CSEbL24 Parallel Computation

Lawrence Snyder
WWW.cS.washington.edu/CSEp524

8 May 2007

Announcements

o Thanks to everyone who found the UD-scan
bugs in the slides and book!

o Approval for MS cluster happened today!
n Accounts assigned this week
n Documents up this week

n Should be developing off-line anyhow (more
later)

o Next week is ZPL, but if you're expecting to
use it, read text early

—— There is still time for project revisions

Tonight’s Assignment

0 UD-Scan of your choice ... what did you
choose?

Multicast Logic

o Recall the question of multicasting in Peril-L
in a way that is suitable for SUMMA

o This is the set up: tile rows want column
segments and tile columns want row seg.s

G A B =
Il

Memory Allocation

o The problem memory is in global space

double A _G[n][n], B_G[n][n], C_GIn][n];

int p=sqrt(P), t=n/p; Define constants
o Allocate materialized memory for row/col for seg.s

double Acol GO p][pl[t],Brow GJp][p][t];
0 Next, induce a tree on the tile rows, columns

Assume p
IS a power

A of 2

— Flow down tree

Logical Tree for (a Row) of Tiles

0 A node waits on its GO memory; when it gets it's
value, it simply fills out its sibling nodes if any
if (v == 0)

stride=p;
el se

stride = pow 2,1 oOrdZeroes(v)); No.least sig zeroes
a[0:t-1] = Acol _GJu][v][O:t-1]; Grab col segment
while (stride > 1) { Sweep thru siblings

stride = stride>>1; Reference next one

Acol _GJ u][v+stride][O0:t-1]=a[0:t-1]; Fill GO mem
}

Make it into a procedure: ntast ()

Loading GOMem As k changes

o Make diagonal tiles responsible
for (k=0;k<n;k++){ For colsof A & rowsof B
if (u==v && u*t<k && k<u*t+t-1){Diagtilesfill first GO
for (1=0;i<p;i++){
Acol _GOJi][O0][O:t-11=A G i*t:i*t+t-1][k];
Brow GO O] [i][O0:t-1]=B G K] [i*t:i*t+t-1];

¥
}
a[0:t-1]=ntast (u, v, Acol); Do multicast, if needed
b[0:t-1] =ntast (u, v, Brow); Do multicagt, if needed

SUMMA Preamble Code

double A_G[n][n], B_GI[n][n], C_GIn][n];

int p=sqrt(P), t=n/p; Define constants
forall u,vin (0..p-1,0..p-1){ Thread in 2D
double C[t][t]=is_local(C_G) Ref local tile

int i,j,k; double a[t], bit];
for (i=0;i<t;i++) {
for (j=0;j<t;j++) {
CliJ[j] = 0.0; InitializeC
}
}

Inner Loop of SUMMA

for (k=0;k<n;k++) { For colsof A & rowsof B
/* Multicasting code goes here */

for (i=0;i<t;i++) {
for (j=0;j<t;j++) {
clilii] += a[i]*bfj; Figure kih terms
}
}
}
}

Multicast Improvement

o The diagonal tile processors fill all of the

~ GO memory, so processors wait on them
o Is there a better solution? Issues ...

n A specific tile (diagonal) initializes result

n All row (col) roots initialized together

10

Revision ...

o The first processor in row/col ready, call it a

“winner,” becomes tree root and tree shifts

n To shift tree, simply use the u (v) value of
winner to offset all node positions, doing all
addressing math mod p

n To ensure a uniquely identified winner, use an
exclusive block (per row/col) & global; if
your k is higher than the value stored there,
you're the winner; update it and fire-up the tree

How much can the computation skew?

