
1

1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

8 May 2007

2

Announcements

o Thanks to everyone who found the UD-scan
bugs in the slides and book!

o Approval for MS cluster happened today!
n Accounts assigned this week
n Documents up this week
n Should be developing off-line anyhow (more

later)

o Next week is ZPL, but if you’re expecting to
use it, read text early

There is still time for project revisions

2

3

Tonight’s Assignment

o UD-Scan of your choice ... what did you
choose?

4

Multicast Logic

o Recall the question of multicasting in Peril-L
in a way that is suitable for SUMMA

o This is the set up: tile rows want column
segments and tile columns want row seg.s

A BC

3

5

Memory Allocation

o The problem memory is in global space
double A_G[n][n], B_G[n][n], C_G[n][n];

int p=sqrt(P), t=n/p; Define constants

o Allocate materialized memory for row/col for seg.s
double Acol_GO[p][p][t],Brow_GO[p][p][t];

o Next, induce a tree on the tile rows, columns

Assume p
is a power
of 2

Assume p
is a power
of 2

Flow down tree

6

Logical Tree for (a Row) of Tiles

o A node waits on its _GO memory; when it gets it’s
value, it simply fills out its sibling nodes if any

if (v == 0)

stride=p;

else

stride = pow(2,loOrdZeroes(v)); No. least sig zeroes

a[0:t-1] = Acol_GO[u][v][0:t-1]; Grab col segment

while (stride > 1) { Sweep thru siblings

stride = stride>>1; Reference next one

Acol_GO[u][v+stride][0:t-1]=a[0:t-1]; Fill GO mem
}

Make it into a procedure: mcast()

4

7

Loading _GOMem As k changes

o Make diagonal tiles responsible
for (k=0;k<n;k++){ For cols of A & rows of B

if (u==v && u*t<k && k<u*t+t-1){Diag tiles fill first _GO

for (i=0;i<p;i++){

Acol_GO[i][0][0:t-1]=A_G[i*t:i*t+t-1][k];

Brow_GO[0][i][0:t-1]=B_G[k][i*t:i*t+t-1];

}

}

a[0:t-1]=mcast(u,v,Acol); Do multicast, if needed

b[0:t-1]=mcast(u,v,Brow); Do multicast, if needed
...

}

8

SUMMA Preamble Code

double A_G[n][n], B_G[n][n], C_G[n][n];

int p=sqrt(P), t=n/p; Define constants

forall u,v in (0..p-1,0..p-1){ Thread in 2D

double C[t][t]=is_local(C_G) Ref local tile

int i,j,k; double a[t], b[t];

for (i=0;i<t;i++) {

for (j=0;j<t;j++) {

C[i][j] = 0.0; Initialize C

}

}

5

9

Inner Loop of SUMMA
for (k=0;k<n;k++) { For cols of A & rows of B

/* Multicasting code goes here */
for (i=0;i<t;i++) {

for (j=0;j<t;j++) {

c[i][j] += a[i]*b[j]; Figure kth terms
}

}
}

}

10

Multicast Improvement

o The diagonal tile processors fill all of the
_GO memory, so processors wait on them

o Is there a better solution? Issues …
n A specific tile (diagonal) initializes result
n All row (col) roots initialized together

6

11

Revision …

o The first processor in row/col ready, call it a
“winner,” becomes tree root and tree shifts
n To shift tree, simply use the u (v) value of

winner to offset all node positions, doing all
addressing math mod p

n To ensure a uniquely identified winner, use an
exclusive block (per row/col) & global; if
your k is higher than the value stored there,
you’re the winner; update it and fire-up the tree

How much can the computation skew?

12

Parallel Programming Support

o For decades it’s been assumed:
parallel code = compiler(sequential code)

o Compilers have progressed, but cannot do
the conversion in general circumstances

o Two basic solutions
n Library + serial programming language

o Main issue: || abstractions limited

n Legitimate parallel language
o Main issue: quality of emitted code

7

13

|| Programming Language Topic

o There is much to say about || languages
o Book’s Strategy

n 3 representative approaches (will be 2 more)
n Give key features, basics; enough to write

code but other materials needed for full study

o Course Strategy
n Discuss several approaches including book’s
n Focus on abstract ideas
n Summarize and discuss current s-o-t-a

