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Announcements

o Thanks to everyone who found the UD-scan 
bugs in the slides and book!

o Approval for MS cluster happened today!
n Accounts assigned this week
n Documents up this week
n Should be developing off-line anyhow (more 

later)

o Next week is ZPL, but if you’re expecting to 
use it, read text early

There is still time for project revisions
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Tonight’s Assignment

o UD-Scan of your choice ... what did you 
choose?

4

Multicast Logic

o Recall the question of multicasting in Peril-L 
in a way that is suitable for SUMMA

o This is the set up: tile rows want column 
segments and tile columns want row seg.s

A BC
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Memory Allocation

o The problem memory is in global space
double A_G[n][n], B_G[n][n], C_G[n][n];

int p=sqrt(P), t=n/p; Define constants

o Allocate materialized memory for row/col for seg.s
double Acol_GO[p][p][t],Brow_GO[p][p][t];

o Next, induce a tree on the tile rows, columns

Assume p 
is a power 
of 2

Assume p 
is a power 
of 2

Flow down tree
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Logical Tree for (a Row) of Tiles

o A node waits on its _GO memory; when it gets it’s 
value, it simply fills out its sibling nodes if any

if (v == 0) 

stride=p;

else 

stride = pow(2,loOrdZeroes(v));  No. least sig zeroes   

a[0:t-1] = Acol_GO[u][v][0:t-1];   Grab col segment

while (stride > 1) { Sweep thru siblings 

stride = stride>>1; Reference next one 

Acol_GO[u][v+stride][0:t-1]=a[0:t-1]; Fill GO mem
}

Make it into a procedure: mcast()
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Loading _GOMem As k changes

o Make diagonal tiles responsible
for (k=0;k<n;k++){              For cols of A & rows of B

if (u==v && u*t<k && k<u*t+t-1){Diag tiles fill first _GO 

for (i=0;i<p;i++){

Acol_GO[i][0][0:t-1]=A_G[i*t:i*t+t-1][k];

Brow_GO[0][i][0:t-1]=B_G[k][i*t:i*t+t-1];

}

}

a[0:t-1]=mcast(u,v,Acol);    Do multicast, if needed 

b[0:t-1]=mcast(u,v,Brow);    Do multicast, if needed 
...

}
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SUMMA Preamble Code

double A_G[n][n], B_G[n][n], C_G[n][n];

int p=sqrt(P), t=n/p; Define constants

forall u,v in (0..p-1,0..p-1){ Thread in 2D

double C[t][t]=is_local(C_G) Ref local tile 

int i,j,k; double a[t], b[t];

for (i=0;i<t;i++) {

for (j=0;j<t;j++) {

C[i][j] = 0.0; Initialize C

}

}
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Inner Loop of SUMMA
for (k=0;k<n;k++) {       For cols of A & rows of B

/* Multicasting code goes here */
for (i=0;i<t;i++) {

for (j=0;j<t;j++) {

c[i][j] += a[i]*b[j];  Figure kth terms
}

}
}

}
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Multicast Improvement

o The diagonal tile processors fill all of the 
_GO memory, so processors wait on them

o Is there a better solution? Issues …
n A specific tile (diagonal) initializes result 
n All row (col) roots initialized together
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Revision …

o The first processor in row/col ready, call it a 
“winner,” becomes tree root and tree shifts
n To shift tree, simply use the u (v ) value of 

winner to offset all node positions, doing all 
addressing math mod p

n To ensure a uniquely identified winner, use an 
exclusive block (per row/col) & global; if 
your k is higher than the value stored there, 
you’re the winner; update it and fire-up the tree

How much can the computation skew?

12

Parallel Programming Support

o For decades it’s been assumed: 
parallel code = compiler(sequential code)

o Compilers have progressed, but cannot do 
the conversion in general circumstances

o Two basic solutions
n Library + serial programming language

o Main issue: || abstractions limited

n Legitimate parallel language
o Main issue: quality of emitted code
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|| Programming Language Topic

o There is much to say about || languages
o Book’s Strategy

n 3 representative approaches (will be 2 more)
n Give key features, basics; enough to write 

code but other materials needed for full study

o Course Strategy
n Discuss several approaches including book’s
n Focus on abstract ideas
n Summarize and discuss current s-o-t-a

