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Mark Oskin …

o Wave Scalar Architecture
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Announcements

o Thanks for your patience with UID/PW mess
o Thanks also for constructive ZPL comments

o Running ZPL … perhaps w/MPI on laptop?
o Recall that you need to turn in a brief 

(paragraph) description ON PAPER of your 
progress on the project this week

o Out of email contact from last lecture to
project turn-in

Are the projects fun yet?
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Review and Extend ZPL Concepts

o Several key ideas have not been covered
n Applying WYSIWYG (better than last time)

n Shattered Control Flow -- a simply thread idea
o Illustrate with Red/Blue

n Understanding/Reducing Dependences
n Problem Space  Promotion -- New algorithmic 

technique for parallelism, based on flood

n Final comments on programmming systems
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Applying WYSIWYG in Alg Design

WYSIWYG, a key tool for parallel algorithm design …
work through the logic of balancing costs

o There are dozens (hundreds?) of matrix product 
algorithms … which do you want?
MM is a common building block, so someone else should have 
done this (vdG&W did!), but we use it as an example of process

o Two popular choices are 
o Cannon’s algorithm
o SUMMA (vdG&W)

o Which is better as a ZPL program, i.e. better for 
scalable parallel machines, clusters, CTA model
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Cannon’s Algorithm, A Classic
c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13

b12 b23
b11 b22 b33

b21 b32 b43

b31 b42
b41

Compute: C = AB as follows ...

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step at a time

Elements arriving at a place are 
multiplied, added in

Compute: C = AB as follows ...

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step at a time

Elements arriving at a place are 
multiplied, added in

����

⇐⇐⇐⇐
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Motion of Cannon’s, First Step

c43 = c43 + a41b13

����

⇐⇐⇐⇐

Second steps ...

c43 = c43 + a42b23
c33 = c33 + a31b13
c42 = c42 + a41b12

Second steps ...

c43 = c43 + a42b23
c33 = c33 + a31b13
c42 = c42 + a41b12

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a42 a43 a44

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41
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Programming Cannon’s In ZPL
c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13   c11 c12 c13  a11 a12 a13 a14

b12 b23   c21 c22 c23  a22 a23 a24 a21 

b11 b22 b33   c31 c32 c33  a33 a34 a31 a32 

b21 b32 b43   c41 c42 c43  a44 a41 a42 a43 

b31 b42       b11 b22 b33 

b41           b21 b32 b43 

b31 b42 b13 

b41 b12 b23 

Pack skewed arrays into 
dense arrays by rotation; 
process all n 2 vals at once

Pack skewed arrays into 
dense arrays by rotation; 
process all n 2 vals at once
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Four Steps of Skewing A
for i := 2 to m do

[i..m, 1..n] A := A@^right; Shift last m-i rows left
end;

a11 a12 a13 a14            a11 a12 a13 a14

a21 a22 a23 a24            a22 a23 a24 a21

a31 a32 a33 a34            a32 a33 a34 a31

a41 a42 a43 a44            a42 a43 a44 a41

Initial i = 2 step
a11 a12 a13 a14  a11 a12 a13 a14

a22 a23 a24 a21 a22 a23 a24 a21

a33 a34 a31 a32 a33 a34 a31 a32

a43 a44 a41 a42 a44 a41 a42 a43

i = 3 step             i = 4 step

… And Skew B vertically… And Skew B vertically
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Cannon’s Declarations
For completeness, if A is m×n and B is n×p, the 

declarations are …

region    Lop = [1..m, 1..n];

Rop = [1..n, 1..p];

Res = [1..m, 1..p];
direction right = [ 0, 1];

below = [ 1, 0];

var           A : [Lop] double;

B : [Rop] double;

C : [Res] double;
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Cannon’s Algorithm
Skew A, Skew B, {Multiply, Accumulate, Rotate} n

for i := 2 to m do Skew A
[i..m, 1..n] A := A@^right;

end;
for i := 2 to p do Skew B

[1..n, i..p] B := B@^below;
end;

[Res] C := 0.0; Initialize C
for i := 1 to n do For common dim

[Res] C := C + A*B; For product
[Lop] A := A@^right; Rotate A
[Rop] B := B@^below; Rotate B

end;

12

SUMMA Algorithm To Compare To

var   Col : [1..m,*] double; Col flood array
Row : [*,1..p] double; Row flood array

A : [1..m,1..n] double;

B : [1..n,1..p] double;

C : [1..m,1..p] double;

...