11

Parallel Programming Support

o For decades it’s been assumed:
parallel code = compiler(sequential code)
o Compilers have progressed, but cannot do
the conversion in general circumstances

o Two basic solutions
n Library + serial programming language
0 Main issue: || abstractions limited

n Legitimate parallel language
o Main issue: quality of emitted code

12

|| Programming Language Topic

o There is much to say about || languages

o Book’s Strategy
n 3 representative approaches (will be 2 more)
n Give key features, basics; enough to write
code but other materials needed for full study
o Course Strategy
n Discuss several approaches including book’s
n Focus on abstract ideas
n Summarize and discuss current s-o-t-a

Avoid teaching detail i

OpenMP

o Nonproprietary extensions (as pragmas) to
C, C++, Fortran

o Mainly used to exploit hyper-threading
parallelism in a single fetch/execute engine

o Use
n Programmer inserts pragmas identifying |lism

n Compiler recognizing pragmas generates
multi-threaded code

n System in control of most aspects of ||ism

http://www.openmp.org

14

OpenMP Code Examples

All pragmas begin: #pragma

Convert 32-bit RGB image to 8-bit gray scale

#pragma omp parallel for

for (i=0; i < numPixels; i++) {

pGrayScaleBitmap [i] = (unsigned BYTE)
(pPRGBBitmapli].red *0.299 +

pRGBBitmap [i].green * 0.587 +
pRGBBitmapli].blue *0.114);

}
0 |lismis “element-wise” ... each item independent

Also called “work sharing”

15

Limitations and Semantics

o Not all “element-wise” loops can be ||ised
#pragma omp parallel for
for (i=0; i < numPixels; i++) {}
Loop index: signed integer
Termination Test: <,<=,>=> with loop invariant int
Incr/Decr by loop invariant int; change each iteration
Count up for <,<=; count down for >,>=
Basic block body: no control in/fout except at top

o Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

mn iRy R fun g e]

16

More OpenMP Code

o Data-dependences require care [wrong code]
sum = 0;
#pragma omp parallel for
for (i=0; 1< 100; i++) {
sum =+ array[i];
¥
0 A race exists in this code (sum); fix 2 ways:

n Make sum private by declaring inside loop

n #pragma omp parallel for(private
Sum) 17

Reduce Abstraction

o OpenMP has reduce
sum =0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i < 100; i++) {
sum += array(i];

}
o Reduce ops and init() values:

+ 0 bitwise & ~0 logical & 1
- 0 bitwise | 0 logical | O
* 1 bitwise 0

Even in OpenMP abstracting reduce helps

18

Sections

0 Separate tasks can be performed in ||
#pragma omp sections {
#pragma omp section {TaskA();}
#pragma omp section {TaskB();}
#pragma omp section {TaskC();}
}
o The tasks must not have dependences
n Each section runs to completion
n Order not guaranteed
n Private is allowed

19

Care with Parallel

o Check out this code
inti;
#pragma omp parallel for
for (i='a’; i<="Z"; i++){printf("%c",i);}
int i;
#pragma omp parallel private (i)
for (i="a’; i<="z'; i++){printf("%c",i);}

0 Red prints alphabet once; blue unknown #
o The compiler decides on concurrency

20

10

Treads are created/destroyed

o Threads are created at start of parallel block;
destroyed, with implied barrier, at end of || block
0 Good advice: Set up threads at start; stay with ‘em
0 Avoid waiting overhead by using nowait
#pragma omp for nowait
for (i=0; i<100; i++) {arrayA[il=i; }
#pragma omp for
for (j=0; j<500; j++) {arrayB[j]=0; }
o The explicit barrier has the form
#pragma omp barrier

21

Dependences

o Handling dependences is entirely up to the
programmer

o Tools for protecting code:
n Privatizing variables -- requires “cleanup code”
n Reduce
n Atomic operations
n Critical sections

22

11

Synchronizing

0 Any statement’s execution can in principle
be interrupted, so atomicity help would help
o Achieve atomicity using: atomic
#pragma omp atomic
a[i] += x; // never interrupted
o Atomic operations are:
expr++, expr--, ++expr, --expr, +=, -=,
*:, =, <<=, >>=| &:’ = N=
o Could save cost of using “heavy” protection
for some variables

23

Critical Sections

o0 Guarantee exclusive execution with a critical

section optional name
#pragma omp critical(maxvalue) {
if (max < next_value)
max = next_value;

}
o Only 1 thread enters critical section at a time

o Naming avoids all threads but 1 excluded
from all critical sections, usually a big win

24

12

Loop Scheduling

o When loop iterations are not balanced ...