Avoid teaching detail

14

OpenMP

o Nonproprietary extensions (as pragmas) to
C, C++, Fortran

o Mainly used to exploit hyper-threading
parallelism in a single fetch/execute engine

o Use
n Programmer inserts pragmas identifying ||ism
n Compiler recognizing pragmas generates

multi-threaded code
n System in control of most aspects of ||ism

http://www.openmp.org

8

15

OpenMP Code Examples

o All pragmas begin: #pragma

o Convert 32-bit RGB image to 8-bit gray scale
#pragma omp parallel for

for (i=0; i < numPixels; i++) {

pGrayScaleBitmap [i] = (unsigned BYTE)

(pRGBBitmap[i].red * 0.299 +

pRGBBitmap [i].green * 0.587 +

pRGBBitmap[i].blue * 0.114);

}

o ||ism is “element-wise” … each item independent
Also called “work sharing”

16

Limitations and Semantics

o Not all “element-wise” loops can be ||ised
#pragma omp parallel for

for (i=0; i < numPixels; i++) {}

n Loop index: signed integer
n Termination Test: <,<=,>,=> with loop invariant int
n Incr/Decr by loop invariant int; change each iteration
n Count up for <,<=; count down for >,>=
n Basic block body: no control in/out except at top

o Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

9

17

More OpenMP Code

o Data-dependences require care [wrong code]
sum = 0;

#pragma omp parallel for

for (i=0; i < 100; i++) {

sum =+ array[i];

}

o A race exists in this code (sum); fix 2 ways:
n Make sum private by declaring inside loop
n #pragma omp parallel for(private

sum)

18

Reduce Abstraction

o OpenMP has reduce
sum = 0;
#pragma omp parallel for reduction(+:sum)

for (i=0; i < 100; i++) {
sum += array[i];

}

o Reduce ops and init() values:
+ 0 bitwise & ~0 logical & 1
- 0 bitwise | 0 logical | 0
* 1 bitwise ^ 0

Even in OpenMP abstracting reduce helps

10

19

Sections

o Separate tasks can be performed in ||
#pragma omp sections {

#pragma omp section {TaskA();}

#pragma omp section {TaskB();}

#pragma omp section {TaskC();}

}

o The tasks must not have dependences
n Each section runs to completion
n Order not guaranteed
n Private is allowed

20

Care with Parallel

o Check out this code
int i;

#pragma omp parallel for

for (i='a'; i<='z'; i++){printf("%c",i);}

int i;

#pragma omp parallel private (i)

for (i='a'; i<='z'; i++){printf("%c",i);}

o Red prints alphabet once; blue unknown #

o The compiler decides on concurrency

11

21

Treads are created/destroyed

o Threads are created at start of parallel block;
destroyed, with implied barrier, at end of || block

o Good advice: Set up threads at start; stay with ‘em
o Avoid waiting overhead by using nowait

#pragma omp for nowait
for (i=0; i<100; i++) {arrayA[i]=i; }

#pragma omp for

for (j=0; j<500; j++) {arrayB[j]=0; }

o The explicit barrier has the form
#pragma omp barrier

22

Dependences

o Handling dependences is entirely up to the
programmer

o Tools for protecting code:
n Privatizing variables -- requires “cleanup code”
n Reduce
n Atomic operations
n Critical sections

12

23

Synchronizing

o Any statement’s execution can in principle
be interrupted, so atomicity help would help

o Achieve atomicity using: atomic
#pragma omp atomic
a[i] += x; // never interrupted

o Atomic operations are:
expr++, expr--, ++expr, --expr, +=, -=,

*=, /=, <<=, >>=, &=, |=, ^=

o Could save cost of using “heavy” protection
for some variables

24

optional name

Critical Sections

o Guarantee exclusive execution with a critical
section

#pragma omp critical(maxvalue) {

if (max < next_value)

max = next_value;

}

o Only 1 thread enters critical section at a time

o Naming avoids all threads but 1 excluded
from all critical sections, usually a big win

13

25

Loop Scheduling

o When loop iterations are not balanced …
#pragma omp parallel for schedule(kind [,chunk_size])

o The choices for kind are
n static assign chunk size units of work; default is

loop_bound/threads; 1 implies interleaving iterations
n dynamic work queue with chunk size iterations per

thread; default is 1
n guided work queue with diminishing chunks down to

chunk size
n runtime choose 1 of above at run-time w/environ var

26

OpenMP Summary

o Simple facility, low entry cost, potential to
exploit parallelism with little pgmming effort

o Simplicity is somewhat deceptive:
n Programmers are responsible for all potential

