
1

1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

24 April 2007

2

Announcements

o New homework assigned at end of class
o Discuss this week’s assignment in 2 parts

n Red/Blue, now
n Essay, later this class

o Project description circulated at break

Project thinking begins this week

2

3

Red/Blue Problem

o Write Peril-L code to implement Red/Blue
o Goal is to get a scalable program
o Inputs:

n n x n board, initialized and allocated
n t, a small region used to sample
n Termination condition: some t x t on left > 90%

o Rules of the game
n Red moves 1 right on 1st half step if cell free
n Blue moves 1 down on 2nd half step if cell free

4

View Possible Solutions Globally

o Shared allows threads to process rows/cols

o Allocate t x t threads

o Scalable blocks

All references to
global memory
All references to
global memory

Must be
multiplexed
Must be
multiplexed

Maximize local work;
multiplexing possible
Maximize local work;
multiplexing possible

3

5

Red-Blue … One Solution
int RB_G[n][n]; t|n, colors 0=w,1=r,2=b

/* Initialize RB with data */ Get external data

int size=sqrt(P); my=n/size; Procs along row/col

int bin_GO[size][size][my]; MM for passing cols

int bou_GO[size][size][my]; MM for passing rows

int thresh=.9; 90% threshold

forall thr,thc in (0:size-1,0..size-1) { 2D threads

int Lrb[my][my]=is_local(RB_G); Work on local assigned

int lft[my],rgt[my],top[my],bot[my];Local neighbr storage

int xl = RB_G_myLo_1; yl = RB_G_myHi_1; Global index

int xh = RB_G_myLo_2; yh = RB_G_myHi_2; Global index

int done=0,countR, countB; Termination variables

6

Cartoon of Red Move

o Get adjacent context from neighbors

o Compute local state

Similarly for blue moves

4

7

Cartoon of State Transfer

o Save values in materialized global memory
Materialized MemoryMaterialized Memory

8

Solution (Continued)
while (done==0) { Go till threshold

bou_GO[thr][thc][0:my-1]=Lrb[x1][yl:yh]; pass left col

bin_GO[trh][thc][0:my-1]=Lrb[xh][yl:yh]; pass right col

rgt[0:my-1]=bou_GO[thr][(thc+1)%my][0:my-1];last col+1

lft[0:my-1]=bin_GO[thr][(thc-1)%my][0:my-1];first col-1

moveRed(Lrb[][],rgt[],lft[]); barrier;

bou_GO[thr][thc][0:my-1]=Lrb[x1:xh][yl]; pass top row

bin_GO[trh][thc][0:my-1]=Lrb[x1:xh][yh]; pass bot row

top[0:my-1]=bin_GO[(thr-1)%my][thc][0:my-1]; top row-1

bot[0:my-1]=bou_GO[(thr+1)%my][thc][0:my-1]; last row+1

moveBlue(Lrb[][],bot[],top[]);

5

9

Solution Continued
if (thc == 0) Am I on left edge?

{for (k=0; k<my/t; k++) { Do all my txt blocks

countR = 0; countB = 0; Count up colors

for (i=0; i<t; i++) {

for (j=0; j<t; j++) {

if (Lrb[i][j]== 1)

countR++;

if (Lrb[i][j]== 2)

countB++;

}

}

10

Solution Continued
/* After a t x t block ... */

if (countR/(countR+countB)>=thresh ||

countB/(countR+countB)>=thresh)

done = 1; 1 color is over thresh

} End of t x t tiles

} End of if for term test

done=+/done; Find out how others did;synchs

} End of while

} End of thread

6

11

Recap Solution

o Scaled by available processors; t x t is min
o Materialized memory implements a bulk

exchange, benefiting from fast transfer

o Constructing context allows local compute
o Termination performed by reduction
o Why was the barrier needed?
o Is less data motion possible?

A good exercise: Analyze R/B complexity for different P

12

Schwartz’s Algorithm

o Jack Schwartz (NYU) asked: What is optimal
number of processors to combine n values?
n Reasonable Answer: binary tree w/ values at

leaves has O(log n) complexity
n To this solution add log n more values to leaves
n Same complexity (O(log n)), but nlog n values!

o Generally P is not a variable, and P << n
o Use Schwartz as heuristic: Prefer to work at

leaves rather than enlarge (make a deeper)
tree, implying tree will have log P height

7

13

Expressing A Tree

o Consider writing tree-based sum in Peril-L
n Processors will have several roles: leaf, intr node

n Solve synchronization with materialized memory

o Stages:
n Compute result at leaves
n Threads have IDs in 0 - 2p-1, pass if 0 != ID%2

n Even threads add, pass value if 0 != ID%4
n Etc.

14

Peril-L Code for Collective Ops

o Thread logic is easy … initialize stride = 1
nodeval_GO[tID] = tally; Send local val to tree node

while (stride < P) { Begin logic for tree

if (tID %(2*stride) == 0) {

nodeval_GO[tID]= nodeval_GO[tID] +

nodeval_GO[tID + stride]);

stride = 2*stride;

}

else

break;

}
54 6 710 2 3

0 2 4 6

4

0

0

Reverse to broadcast

8

15

Materialized Memory Self-Synchs

54 6 710 2 3

0 2 4 6

4

0

0

54 6 710 2 3

0 2 4 6

4

0

0

54 6 710 2 3

0 2 4 6

4

0

0

54 6 710 2 3

0 2 4 6

4

0

0

16

Asynchronous Trees

o MM gives asynchronous tree, preferred
over a “leveled” tree using barriers

o Notice that once a thread’s role is complete
it can continue computing

o For collective op + broadcast, a tree
implemented with materialized memory
allows half of the threads to continue

o The Principle: Relax synchronization rules
wherever possible!