Avoid teaching detail
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OpenMP

o Nonproprietary extensions (as pragmas) to 
C, C++, Fortran

o Mainly used to exploit hyper-threading 
parallelism in a single fetch/execute engine

o Use
n Programmer inserts pragmas identifying ||ism
n Compiler recognizing pragmas generates 

multi-threaded code
n System in control of most aspects of ||ism

http://www.openmp.org
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OpenMP Code Examples

o All pragmas begin: #pragma

o Convert 32-bit RGB image to 8-bit gray scale 
#pragma omp parallel for

for (i=0; i < numPixels; i++) {   

pGrayScaleBitmap [i] = (unsigned BYTE)             

(pRGBBitmap[i].red * 0.299 +              

pRGBBitmap [i].green * 0.587 +              

pRGBBitmap[i].blue * 0.114);

}

o ||ism is “element-wise” … each item independent
Also called “work sharing”

16

Limitations and Semantics

o Not all “element-wise” loops can be ||ised
#pragma omp parallel for

for (i=0; i < numPixels; i++) {}

n Loop index: signed integer
n Termination Test: <,<=,>,=> with loop invariant int
n Incr/Decr by loop invariant int; change each iteration
n Count up for <,<=; count down for >,>=
n Basic block body: no control in/out except at top

o Threads are created and iterations divvied up; 
requirements ensure iteration count is predictable
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More OpenMP Code

o Data-dependences require care [wrong code]
sum = 0;

#pragma omp parallel for

for (i=0; i < 100; i++)     {

sum =+ array[i];

}

o A race exists in this code (sum); fix 2 ways:
n Make sum private by declaring inside loop
n #pragma omp parallel for(private 

sum)

18

Reduce Abstraction

o OpenMP has reduce
sum = 0;    
#pragma omp parallel for reduction(+:sum)

for (i=0; i < 100; i++)     {
sum += array[i];

}

o Reduce ops and init() values:
+   0    bitwise  & ~0 logical & 1
- 0    bitwise  | 0 logical | 0
* 1   bitwise ^ 0

Even in OpenMP abstracting reduce helps
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Sections

o Separate  tasks can be performed in ||
#pragma omp sections {     

#pragma omp section {TaskA();}      

#pragma omp section {TaskB();}  

#pragma omp section {TaskC();}

}

o The tasks must not have dependences
n Each section runs to completion
n Order not guaranteed
n Private is allowed

20

Care with Parallel

o Check out this code
int i;     

#pragma omp parallel for     

for (i='a'; i<='z'; i++){printf("%c",i);}

int i;     

#pragma omp parallel private (i)

for (i='a'; i<='z'; i++){printf("%c",i);}

o Red prints alphabet once; blue unknown #

o The compiler decides on concurrency 
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Treads are created/destroyed

o Threads are created at start of parallel block; 
destroyed, with implied barrier, at end of || block

o Good advice: Set up threads at start; stay with ‘em
o Avoid waiting overhead by using nowait

#pragma omp for nowait
for (i=0; i<100; i++)  {arrayA[i]=i; }

#pragma omp for

for (j=0; j<500; j++)   {arrayB[j]=0; }

o The explicit barrier has the form
#pragma omp barrier

22

Dependences

o Handling dependences is entirely up to the 
programmer

o Tools for protecting code:
n Privatizing variables -- requires “cleanup code”
n Reduce 
n Atomic operations
n Critical sections
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Synchronizing

o Any statement’s execution can in principle 
be interrupted, so atomicity help would help 

o Achieve atomicity using: atomic
#pragma omp atomic
a[i] += x; // never interrupted

o Atomic operations are:
expr++, expr--, ++expr, --expr, +=, -=,

*=, /=, <<=, >>=, &=, |=, ^=

o Could save cost of using “heavy” protection 
for some variables

24

optional name

Critical Sections

o Guarantee exclusive execution with a critical 
section

#pragma omp critical(maxvalue) {

if (max < next_value)    

max = next_value;    

}

o Only 1 thread enters critical section at a time

o Naming avoids all threads but 1 excluded 
from all critical sections, usually a big win
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Loop Scheduling

o When loop iterations are not balanced …
#pragma omp parallel for schedule(kind [,chunk_size])

o The choices for kind are
n static assign chunk size units of work; default is 

loop_bound/threads; 1 implies interleaving iterations
n dynamic work queue with chunk size iterations per 

thread; default is 1
n guided work queue with diminishing chunks down to 

chunk size
n runtime choose 1 of above at run-time w/environ var 

26

OpenMP Summary

o Simple facility, low entry cost, potential to 
exploit parallelism with little pgmming effort

o Simplicity is somewhat deceptive:
n Programmers are responsible for all potential 

