
1

1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

1 May 2007

2

Announcements

o Homework for 2 weeks returned next time
o New iteration of Chapter 6 handed out

o Homework assigned at end of class
o Project descriptions: Questions?

n Focus on parallelism of the problem
n Problem w/little interproc comm won’t work well
n Huge data file I/O could dominate || comp time

n Key for me is the transition between P1 and P2

There is still time for revisions

2

3

Discuss SUMMA Solution

o Based on email about the homework …
n Matrices A, B and C are assigned to the

processors in blocks of size t x t (or less)
n Size is n x n, p=P1/2, the allocation is n/p x n/p
n How much data is needed to compute block?
n How much data is needed to do useful work?

A BC

4

SUMMA Organization

o Say the local block is t x t, where t=n/p
o Threads have two indices, u,v

n reads all columns of A for indices u*t:(u+1)*t-1,j
n reads all rows of B for indices i,v*t:(v+1)*t-1
n data transfer can be improved using multicast

A BC

3

5

SUMMA Preamble Code

double A_G[n][n], B_G[n][n], C_G[n][n];

int p=sqrt(P), t=n/p; Define constants

forall u,v in (0..p-1,0..p-1){ Thread in 2D

double C[t][t]=is_local(C_G) Ref local tile

int i,j,k; double a[t], b[t];

for (i=0;i<t;i++) {

for (j=0;j<t;j++) {

C[i][j] = 0.0; Initialize C

}

}

6

Inner Loop of SUMMA

for (k=0;k<n;k++) { For cols of A & rows of B

a[0:t-1] = A_G[u*t:u*t+t-1,k]; Get col k of A

b[0:t-1] = B_G[k,v*t:v*t+t-1]; Get row k of B

for (i=0;i<t;i++) {

for (j=0;j<t;j++) {

c[i][j] += a[i]*b[j]; Figure kth terms

}

}

}

}

4

7

Summary of SUMMA

o Facts:
n vdG & W advocate blocking for msg passing

n Works for A being m x n and B being n x p
n Works fine when local region is not square
n Load is balanced esp. of Ceiling/Floor is used

Fastest machine independent MM algorithm!

o Key algorithm for 524: Reconceptualizes MM
to handle high λ, balance work, use BW well,
exploit efficiencies like multicast, …

8

Bitonic Sort

o One more example of reconceptualizing
o Bitonic sort is a derivative of Ken Batcher’s

bitonic sorting network

o Key ideas
n Operations are generally equal amount of work
n Data motion is carefully controlled

5

9

Definitions and Concepts

o A sequence of ordered objects is bitonic if it
contains two subsequences, one mono-
tonically non-decreasing and the other
monotonically non-increasing, i.e. V or Λ

o Say “increasing” and “decreasing” for short

o Facts:
n A sorted sequence is bitonic
n Can rotate a bitonic sequence to get another

10

An Amazing Property

o The key property of bitonic sequences:

o What’s the process? Bitonic merge:
for (i=0;i<n;i++) {

if (A[i]>A[i+n]) exch(i,i+n);

}

Let A be a bitonic sequence of length 2n
We can divide A into two halves [0,n) & [n,2n) s.t.
• Each half is bitonic
• Every element in [0,n) is <= to each element in [n,2n)

Let A be a bitonic sequence of length 2n
We can divide A into two halves [0,n) & [n,2n) s.t.
• Each half is bitonic
• Every element in [0,n) is <= to each element in [n,2n)

We sort only sequences that are powers of 2

6

11

Example

o Watch a bitonic merge
n Initial:

n Divide into two halves:
n Merging: time

o Bi-merge gets large elements to high end
or vice versa

2 4 6 8 9 5 3 1

2 4 6 8 9 5 3 1

2 4 6 8

9 5 3 1 9 5 3 1 9 5 3 1 9 5 6 1 9 5 6 8

2 4 3 12 4 3 82 4 6 82 4 6 8

12

Bitonic Sort

o Abstractly, the bitonic sorting algorithm is
n Divide the sequence into two halves

n Sort lower half in ascending order; upper half
into descending order

n Perform bitonic merge on the two halves
n Recursively bitonically-merge each half until

elements are sorted

n Watch an animation
Thanks to Thomas W. Christopher, Boulder CO

7

13

Bitonic As A Parallel Algorithm

o Need to “reverse” the recursive logic, going
from bottom up

o Postulate 8 processors with indices:
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111
n Processor index guides the sort

