only one 
outstanding request at a time to a given location 
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Implementing Fetch&Add

o Include an adder with the Memory Network 
Interface chips

o For Fetch&Add(V,e) 
o Fetch the value of V, say e0
o Return e0 to processor requesting 
o Add e0+e
o Store e0+e back into V

o It is probably necessary to do these 
concurrently

MNI

Mem Mem
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Combining Fetch&Adds at Switch
Suppose Fetch&Add(V,e), Fetch&Add(V,f) arrive at 

a switch together …
n Form the sum f+e
n Send Fetch&Add(V,f+e) on to the memory
n Store e locally
n When g0 is returned by the memory

o Return g0 as response to Fetch&Add(V,e)
o Return g0+e as response to Fetch&Add(V,f)

Switch

F&E(V,e+f)
g0

F&E(V,f)
g0+e

F&E(V,e)
g0
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Combine F&A w/ other requests
o Combining can apply to all memory traffic to a 

location V
o Consider the following cases

o Fetch&Add/Fetch&Add -- as just described
o Fetch&Add/Load -- Treat Load as Fetch&Add(V,0)
o Fetch&Add/Store -- If Fetch&Add(V,e) meets 

Store(V,f) send Store(V,e+f) to memory; when ACK 
is received, return f as value of F&A

o Conclusion -- it is possible to combine all 
requests to the same memory location
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Just Thinking About, Will It Work?

o Potential Problems …
o Network routing is driven entirely by performance, so a 

complicated switch is usually a problem
o Routers typically forward non-blocked packets in <= 3 tix
o Matching to recognize that two requests collide is an 

“add” operation
o Combining is an “add” operation after the previous add
o Combining relies on the requests getting to the switch 

simultaneously, or at worst, before the forwarded packet 
leaves … this is improbable

o Most traffic is non-combinable -- head for different places

o A combining router was created by Susan Dickey
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A Backup Strategy
o If the network switch is too slow then …

n Do not combine at every stage … so that some 
stages can be fast

n Use two networks, one fast and one that does 
combining -- it can handle the sharing requests

n Combine only like requests, e.g. loads/loads
n Limit combining at a node to two requests

n As it happened
o Only like requests have ever been implemented in 

switch
o IBM used the two network solution in the RP3

44

More Globally
o Norton and Pfister discovered in simulation for 

the RP3 computer that the Ω-Network develops 
hot-spots

o It was thought that combining would remove the 
hot-spots … it seemed to for 64-way network

o The problem is that once a node

becomes hot, a “back-up” tree
forms “behind” the node
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More Globally
o Lee, Kruskal, Kuck studied by simulation, analysis

o LKK discovered and named the “back-up tree”
o Showed in simulation that the 64-way network is lucky
o Combining doesn’t help because it’s the other traffic

0.125% traffic 
directed at a 
hot spot
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Assessment

o It was a good idea but it didn’t work
n Good

o Fetch&Add is clever -- a primitive with good properties
o Shifting from protecting data to allocating work is better
o Computation at memory is powerful, worth doing

n Bad
o Pipelined multistage networks probably just don’t work
o Complexity in a switch is wrong -- speed is essential
o Failed to exploit locality -- caching basically impossible
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Wrap-Up on Parallel Computing

o What in your view was the high-order bit?
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My List …

o Using parallel computers is tough
o Parallel computers generally behave like the 

CTA, so program to it … it won’t disappoint

o Parallel algorithms often require fresh 
thinking -- sequential case may not be a 
good place to begin

o CMPs are sweet-spot now, but for how long?
o Reduce/Scan are basic building blocks
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My List (continued) …

o Programming tools are all over the place
n OpenMP is very simple, but not too expressive

n Pthreads, a standard library, but very low level
n MPI is universal, low level and abstraction-free
n ZPL leaves all parallelism to compiler, but gives 

WYSIWYG as guide to writing good programs

n Co-Array Fortran, UPC, Ti, Transactional 
Memory have promise perhaps, but NRFPT

o Hardware design is very volatile at moment
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Log Out

o Submit project by 5:00 PM (PDT) 6/4
o Be sure to fill out a course evaluation