[1..m,1..p]    C := 0.0; Initialize C
for k := 1 to n do

[1..m,*] Col := >>[ ,k] A; Flood kth col of A
[*,1..p]  Row := >>[k, ] B; Flood kth row of B

[1..m,1..p]    C += Col*Row; Combine elements
end;
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Compare Cannon’s & SUMMA MM
o Analyze the choices with WYSIWYG …

n SUMMA has shortest code [so what?]

n Cannon’s uses only local communication

o The two algorithms abstractly: 
Cannon’s 
Declare 
Skew A 
Skew B 
Initialize 
loop til n       
C+=A*B 
Rotate A,B

Cannon’s 
Declare 
Skew A 
Skew B 
Initialize 
loop til n       
C+=A*B 
Rotate A,B

SUMMA
Declare 
Initialize 
loop til n 
Flood A 
Flood B 
C+=A*B

SUMMA
Declare 
Initialize 
loop til n 
Flood A 
Flood B 
C+=A*B
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Compare Cannon’s & SUMMA MM

o Step one is to cancel out the equivalent parts 
of the two solutions … they’ll work the same

o For MM the comparison reduces to whether 
the initial skews and the iterated rotates are 
more/less expensive than iterated floods

Cannon’s
Declare 
Skew A 
Skew B 
Initialize 
loop til n   
C+=A*B 
Rotate A,B

Cannon’s
Declare 
Skew A 
Skew B 
Initialize 
loop til n   
C+=A*B 
Rotate A,B

SUMMA
Declare 
Initialize 
loop til n 
Flood A 
Flood B 
C+=A*B

SUMMA
Declare 
Initialize 
loop til n 
Flood A 
Flood B 
C+=A*B
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Skew A, Skew B, {Multiply, Accumulate, Rotate}

for i := 2 to m do Skew A
[i..m, 1..n] A := A@^right;

end;
for i := 2 to p do Skew B

[1..n, i..p] B := B@^below;
end;

[Res] C := 0.0; Initialize C
for i := 1 to n do For common dim

[Res] C := C + A*B; For product
[Lop] A := A@^right; Rotate A
[Rop] B := B@^below; Rotate B

end;

Cannon’s Algorithm

Comms have λλλλ latency, 
but much data motion
Comms have λλλλ latency, 
but much data motion
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SUMMA Algorithm Analysis
The flood is (likely) more expensive than λλλλ time, 

but less that λλλλ(log P) ... probably much less, 
and there are fewer of them

[1..m,1..p]    C := 0.0; Initialize C
for k := 1 to n do

[1..m,*] Col := >>[ ,k] A; Flood kth col of A

[*,1..p]  Row := >>[k, ] B; Flood kth row of B

[1..m,1..p]    C += Col*Row; Combine elements

end;
SUMMA does not require as 
much comm or data motion 
as Cannon’s, nor does it 
“touch” the array as much

SUMMA does not require as 
much comm or data motion 
as Cannon’s, nor does it 
“touch” the array as much
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Bottom Line ...

o We assert that SUMMA is the better algorithm
n Though it does “potentially more expensive”

communication, it does less of it
n It’s “nonredundant” flood arrays cache well
n There is less data motion

o Analytically ...

o Test the assertion experimentally…

18
ZPL’s WYSIWYG Performance Model Chamberlain, Choi, Lewis, Lin, Snyder, Weathersby IEEE HIPS-98, 1998



10

19

Shattered Control Flow

o ZPL executes one statement at a time, to 
completion, implying predicates are scalars

o If a predicate is an array, split into threads
if A < 0 then A := -A; end;  Compute absolute value

n The statements still execute alone,
but each index is treated separately

o Constraints: communication is
prohibited to avoid synching

20

Red/Blue As Shattered Control
program redBlue;

region R = [1..n, 1..n];

var RWB : [R] ubyte = 1; Mv:[R] ubyte;

direction e = [0,1]; s = [1,0];

procedure redBlue();

/* Initialize RWB w/colors: white=0;red=1;blue=2 */

while (true) do

Mv := (RWB = 1 & RWB@^e = 0); Figure moving reds

if Mv then RWB := 0; end; Move, by killing red

Mv@^e := Mv; finding new position

if Mv then RWB := 1; end; and setting red
0000 
0100 
0010 
0000

0000
0010 
0001 
0000 

RWB Mv RWB RWBMv
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Blue Half Step
Mv := (RWB = 2 & RWB@^s = 0); Figure moving blues

if Mv then RWB := 0; end;     Move, by killing blue

Mv@^s := Mv; finding new position

if Mv then RWB := 2; end; and setting blue
end;

end;

22

Red/Blue Data Motion

o When is I/O performed? Consider def/use
procedure redBlue();

/* Initialize RWB: white=0;red=1;blue=2 */

while (true) do

Mv := (RWB = 1 & RWB @^e = 0); Figure moving reds
if Mv then RWB := 0; end; Move, by killing red
Mv@^e := Mv; finding new position
if Mv then RWB := 1; end; and setting red
Mv := RWB = 2 @ RWB @^s = 0; Figure moving blues
if Mv then RWB := 0; end; Move, by killing blue
Mv@^s := Mv; finding new position
if Mv then RWB := 2; end; and setting blue

end;

end;
Can we do better?
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Do the Logic …

o Figure actual data motion … reduce dependences!
var Rnew, Bnew, Mv : [R] ubyte; Bit arrays