o Begin by sorting local vals up/down w/Qsort
o Postulate two merge routines:

n mergeUp moves smaller items to left half

n mergeDown moves smaller items to right half

bit 0

14

Bitonic Sort, Core Logic

o Processor’s binary no. guides sort/merge

o Sort pairs w/ bit 0 different, in bit 1 direction

n Bitonic merge, then internally sort

descending0110 ⇔ 0111

ascending0100 ⇔ 0101

descending0010 ⇔ 0011

ascending0000 ⇔ 0001

p0 p4p3p2p1 p7p6p5

8

15

Consider Merging Sorted Sequences

o Merge an ascending and a descending
sequence: vertical is magnitude

16

More Globally

o Pairs merge, sort

p0 p4p3p2p1 p7p6p5

p0 p4p3p2p1 p7p6p5

p0 p4p3p2p1 p7p6p5

descending0110 ⇔ 0111

ascending0100 ⇔ 0101

descending0010 ⇔ 0011

ascending0000 ⇔ 0001

9

17

Repeat At Larger Grain

o Next level exchange

o Recursion

descending0110 ⇔ 0111

descending0100 ⇔ 0101

ascending0010 ⇔ 0011

ascending0000 ⇔ 0001

descending0101 ⇔ 0111

descending0100 ⇔ 0110

ascending0001 ⇔ 0011

ascending0000 ⇔ 0010

p0 p4p3p2p1 p7p6p5

18

Final Round

o Top level exchanges

o Two second level mergeUps
o Four third level mergeUps

n Watch an animation

ascending0011 ⇔ 0111

ascending0010 ⇔ 0110

ascending0001 ⇔ 0101

ascending0000 ⇔ 0100

p0 p4p3p2p1 p7p6p5

10

19

Bitonic Sort

o Many strengths
n Seriously parallel, all processors work all the time

n Focuses on concurrent local operations
n Balances work
n Generally synchronous, but not in lock step
n Communication predictable

o Weaknesses
n Moves data quite a bit

20

Break

11

21

Generalized Reduce and Scan

o The importance of reduce/scan has been
repeated so often, it is by now our mantra

o In nearly all languages the only available
operators are +, *, min, max, &&, ||

o The concepts apply much more broadly
o Goal: Understand how to make user-

defined variants of reduce/scan specialized
to specific situations

Seemingly sequential looping code can be UD-scan

22

Examples

o Reduce
n Second smallest, or generally, kth smallest
n Histogram, counts items in k buckets
n Length of longest run of value 1s
n Index of first occurrence of x

o Scan
n Team standings
n Find the longest sequence of 1s
n Last occurrence

Associativity, but not commutativity, is key

12

23

Structure of Computation

o Begin by applying Schwartz idea to problem
n Local computation

n Global log P tree

val..val val..val val..val val..val val..val val..val val..val val..val

More computation at nodes is OK

24

Introduce Four Functions

o Make four non-communication operations
n init() initialize the reduce/scan

n accum() perform local computation
n combine() perform tree combining
n x_gen() produce the final result for either op

o x = reduce
o x = scan

o Incorporate into Schwartz-type logic

Think of: reduce(fi, fa, fc, fg)

13

25

Assignment of functions

o Call functions at right place

val..val val..val val..val val..val val..val val..val

init() accum()

combine()

reduce_gen()

26

Example: +<<A Definitions

o Sum reduce uses a temporary value known as
tally to hold items during processing

o Four reduce functions:
n tally init() {tally tal=0; return tal;}

n tally accum(int op_val, tally tal)

{tal += op_val; return tal; }

n tally combine(tally left, right)

{return left + right; }

n int reduce_gen(tally ans) {return ans;}

14

27

Details for +<<A

val..val val..val val..val val..val val..val

init() accum()

combine()

reduce_gen()tally init() {tally tal=0; return tal;}

tally accum(int op_val, tally tal)

{tal += op_val; return tal; }

tally combine(tally left, right)

{return left + right; }

int reduce_gen(tally ans)

{return ans;}

28

More Involved Case

o Consider Second Smallest -- useful, perhaps for
finding smallest nonzero among non-negative
values

o tally is a struct of the smallest and next
smallest found so far {float sm, nsm}

o Four functions:
tally init() {

tally pair.sm = maxFloat;

pair.nsm = maxFloat;

return pair; }

15

29

Second Smallest (Continued)

o Accumulate
tally accum(float op_val, tally tal) {

if (op_val < tal.sm) {

tal.nsm = tal.sm;

tal.sm = op_val;