“gotchas” … still need to think very carefully!
n Few higher-level abstractions beyond reduce
n Programming model is threaded von Neumann 

rather than true parallel
n De facto control over features that give 

performance are generally ceded to compiler

There is more in the spec
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Break
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Threading

o Threading facilities like the POSIX library 
Pthreads are popular shared-memory
parallel programming tools

o Unlike OpenMP, where a compiler takes 
over to give limited capabilities, threading 
systems give primitive ops, but little help

o PRAM-like model tied to shared memory
o Pthreads is a library that’s widely available

anything’s possible, nothing is easy
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Pthread Standard Structure

o Create threads and wait for their completion
#include <pthread.h>
int err;
void main () 
{

pthread_t tid[MAX]; /* Thread ID Array */
for (i=0; i<t; i++) {

err = pthread_create (&tid[i], NULL,
count3s_thread, i); 

}
for (i=0; i<t; i++) {

err = pthread_join_(tid[i], &status[i])
}

}

30

Mutual Exclusion

o Race conditions are avoided using locks
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
void count3s_thread (int id) {

/* Compute local part of array */
int length_per_thread = length/t;
int start = id * length_per_thread;
for (i=start; i<start+length_per_thread; i++) {

if (array[i] == 3) {
pthread_mutex_lock(&lock);
count++;
pthread_mutex_unlock(&lock);

}
}

}
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Thread-specific Data

o Mostly Pthreads reference global data 
o Pthreads allows for thread-specific data

n Accessed indirectly via a key
n Procedural interface makes it somewhat kuldgy
n Facilities

o pthread_key_create()
o pthread_key_delete()
o pthread_setspecific()
o pthread_getspecific()

Not suitable for non-trivial data structures

32

Condition Variables

o Threads wait on a condition to come true,
and then some waiting thread is chosen
n Non-deterministic and possibly unfair

o Illustrate with a circular buffer

Get Put

Circular Buffer

Get Put

Empty Buffer

GetPut

Full Buffer

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t nonempty = PTHREAD_COND_INITIALIZER;
pthread_cond_t nonfull  = PTHREAD_COND_INITIALIZER;
Item buffer[SIZE];
int in = 0;       // Buff index for next insert
int out = 0; // Buff index for next remove

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t nonempty = PTHREAD_COND_INITIALIZER;
pthread_cond_t nonfull  = PTHREAD_COND_INITIALIZER;
Item buffer[SIZE];
int in = 0;       // Buff index for next insert
int out = 0; // Buff index for next remove
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Get and Put For Circular Buffer

void put (Item x) {            // Producer thread
pthread_mutex_lock(&lock);
while (in – out == SIZE) // While buffer full

pthread_cond_wait(&nonfull, &lock);
buffer[in % SIZE] = x; in++;
pthread_cond_signal(&nonempty);
pthread_mutex_unlock(&lock);

}

void put (Item x) {            // Producer thread
pthread_mutex_lock(&lock);
while (in – out == SIZE) // While buffer full

pthread_cond_wait(&nonfull, &lock);
buffer[in % SIZE] = x; in++;
pthread_cond_signal(&nonempty);
pthread_mutex_unlock(&lock);

}
Item get() { // Consumer thread

Item x;
pthread_mutex_lock(&lock);
while (out == in)  // While buffer is empty

pthread_cond_wait(&nonempty, &lock);
x = buffer[out % SIZE]; out++;
pthread_cond_signal(&nonfull);
pthread_mutex_unlock(&lock);
return x;

}

Item get() { // Consumer thread
Item x;
pthread_mutex_lock(&lock);
while (out == in)  // While buffer is empty

pthread_cond_wait(&nonempty, &lock);
x = buffer[out % SIZE]; out++;
pthread_cond_signal(&nonfull);
pthread_mutex_unlock(&lock);
return x;