[R]while (true) do

Mv   := (RWB = 1 & RWB@^e = 0); OK 4 red 2 move

Rnew := (RWB = 0 & RWB@^w = 1); New location

Mv   := Mv | (RWB = 2 & (RWB@^s = 0 |  Direct blue move

(RWB@^s = 1 & RWB@^se=0))); Vacated move

Bnew := (RWB@^n = 2 & (RWB = 0 | New location

(RWB = 1 & RWB@^e = 0))); by either means

[R with Mv] RWB := 0; Clear vacated

[R with Rnew] RWB := 1; Set red

[R with Bnew] RWB := 2; Set blue

end; Shattered is equally good

24

Problem Space Promotion (PSP)

o PSP is a new parallel programming idea deriving 
from the power of flood

o Recall SUMMA inner loop in C
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

C[i][j] += Acol[i]*Brow[j];

}

}

o This is an all pairs (2D compute) over 1D data
o Generally, PSP is d-dim compute on (d-1)-dim data

ZPL uses flood

Ideal for “all pairs”
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Concept, In 2D on 1D data

o Imagine 1D array A & an all pairs compute
o Thinking of A as a row, there are 5 steps:

n Transpose A to AT
n Flood A
n Flood AT
n Compute all pairs

n Partial reduce back into 1D row

A: AT:

ATf:Af:

[1..n,1..n] … Af  != ATf …
0110 
1011 
1101 
0110

[*,1..n] Ans := &<< [1..n,1..n] ...

“All items the same” should be: &<<(A=A@e)

26

A “Little” Sort Using PSP

o Assume items distinct; sort by counting inequalities
region R = [1,1..n]; Row of indices
var  Keys: [R] integer; Keys to sort

Perm : [R] integer; Permutation to sort ‘em
FlR : [*, 1..n] integer; Flood array for rows
FlC : [1..n, *] integer; Flood array for cols

procedure sortDistinct();

[R] begin

[*,1..n] FlR := >>[1,1..n] Keys; Flood
[1..n,*] FlC := >>[1..n,1] Keys#[1,Index1]; Transpose and flood

Perm := 1 + +<<[1..n,1..n] (FlC < FlR);  Figure perm
Keys#[1,Perm]:= Keys; Reorder keys

end;
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Example of Sorting with PSP
Keys data

1         7         9         4         3         5         6   0
Compare <:

1         0         1         1         1         1     1         1         0 
7         0         0         1         0         0     0         0         0
9         0         0         0         0         0     0         0         0 
4 0         1         1         0         0         1         1   0 
3 0         1         1         1         0         1         1   0 
5         0         1         1         0         0         0   1         0 
6 0         1         1         0         0         0         0   0 

0         1         1         1         1         1         1   1         0
Perm: 

2         7         8         4         3         5         6   1

28

Key Features of PSP

o PSP creates a logical 2D array
[R] begin

[*,1..n] FlR := >>[1,1..n] Keys; Flood

[1..n,*] FlC := >>[1..n,1] Keys#[1,Index1]; Trans & flood

Perm := 1 + +<< [1..n,1..n](FlC < FlR) ; Find perm

Keys#[1,Perm]:= Keys; Reorder keys
end;

o The only 2D structure is < test … only logical
o Multiple 2D computations likely fused, so no 

2D array is ever created
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Examples of PSP Computations

o “Small” Sorting
o Matrix product

2D data/3D comp
o N-body computations
o Mode of set of values
o ...

Input

A2

B2

C

Expect any “all pairs” problem to be PSP

30

ZPL Classic

o So far we’ve learned only ZPL ‘Classic’
o ZPL has many other features

n Sparse regions/arrays, multigrid regions/arrays
n “Mighty scan” to support pipelining
n Quad regions (::) to write processor local code
n Control over processor arrangements (grid) 

and distribution of regions to processors

o Many features not well understood … much 
more research is needed
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Parallel Programming Facilities

o Taxonomy of popular systems
n Threading

o Pthreads
o OpenMP
o Java Threads

n Local focus
o MPI*, PVM
o Co-array Fortran
o GAS (Global Addr Space) Languages: UPC, Ti

n Global focus
o ZPL

*Accounts for 95+% of production parallel code

32

Co-Array Fortran
Developed within Cray (originally F--) by Numrich & Reed

n Motivated to use T3D/T3E’s shmem facilities
n Add’s a processor “co-dimension” to F95 arrays
REAL, DIMENSION (N) [*] :: X,Y   !Declare 2 size n vectors 

X(:) = Y(:) [PE] !If PE is same on all vectors, copy Y to X

n Has a few collective operations, synch. 
primitives

n CAF provides a clean way to manage (shmem) 
communication in a “local view” language …
machine model is CTA

Cray supports CAF
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Co-Array Fortran

real dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo
enddo

= xmyP

myQ

Co-ArrayCo-Array

34

GAS Languages

o The idea with GAS languages is to present a 
global address space (like Peril-L), but not to 
commit to memory consistency
n CTA model, no WYSIWYG, however

n Programmers must worry about consistency
n Programmers write local code a la MPI
n With CAF, Universal Parallel C (UPC), Titanium

o We will not cover UPC or Ti … check’em out

GAS may be future, but details are tough
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Homework

o No Textbook Reading For Next Week
o Project

n Bring paper statement of progress to class