#pragnma onp parallel for schedule(kind [,chunk size])

o The choices for ki nd are

n

st at i ¢ assign chunk size units of work; default is
loop_bound/threads; 1 implies interleaving iterations
dynami ¢ work queue with chunk size iterations per
thread; default is 1

gui ded work queue with diminishing chunks down to
chunk size

runt i me choose 1 of above at run-time w/environ var

25

OpenMP Summary

o

0

Simple facility, low entry cost, potential to
exploit parallelism with little pgmming effort

Simplicity is somewhat deceptive:

n

n
n

Programmers are responsible for all potential
“gotchas” ... still need to think very carefully!

Few higher-level abstractions beyond reduce

Programming model is threaded von Neumann
rather than true parallel

De facto control over features that give
performance are generally ceded to compiler

There is more in the spec 2

13

Break

27

Threading

o Threading facilities like the POSIX library
Pthreads are popular shared-memory
parallel programming tools

0o Unlike OpenMP, where a compiler takes
over to give limited capabilities, threading
systems give primitive ops, but little help

anything’s possible, nothing is easy

o PRAM-like model tied to shared memory

o Pthreads is a library that's widely available

28

14

Pthread Standard Structure

o Create threads and wait for their completion
#i ncl ude <pt hread. h>

int err;
void main ()
{

pthread_t tid[MAX]; /* Thread ID Array */
for (i=0; i<t; i++t) {
err = pthread create (& id[i], NULL,
count 3s_thread, i);
}

for (i=0; i<t; i++) {
err = pthread join (tid[i], &status[i])
}
}

29

Mutual Exclusion

o Race conditions are avoided using locks
pthread mutex t | ock = PTHREAD MUTEX | NI TI ALI ZER
void count3s thread (int id) {

/* Conpute local part of array */
int length per thread = length/t;
int start =id * length _per thread;
for (i=start; i<start+l ength per thread; i++) {
if (array[i] == 3) {
pt hread nmut ex | ock(& ock);
count ++;
pt hread nut ex unl ock(& ock);

30

15

Thread-specific Data

0 Mostly Pthreads reference global data

o Pthreads allows for thread-specific data
n Accessed indirectly via a key
n Procedural interface makes it somewhat kuldgy
n Facilities
o pthread key create()
0 pthread key delete()
o pthread_setspecific()
o pthread getspecific()

Not suitable for non-trivial data structures

31

Condition Variables

o Threads wait on a condition to come true,
and then some waiting thread is chosen
n Non-deterministic and possibly unfair

o llustrate with a circular buffer

Empty Buffer Circular Buffer Full Buffer
oleje|e o|o[o|o]0]e]®
th?Put th Pﬁt Pﬁﬁeet

pthread_mutex_tlock = PTHREAD _MUTEX_INITIALIZER;
pthread_cond_t nonempty = PTHREAD_COND_INITIALIZER;
pthread_cond_t nonfull = PTHREAD_COND_INITIALIZER;
Item buffer[SIZE];

——intin =0; /I Buff index for next insert -
int out = 0; /I Buff index for next remove 32

16

Get and Put For Circular Buffer

void put (Item x) { /I Producer thread
pthread_mutex_lock(&lock);
while (in — out==SIZE) // While buffer full

pthread_cond_wait(&nonfull, &lock);
buffer[in % SIZE] = x; in++;
pthread_cond_signal(&nonempty);
pthread_mutex_unlock(&lock);

H Item get() { /I Consumer thread
Item Xx;
pthread_mutex_lock(&lock);
while (out == in) /I While buffer is empty

pthread_cond_wait(&nonempty, &lock);
x = buffer[out % SIZE]; out++;
pthread_cond_signal(&nonfull);
pthread_mutex_unlock(&lock);
— return x; -
} 33

Split-phase Barrier

o Barriers stop threads until everyone’s there

o Often wasteful bc barriers are interposed
between regions that shouldn’t overlap

earliest place for barrier

computational work

latest place for barrier

0o Sending, receiving also have this feature

— 1 Break the coupling between arriving and leaving =

Arrive and Wait

o Split the barrier into two parts
n barrier.arrived() -- has reached the first safe pt
n barrier.wait() -- the last point before overlap