}
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Split-phase Barrier

o Barriers stop threads until everyone’s there
o Often wasteful bc barriers are interposed 

between regions that shouldn’t overlap

o Sending, receiving also have this feature

earliest place for barrier
...
computational work
...
latest place for barrier

Break the coupling between arriving and leaving
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Arrive and Wait

o Split the barrier into two parts
n barrier.arrived() -- has reached the first safe pt

n barrier.wait() -- the last point before overlap 

Thread 1 Thread 2 Thread 3 Thread 4

x = a + …

a = f(b, c, d);

arrived

wait

Split phase has many uses

36

Summary on Pthreads

o Pthreads is gives power and flexibility
o It is possible to build gadgets for general 

concurrent operations
n Nearly everything is possible
n Often the complexity can be deceptive
n Ideas are quite traditional, and newer concepts 

are available
o Transactions
o Shared memory parallel languages like CiLC,SAC
o Not easy to apply performance (CTA) ideas 

There is more in the spec
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Message Passing

o Message passing is the principle alternative to 
shared memory parallel programming
n Based on Single Program, Multiple Data (SPMD) Model 

with send() and recv() primitives

n Message passing is universal, but low-level
n Parallel Virtual Machine (PVM), Message Passing 

Interface (MPI) are main libraries, but there’ve been many
n More even than threading, message passing is locally 

focused -- what does each processor do?
n Isolation of separate address spaces can be a 

programming asset -- no races--and a pain!

Clear distinction between local, non-local

38

A Typical Process Structure
o SPMD idea => 1 pgm to run on every node

int main (argc, argv) 

int argc;

char **argv;

{

int myID, size;

MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

/* compute stuff in parallel */

MPI_Finalize()

return 0;

}

required 1st callrequired 1st call

required last callrequired last call

MPI_Comm_World
is a communicator
a set of logically
related comm’s

get count of peersget count of peers

get my indexget my index
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General Process Structure

o Most computations have two kinds of procs
n Worker -- performing a share of work
n Leader -- performing 1-time work needed by all and, 

perhaps, its share of task
n Common structure:

if (rootproc == myId) {

... /* do stuff for all */
} else {

... /* work on local part */

}

40

Sending A Message

o The general form of an MPI send() is:

int MPI_Send ( // Blocking Send routine

void *       buffer, // Address of data to send

int          count,  // No. data elements to send
MPI_Datatype type,     // Type of data elements

int          dest,     // ID of destination process

int          tag,      // Tag for this message

MPI_Comm *   comm      // An MPI communicator

);

int MPI_Send ( // Blocking Send routine

void *       buffer, // Address of data to send

int          count,  // No. data elements to send
MPI_Datatype type,     // Type of data elements

int          dest,     // ID of destination process

int          tag,      // Tag for this message

MPI_Comm *   comm      // An MPI communicator

);

MPI_Send(&a[offset][0], count, MPI_DOUBLE, 
dest, mtype, MPI_COMM_WORLD);

MPI_Send(&a[offset][0], count, MPI_DOUBLE, 
dest, mtype, MPI_COMM_WORLD);
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Receiving A Message

o The general form of an MPI recv() is:
int MPI_Recv ( // Blocking Receive routine

void *       buffer, // Address receiving data
int          count,  // No. elements to receive       
MPI_Datatype type,   // Type of each element
int          source, // ID of sending process
int          tag,    // Tag for this message
MPI_Comm     comm,   // MPI communicator
MPI_Status * status  // Status of this receive

);

int MPI_Recv ( // Blocking Receive routine
void *       buffer, // Address receiving data
int          count,  // No. elements to receive       
MPI_Datatype type,   // Type of each element
int          source, // ID of sending process
int          tag,    // Tag for this message
MPI_Comm     comm,   // MPI communicator
MPI_Status * status  // Status of this receive

);

MPI_Recv(&a, count, MPI_DOUBLE, source,
mtype, MPI_COMM_WORLD, &status);

MPI_Recv(&a, count, MPI_DOUBLE, source,
mtype, MPI_COMM_WORLD, &status);

42

Marshalling

o MPI assumes data comes from consecutive 
locations and goes to consecutive locations

o When not true (columns in rmo-allocation)
n data must be marshalled, copied into buffer, for 

send
n data must be demarshalled, copied back, for 

receive
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MM in MPI -- 1
MPI_Status status;
main(int argc, char **argv) {
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize, /* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rows,                      /* rows of matrix A sent  to each worker */
averow, extra, offset,     /* used to determine row s sent to each worker */
i, j, k, /* misc */
count;