} else {

if (op_val > tal.sm && op_val < tal.nsm)

tal.nsm = op_val;

}

return tal;

}

30

Second Smallest (Continued)
tally combine(tally left, right){

accum(left.sm, right);
accum(left.nsm, right);

return right;}

reduce_gen(tally ans) { return ans.nsm;}

o Notice that the signatures are all different
o Conceptually easy to write equivalent

code, but reduction abstraction clarifies

Generalize to 10th smallest

16

31

User-Defined Scan

o Consider operations after the reduce is over
o Consider where functions used: i, a, c, sg

val..val val..val val..val val..val val..val val..val val..val val..val

The basic scan logic applies functions

32

Index of Last Occurrence of x

o Assume 0-origin indexing
o tally is simply an integer
tally init() {

tally idx = -1;

return idx;

}

tally accum(int op_val, tally tal, int x, idx) {

if (op_val == x)

tal = idx;

return tal;

}

17

33

Last Index (Continued)
tally combine(tally left, right) {

if (left > right)

return left;

else

return right;

}

int scan_gen(int op_val, tally ans, int x, idx) {
if (op_val == x){

ans = idx;

return idx;

} else

return ans;

}

34

Example x == 1

1

-1-1

11-1-1 22 2 -1 2-1 5 5 5-1 5 -1

2

11

5

22

-1

55

2

1-1

5

52

5

2-1

-1

0 1 1 0 0 1 0 0
-1 1 2 2 2 5 5 5

18

35

UD-Scan Summary

o User-defined scan extends UD-reduce
o The operations are essentially the same

n Applied in additional places
n Applied with additional arguments

o UD-scan is efficient and powerful … if the
language you’re writing in doesn’t have it,
define your own

To think of scanning takes practice

36

More Generally: UD-Vector Ops

o Scan maintains “context” allowing ordered
operations, but that is often not needed

o Vector operations focus on performing
some operation across the elements that
has global meaning -- longest run of 1s
n Like all ||ism, the key is formulating local

computation so it can be combined to achieve
a global result

n The “scan driver” probably suffices
Blelloch: vectors a sufficient programming model

19

37

Tree Algorithms

o Trees are an important component of
computing
n The “Schwartz tree” has been logical

n Trees as data structures are complicated
because they are typically more dynamic

n Pointers are generally not available
n Work well with work queue approach

n As usual, we try to exploit locality and minimize
communication

38

Breadth-first Trees

o Common in games, searching, etc

o Split: Pass 1/2 to other processor, continue
n Stop when processors exhausted
n Responsible for tree that remains
n Ideal when work is localized

20

39

Depth-first

o Common in graph algorithms

o Get descendants, take one and assign
others to the task queue

Key issue is managing the algorithm’s progress

40

Coordination Among Nodes

o Tree algorithms often need to know how
others are progressing
n Interrupt works if it is just a search: Eureka!!

n Record α-β cut-offs in global variable
n Other pruning data, e.g. best so far, also global
n Classic error is to consult global too frequently

o Rethink: Is tree data structure essential?

Write essay: Dijkstra’s algorithm is not a good… :)

21

41

Complications

o If coordination becomes too involved,
consider alternate strategies:
Graph traverse => local traverse of partitioned graph

o Local computation uses sequential tree
algorithms directly … stitch together

42

Full Enumeration

o Trees are a useful data structure for
recording spatial relationships: K-D trees

o Generally, decomposition is unnecessary
“all the way down” -- but optimization
implies two different protocols

22

43

Cap Reduces Communication

o The nodes near root can be stored
redundantly

n Processors consult local copy -- alter others to
changes

44

Summary of Parallel Algorithms

o Reconceptualizing is often most effective
o Focus has not be on ||ism, but on other stuff

n Exploiting locality
n Balancing work
n Reducing inter-thread dependences

o We produced general purpose solution
mechanisms: UD-reduce and UD-scan

o We like trees, but recognize that direct
application is not likely

23

45

Discussion

o Next week we start actual programming …
what computations have we not considered?

46

Homework

o Reading: Chapters 6 and 7
n Read, but do not study …

n Goal is to conceptualize the two styles

o Write a user-defined scan (4 functions) to
perform a new operation of your choice
n Turn in:

o Verbal description of the computation
o Code for 4 functions
o Small, by hand, example