Thread 1| | Thread 2 Thread 3| | Thread 4
arrived X=at..
wait
a =f(b, c, d);

Split phase has many uses

35

Summary on Pthreads

o Pthreads is gives power and flexibility

o Itis possible to build gadgets for general
concurrent operations
n Nearly everything is possible
n Often the complexity can be deceptive

n ldeas are quite traditional, and newer concepts
are available
o Transactions
o Shared memory parallel languages like CiLC,SAC
o Not easy to apply performance (CTA) ideas

There is more in the spec

36

18

Message Passing

0 Message passing is the principle alternative to
shared memory parallel programming
n Based on Single Program, Multiple Data (SPMD) Model

with send()

and recv() primitives

Message passing is universal, but low-level

Parallel Virtual Machine (PVM), Message Passing
Interface (MPI) are main libraries, but there've been many

n More even than threading, message passing is locally
focused -- what does each processor do?

n Isolation of separate address spaces can be a
programming asset -- no races--and a pain!

Clear distinction between local, non-local

37

A Typical Process Structure

o SPMD idea => 1 pgm to run on every node
int main (argc, argv)
int argc;
char **argv;

required 1st call

{

MPI1_Comm_World
IS a communicator
a set of logically
related comm’s

required last call 7

— MPI _Finalize()

(nt nylD, size; get count of peers
MPI\St at us st at us;
MPl I nit(&argc, &argv); l

MPI _Conmm si ze(MPI _COW WORLD, &si ze);
MPI—Conmm rank(MPI _COVM WORLD, &nylD);
I* conpute stuff in parallel */ {

get my index I

return O;

}

38

19

General Process Structure

0 Most computations have two kinds of procs
n Worker -- performing a share of work

n Leader -- performing 1-time work needed by all and,
perhaps, its share of task

n —Common structure:

if (rootproc == nyld) {
[* do stuff for all */
} else {
/I* work on local part */

}

39

Sending A Message

o The general form of an MPI send() is:

int MP1_Send (/I Blocking Send routine
void * buffer, // Address of data to send
int count, // No. data elements to send
MPI_Datatype type, // Type of data elements
int dest, // ID of destination process
int tag, // Tag for this message

MPI_Comm* comm // An MPI communicator

);

MPI_Send(&aloffset][0], count, MPI_DOUBLE,
dest, mtype, MPI_COMM_WORLD);

40

20

Receiving A Message

0 The general form of an MPI recv() is:

int MP1_Recv (// Blocking Receive routine
void * buffer, // Address receiving data
int count, // No. elements to receive
MPI_Datatype type, // Type of each element
int source, // 1D of sending process
int tag, // Tag for this message

MPI_Comm comm, // MPI communicator
MPI_Status * status // Status of this receive

MPI_Recv(&a, count, MPI_DOUBLE, source,
mtype, MPI_COMM_WORLD, &status);

41

Marshalling

o MPI assumes data comes from consecutive
locations and goes to consecutive locations

o When not true (columns in rmo-allocation)

n data must be marshalled, copied into buffer, for
send

n data must be demarshalled, copied back, for
receive

42

21

MM in MPI -- 1

MPI_Status status;
main(int argc, char **argv) {
int numtasks,

taskid,

numworkers,

source,

dest,

nbytes,

mtype,

intsize,

dbsize,

rows,

averow, extra, offset,

i, K,

count;

A “master--slave” solution

/* number of tasks in partition */
/* a task identifier */
/* number of worker tasks */
/* task id of message source */
/* task id of message destination */
/* number of bytes in message */
[* message type */
/* size of an integer in bytes */
/* size of a double float in bytes */
/* rows of matrix A sent to each worker */
/* used to determine row s sent to each worker */
/* misc */

43

MM in MPI -- 2
T) (T R) S

b[NCA][NCB], [* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

intsize = sizeof(int);
dbsize = sizeof(double);
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

numworkers = numtasks-1;
/****** master task *******/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)
for (j=0; [<NCA; j++)
afilil= i+;
for (i=0; i<NCA; i++)
for (j=0; [<NCB; j++)
bfi][i]=i*;