A “master--slave” solutionA “master--slave” solution

44

MM in MPI -- 2
double a[NRA][NCA], /* matrix A to be multiplied */

b[NCA][NCB],      /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

intsize = sizeof(int);
dbsize = sizeof(double);
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;
/****** master task *******/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)
b[i][j]= i*j;
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MM in MPI -- 3
/* send matrix data to the worker tasks */

averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;
for (dest=1; dest<=numworkers; dest++) {

rows = (dest <= extra) ? averow+1 : averow;   
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM _WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_W ORLD);
count = rows*NCA;
MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mt ype, 

MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_CO MM_WORLD);

offset = offset + rows;
}

46

MM in MPI -- 4
/* wait for results from all worker tasks */

mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {

source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_CO MM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM _WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, 

MPI_COMM_WORLD,&status);
}
/**************************** worker task ********* ***************************/
if (taskid > MASTER) {

mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_CO MM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM _WORLD, &status);
count = rows*NCA;



24

47

MM in MPI -- 5
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_ COMM_WORLD, 

&status); count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_ COMM_WORLD, 

&status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)
c[i][k] = c[i][k] + a[i][j] * b[j][k];

}
mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_CO MM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM _WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, 

MPI_COMM_WORLD);
}  /* end of worker */

Actual Multiply

91 “Net” Lines91 “Net” Lines

48

The Path of a Message

o A blocking send visits 4 address spaces

o Besides being time-consuming, it locks 
processors together quite tightly

Sending Proc Receiving ProcKernel Kernel

commstalled
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Alternative Send/Recvs

o Variants of the operations have other 
properties:
n MPI_Rsend() -- assumes sending, receiving 

processes are synchronized, so no handshaking 
needed; it’s risky

n MPI_Bsend() -- use a user-space buffer rather 
than kernel space buffer; resume when buffer 
loaded

n MPI_Isend() -- non-blocking send; does not wait 
for operation to complete; use MPI_Wait()

50

Overlapping Comm and Comp

o Using MPI_Isend()/MPI_Irecv() to overlap 
communication and computation is smart

o General protocol:
n Receive “edge” values from neighbors
n Send “edge” values to neighbors
n Compute “interior” elements
n Wait on arrival of edge elements
n Complete “edge” computations

10 20 13 21 7 29 23 20 4 25 1 31

Shadow buffers assist implementation
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MPI Has Reduce and Scan

o Reduce and scan apply are ponderous
int MPI_Reduce ( // Reduce routine

void *       sendBuffer,  // Address of local val
void *       recvBuffer,  // Place to receive into
int          count,       // No. of elements
MPI_Datatype datatype,    // Type of each element
MPI_OP       op,          // MPI operator
int          root,        // Process to get result
MPI_Comm     comm         // MPI communicator 
);

int MPI_Reduce ( // Reduce routine
void *       sendBuffer,  // Address of local val
void *       recvBuffer,  // Place to receive into
int          count,       // No. of elements
MPI_Datatype datatype,    // Type of each element
MPI_OP       op,          // MPI operator
int          root,        // Process to get result
MPI_Comm     comm         // MPI communicator 
);

MPI_Reduce (&myCount,&globalCount, 1, MPI_INT, MPI_SUM,
RootProcess, MPI_COMM_WORLD);

MPI_Reduce (&myCount,&globalCount, 1, MPI_INT, MPI_SUM,
RootProcess, MPI_COMM_WORLD);

52

Message Passing Critique

o Message passing is a very simple model
o Extremely low level; heavy weight

n Expense comes from λ and lots of local code
n Communication code is often more than half
n Tough to make adaptable and flexible
n Tough to get right and know it

n Tough to make perform in most cases

o Programming model of choice for scalability

Not as portable as it’s claimed to be 
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One-sided Communication

o Intermediate between and shared and 
message passing is one-sided comm

o Process model w/ global address space
n get() loads a value from a non-local address
n put() stores a value into a non-local address
n No memory consistency: caveat emptor
n Popularized by Cray machines: called shmem

o Libraries are available to implementing

Co-Array Fortran based on concept

54

Working On Project

o Parallel computers of any size are generally 
tough to use … put it off as long as possible

o Most programming systems allow for 
development on a workstation

o My recommended steps (not including your 
personal development techniques):
n Sketch solution w/diagram + Peril-L
n Work out logic on sequential platform
n Consider moving to || platform in parts 
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Homework

o Reading: Chapter 8
n Read, but do not study …

n Goal is to conceptualize ZPL’s approach

o Project
n Most projects approved; after reading ZPL, 

proceed

n Recommendation: Sketch in Peril-L first
n Bring paper statement of progress to class