“gotchas” … still need to think very carefully!
n Few higher-level abstractions beyond reduce
n Programming model is threaded von Neumann

rather than true parallel
n De facto control over features that give

performance are generally ceded to compiler

There is more in the spec

14

27

Break

28

Threading

o Threading facilities like the POSIX library
Pthreads are popular shared-memory
parallel programming tools

o Unlike OpenMP, where a compiler takes
over to give limited capabilities, threading
systems give primitive ops, but little help

o PRAM-like model tied to shared memory
o Pthreads is a library that’s widely available

anything’s possible, nothing is easy

15

29

Pthread Standard Structure

o Create threads and wait for their completion
#include <pthread.h>
int err;
void main ()
{

pthread_t tid[MAX]; /* Thread ID Array */
for (i=0; i<t; i++) {

err = pthread_create (&tid[i], NULL,
count3s_thread, i);

}
for (i=0; i<t; i++) {

err = pthread_join_(tid[i], &status[i])
}

}

30

Mutual Exclusion

o Race conditions are avoided using locks
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
void count3s_thread (int id) {

/* Compute local part of array */
int length_per_thread = length/t;
int start = id * length_per_thread;
for (i=start; i<start+length_per_thread; i++) {

if (array[i] == 3) {
pthread_mutex_lock(&lock);
count++;
pthread_mutex_unlock(&lock);

}
}

}

16

31

Thread-specific Data

o Mostly Pthreads reference global data
o Pthreads allows for thread-specific data

n Accessed indirectly via a key
n Procedural interface makes it somewhat kuldgy
n Facilities

o pthread_key_create()
o pthread_key_delete()
o pthread_setspecific()
o pthread_getspecific()

Not suitable for non-trivial data structures

32

Condition Variables

o Threads wait on a condition to come true,
and then some waiting thread is chosen
n Non-deterministic and possibly unfair

o Illustrate with a circular buffer

Get Put

Circular Buffer

Get Put

Empty Buffer

GetPut

Full Buffer

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t nonempty = PTHREAD_COND_INITIALIZER;
pthread_cond_t nonfull = PTHREAD_COND_INITIALIZER;
Item buffer[SIZE];
int in = 0; // Buff index for next insert
int out = 0; // Buff index for next remove

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t nonempty = PTHREAD_COND_INITIALIZER;
pthread_cond_t nonfull = PTHREAD_COND_INITIALIZER;
Item buffer[SIZE];
int in = 0; // Buff index for next insert
int out = 0; // Buff index for next remove

17

33

Get and Put For Circular Buffer

void put (Item x) { // Producer thread
pthread_mutex_lock(&lock);
while (in – out == SIZE) // While buffer full

pthread_cond_wait(&nonfull, &lock);
buffer[in % SIZE] = x; in++;
pthread_cond_signal(&nonempty);
pthread_mutex_unlock(&lock);

}

void put (Item x) { // Producer thread
pthread_mutex_lock(&lock);
while (in – out == SIZE) // While buffer full

pthread_cond_wait(&nonfull, &lock);
buffer[in % SIZE] = x; in++;
pthread_cond_signal(&nonempty);
pthread_mutex_unlock(&lock);

}
Item get() { // Consumer thread

Item x;
pthread_mutex_lock(&lock);
while (out == in) // While buffer is empty

pthread_cond_wait(&nonempty, &lock);
x = buffer[out % SIZE]; out++;
pthread_cond_signal(&nonfull);
pthread_mutex_unlock(&lock);
return x;

}

Item get() { // Consumer thread
Item x;
pthread_mutex_lock(&lock);
while (out == in) // While buffer is empty

pthread_cond_wait(&nonempty, &lock);
x = buffer[out % SIZE]; out++;
pthread_cond_signal(&nonfull);
pthread_mutex_unlock(&lock);
return x;