44

22

MM in MPI -- 3

/* send matrix data to the worker tasks */

averow = NRA/numworkers;

extra = NRA%numworkers;

offset = 0;

mtype = FROM_MASTER,;

for (dest=1; dest<=numworkers; dest++) {
rows = (dest <= extra) ? averow+1 : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM _WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_W ORLD);
count = rows*NCA,

MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mt —ype,
MPI_COMM_WORLD);

count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_CO MM_WORLD);

offset = offset + rows;
1

45

MM in MPI -- 4

/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {
source =i,
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_CO MM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM _WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, — mtype,
MPI_COMM_WORLD,&status);
}
/ worker task /
if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_CO MM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM _WORLD, &status);
count = rows*NCA;

46

23

MM in MPI -- 5

MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_ COMM_WORLD,
&status); count = NCA*NCB;

MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPl_ COMM_WORLD,
&status);

for (k=0; K<NCB: k++)
for (i=0; i<rows; i++) {
c[illk] = 0.0;
for (j=0; j<NCA; j++)
cfillk] = cfillk] + afilf] * bllik: < Actual Multiply
}
mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_CO MM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM _WORLD);

MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype,
MPI_COMM_WORLD);

} /* end of worker */

} 91 “Net” Lines

47

The Path of a Message

0 A blocking send visits 4 address spaces

Sending Proc Kernel Kernel Receiving Proc

——

stalled| |

o Besides being tim
processors together quite tightly

48

24

Alternative Send/Recvs

o0 Variants of the operations have other
properties:

n MPI_Rsend() -- assumes sending, receiving
processes are synchronized, so ho handshaking
needed; it's risky

n MPI_Bsend() -- use a user-space buffer rather
than kernel space buffer; resume when buffer
loaded

n MPI_Isend() -- non-blocking send; does not wait
for operation to complete; use MPI_Wait()

49

Overlapping Comm and Comp

o Using MPI_Isend()/MPI_lIrecv() to overlap
communication and computation is smart

o General protocol:
n Receive “edge” values from neighbors

Send “edge” values to neighbors

Compute “interior” elements

Wait on arrival of edge elements

Complete “edge” computations

10120113 |21|7 |29/23|20(4 |25|1 |31

|| EO| | O || B

Shadow buffers assist implementation ©

25

MPI Has Reduce and Scan

0 Reduce and scan apply are ponderous

int MP1_Reduce (/I Reduce routine

void *
void *

int

sendBuffer, // Address of local val
recvBuffer, // Place to receive into
count, /I No. of elements

MPI_Datatype datatype, // Type of each element
MPI_OP op, /I MPI operator

int

root, /I Process to get result

MPI_Comm comm /I MP1 communicator

);

MPI_Reduce (&myCount,&globalCount, 1, MPI_INT, MPI_SUM,

RootProcess, MPI_COMM_WORLD);

B

Message Passing Critique

0 Message passing is a very simple model
o Extremely low level; heavy weight

n

00 [|| B3 || DD

n

Expense comes from A and lots of local code
Communication code is often more than half
Tough to make adaptable and flexible

Tough to get right and know it

Tough to make perform in most cases

o Programming model of choice for scalability

—— I Not as portable as it's claimedtobe ——————

52

26

One-sided Communication

o0 Intermediate between and shared and
message passing is one-sided comm

o Process model w/ global address space
n get() loads a value from a non-local address
n put() stores a value into a non-local address
n No memory consistency: caveat emptor
n Popularized by Cray machines: called shmem

o Libraries are available to implementing

Co-Array Fortran based on concept

53

Working On Project

o Parallel computers of any size are generally
tough to use ... put it off as long as possible

0 Most programming systems allow for
development on a workstation

o My recommended steps (not including your
personal development techniques):
n Sketch solution w/diagram + Peril-L
n Work out logic on sequential platform
n Consider moving to || platform in parts

54

27

Homework

0 Reading: Chapter 8
n Read, but do not study ...
n Goal is to conceptualize ZPL's approach

o Project

n Most projects approved; after reading ZPL,
proceed

n Recommendation: Sketch in Peril-L first
n Bring paper statement of progress to class

Bb.

28