}

34

Split-phase Barrier

o Barriers stop threads until everyone’s there
o Often wasteful bc barriers are interposed

between regions that shouldn’t overlap

o Sending, receiving also have this feature

earliest place for barrier
...
computational work
...
latest place for barrier

Break the coupling between arriving and leaving

18

35

Arrive and Wait

o Split the barrier into two parts
n barrier.arrived() -- has reached the first safe pt

n barrier.wait() -- the last point before overlap

Thread 1 Thread 2 Thread 3 Thread 4

x = a + …

a = f(b, c, d);

arrived

wait

Split phase has many uses

36

Summary on Pthreads

o Pthreads is gives power and flexibility
o It is possible to build gadgets for general

concurrent operations
n Nearly everything is possible
n Often the complexity can be deceptive
n Ideas are quite traditional, and newer concepts

are available
o Transactions
o Shared memory parallel languages like CiLC,SAC
o Not easy to apply performance (CTA) ideas

There is more in the spec

19

37

Message Passing

o Message passing is the principle alternative to
shared memory parallel programming
n Based on Single Program, Multiple Data (SPMD) Model

with send() and recv() primitives

n Message passing is universal, but low-level
n Parallel Virtual Machine (PVM), Message Passing

Interface (MPI) are main libraries, but there’ve been many
n More even than threading, message passing is locally

focused -- what does each processor do?
n Isolation of separate address spaces can be a

programming asset -- no races--and a pain!

Clear distinction between local, non-local

38

A Typical Process Structure
o SPMD idea => 1 pgm to run on every node

int main (argc, argv)

int argc;

char **argv;

{

int myID, size;

MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

/* compute stuff in parallel */

MPI_Finalize()

return 0;

}

required 1st callrequired 1st call

required last callrequired last call

MPI_Comm_World
is a communicator
a set of logically
related comm’s

get count of peersget count of peers

get my indexget my index

20

39

General Process Structure

o Most computations have two kinds of procs
n Worker -- performing a share of work
n Leader -- performing 1-time work needed by all and,

perhaps, its share of task
n Common structure:

if (rootproc == myId) {

... /* do stuff for all */
} else {

... /* work on local part */

}

40

Sending A Message

o The general form of an MPI send() is:

int MPI_Send (// Blocking Send routine

void * buffer, // Address of data to send

int count, // No. data elements to send
MPI_Datatype type, // Type of data elements

int dest, // ID of destination process

int tag, // Tag for this message

MPI_Comm * comm // An MPI communicator

);

int MPI_Send (// Blocking Send routine

void * buffer, // Address of data to send

int count, // No. data elements to send
MPI_Datatype type, // Type of data elements

int dest, // ID of destination process

int tag, // Tag for this message

MPI_Comm * comm // An MPI communicator

);

MPI_Send(&a[offset][0], count, MPI_DOUBLE,
dest, mtype, MPI_COMM_WORLD);

MPI_Send(&a[offset][0], count, MPI_DOUBLE,
dest, mtype, MPI_COMM_WORLD);

21

41

Receiving A Message

o The general form of an MPI recv() is:
int MPI_Recv (// Blocking Receive routine

void * buffer, // Address receiving data
int count, // No. elements to receive
MPI_Datatype type, // Type of each element
int source, // ID of sending process
int tag, // Tag for this message
MPI_Comm comm, // MPI communicator
MPI_Status * status // Status of this receive

);

int MPI_Recv (// Blocking Receive routine
void * buffer, // Address receiving data
int count, // No. elements to receive
MPI_Datatype type, // Type of each element
int source, // ID of sending process
int tag, // Tag for this message
MPI_Comm comm, // MPI communicator
MPI_Status * status // Status of this receive

);

MPI_Recv(&a, count, MPI_DOUBLE, source,
mtype, MPI_COMM_WORLD, &status);

MPI_Recv(&a, count, MPI_DOUBLE, source,
mtype, MPI_COMM_WORLD, &status);

42

Marshalling

o MPI assumes data comes from consecutive
locations and goes to consecutive locations

o When not true (columns in rmo-allocation)
n data must be marshalled, copied into buffer, for

send
n data must be demarshalled, copied back, for

receive

22

43

MM in MPI -- 1
MPI_Status status;
main(int argc, char **argv) {
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize, /* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rows, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine row s sent to each worker */
i, j, k, /* misc */
count;

A “master--slave” solutionA “master--slave” solution

44

MM in MPI -- 2
double a[NRA][NCA], /* matrix A to be multiplied */

b[NCA][NCB], /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

intsize = sizeof(int);
dbsize = sizeof(double);
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;
/****** master task *******/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)
b[i][j]= i*j;

23

45

MM in MPI -- 3
/* send matrix data to the worker tasks */

averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;
for (dest=1; dest<=numworkers; dest++) {

rows = (dest <= extra) ? averow+1 : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM _WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_W ORLD);
count = rows*NCA;
MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mt ype,

MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_CO MM_WORLD);

offset = offset + rows;
}

46

MM in MPI -- 4
/* wait for results from all worker tasks */

mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {

source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_CO MM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM _WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype,

MPI_COMM_WORLD,&status);
}
/**************************** worker task ********* ***************************/
if (taskid > MASTER) {

mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_CO MM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM _WORLD, &status);
count = rows*NCA;

24

47

MM in MPI -- 5
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_ COMM_WORLD,

&status); count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_ COMM_WORLD,

&status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)
c[i][k] = c[i][k] + a[i][j] * b[j][k];

}
mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_CO MM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM _WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype,

MPI_COMM_WORLD);
} /* end of worker */

Actual Multiply

91 “Net” Lines91 “Net” Lines

48

The Path of a Message

o A blocking send visits 4 address spaces

o Besides being time-consuming, it locks
processors together quite tightly

Sending Proc Receiving ProcKernel Kernel

commstalled

25

49

Alternative Send/Recvs

o Variants of the operations have other
properties:
n MPI_Rsend() -- assumes sending, receiving

processes are synchronized, so no handshaking
needed; it’s risky

n MPI_Bsend() -- use a user-space buffer rather
than kernel space buffer; resume when buffer
loaded

n MPI_Isend() -- non-blocking send; does not wait
for operation to complete; use MPI_Wait()

50

Overlapping Comm and Comp

o Using MPI_Isend()/MPI_Irecv() to overlap
communication and computation is smart

o General protocol:
n Receive “edge” values from neighbors
n Send “edge” values to neighbors
n Compute “interior” elements
n Wait on arrival of edge elements
n Complete “edge” computations

10 20 13 21 7 29 23 20 4 25 1 31

Shadow buffers assist implementation

26

51

MPI Has Reduce and Scan

o Reduce and scan apply are ponderous
int MPI_Reduce (// Reduce routine

void * sendBuffer, // Address of local val
void * recvBuffer, // Place to receive into
int count, // No. of elements
MPI_Datatype datatype, // Type of each element
MPI_OP op, // MPI operator
int root, // Process to get result
MPI_Comm comm // MPI communicator
);

int MPI_Reduce (// Reduce routine
void * sendBuffer, // Address of local val
void * recvBuffer, // Place to receive into
int count, // No. of elements
MPI_Datatype datatype, // Type of each element
MPI_OP op, // MPI operator
int root, // Process to get result
MPI_Comm comm // MPI communicator
);

MPI_Reduce (&myCount,&globalCount, 1, MPI_INT, MPI_SUM,
RootProcess, MPI_COMM_WORLD);

MPI_Reduce (&myCount,&globalCount, 1, MPI_INT, MPI_SUM,
RootProcess, MPI_COMM_WORLD);

52

Message Passing Critique

o Message passing is a very simple model
o Extremely low level; heavy weight

n Expense comes from λ and lots of local code
n Communication code is often more than half
n Tough to make adaptable and flexible
n Tough to get right and know it

n Tough to make perform in most cases

o Programming model of choice for scalability

Not as portable as it’s claimed to be

27

53

One-sided Communication

o Intermediate between and shared and
message passing is one-sided comm

o Process model w/ global address space
n get() loads a value from a non-local address
n put() stores a value into a non-local address
n No memory consistency: caveat emptor
n Popularized by Cray machines: called shmem

o Libraries are available to implementing

Co-Array Fortran based on concept

54

Working On Project

o Parallel computers of any size are generally
tough to use … put it off as long as possible

o Most programming systems allow for
development on a workstation

o My recommended steps (not including your
personal development techniques):
n Sketch solution w/diagram + Peril-L
n Work out logic on sequential platform
n Consider moving to || platform in parts

28

55

Homework

o Reading: Chapter 8
n Read, but do not study …

n Goal is to conceptualize ZPL’s approach

o Project
n Most projects approved; after reading ZPL,

proceed

n Recommendation: Sketch in Peril-L first
n Bring paper statement of progress to class