9

17

Block Allocations

o The Red/Blue computation illustrated a 2D-
block data parallel allocation of the problem

o Generally block allocations are better for
data transmission: surface to volume
advantage … since only edges are x-mitted

VS

Now scale problem 4x

18

Different Regimens

o Though block is generally a good allocation
it’s not absolute:

P=1, all
comm
wasted

P=1, all
comm
wasted

P=2, row-wise
saves column
comm

P=2, row-wise
saves column
comm

vs
P=4, rows
and blocks
are a wash

P=4, rows
and blocks
are a wash

Where is
the point of
dim. return?

Where is
the point of
dim. return?

10

19

Shadow Buffers/Fluff

o To simplify local computation in cases
where nearest neighbors values x-mitted,
allocate in-place memory to store values:

o Array can be referenced as if it’s all local
Edge storage (rgt,…) illustrated in R/B

20

Aspect Ratio

o Generally P and n do not allow for a perfectly
balanced allocation …

o Several ways to assign arrays to processors

Quotient +
remainder
Quotient +
remainder

Ceiling +
floor
Ceiling +
floor

Generally a
small effect
Generally a
small effect

11

21

Assigning Processor 0 Work

o P0 is often assigned “other duties”, such as
n Orchestrate I/O

n Root node for combining trees
n Work Queue Manager …

o Assigning P0 the smallest quantum of work
helps it avoid becoming a bottleneck
n For either quotient + remainder or ceiling/floor

P0 should be the last processor

This is a late-stage tuning matter

22

Solving Array Problems on CMPs

o How important are these topics for CMPs?

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD

Speed comes
from staying
in L1 cache

Speed comes
from staying
in L1 cache

12

23

Locality Always Matters

o Array computations on CMPs
n Dense Allocation vs Fluff
n Issue is cache invalidation
n Keeping MM managed

intermediate buffers keeps
array and fluff local (L1)

n Sharing causes elements
at edge to repeatedly
invalidate killing locality

False sharing an issue, too

24

Reduce For Global Sum

o Reduce abstraction vs sum_G += 1
n Reduce raises level of abstration

n Reduce provides private var implementation

o Tree implementation of reduce
n Irrelevant for tiny numbers of processors

Bottom Line: CTA machine model not
strictly required for CMPs. Using it yields
scalable programs that benefit CMPs in
most ways without causing any harm.

Bottom Line: CTA machine model not
strictly required for CMPs. Using it yields
scalable programs that benefit CMPs in
most ways without causing any harm.

13

25

Load Balancing

o Certain computations are inherently
imbalanced … LU Decomposition is one

gray is balanced work, white & black are finished

o Standard block decomposition quickly
becomes very biased

n Cyclic and block cyclic allocation are one fix

Details in the appendix

26

Work Queue, A Balancing Act(ivity)

o When work is generated dynamically, a work
queue leads to reasonable balance

o Solution components:
n Queue -- often a cyclically managed global array
n Work or task descriptors -- succinct statements

of the task to perform, often only index or bound

o Process:
n As work is created, append to queue

n On task completion, remove work from Q-head

14

27

Work Queue Considerations

o Synchronization
n Threads modifying the queue do so exclusively

n Independent modification of head (remove) &
tail (append) is dangerous, tough to do right

o Work quantum (grain) must exceed the
overhead of queue manipulation and comm
n Large quantum may lead to poor “end game”

headtail

28

Considerations (Continued)

o Ordering, though strict at queue remove,
may not be strict when viewed at completion

o Work assignment interacts with locality
n Want strategies where descriptor embodies all

data needed for task: chess move search
n Avoid global memory reference by caching data:

floor planning, place and route, etc.
n When global reference inevitable, grain size

should must cover comm costs too

Work quantum must be variable, not scalable

15

29

Break

30

Essay On ‘Quicksort’

o Discuss
“Quicksort is an example of a sequential
algorithm that is a good candidate to be
incrementally transformed into a parallel
algorithm”

o Where does the belief come from?
o What aspects are compatible/incompatible

with the CTA?

16

31

Reconceptualizing a Computation

o Good parallel solutions result from
rethinking a computation …
n Sometimes that amounts to ordering scalar

operations
n Sometimes it requires starting from scratch

o The SUMMA matrix multiplication algorithm
is the poster computation for rethinking!

This computation is part of homework assignment

32

Return To A Lecture 1 Computation

o Matrix Multiplication on Processor Grid

n Matrices A and B producing
n x n result C where
Crs ����≤k≤n Ark*Bks

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

Temp

P0

17

33

Applying Scalable Techniques

o Assume each processor stores block of C,
A, B; assume “can’t” store all of any matrix

o To compute crs a processor needs all of
row r of A and column s of B.

o Consider strategies for minimizing data
movement, because that is
the greatest cost -- what are
they?

Temp

P0

+*
1

1
= +*

2

2
*

n

n
… +

34

Grab All Rows/Columns At Once

o If all rows/columns are present, it’s local
A BC

•Each element requires O(n) operations
•Modern pipelined processors benefit
from large blocks of work

•But memory space and BW are issues

•Each element requires O(n) operations
•Modern pipelined processors benefit
from large blocks of work

•But memory space and BW are issues

18

35

for (r=0; r < t; r++){
for (s=0; s < t; s++){

c[r][s] = 0.0;
for (k=0; k < n; k++){

c[r][s] += a[r][k]*b[k][s];
}

}
}

Process t x t Blocks

o Referring to local storage

A BC
Sweeter caching

Only move a t x t block at a time

36

Change Of View Point

o Don’t think of row-times-column
A BC

b11 b12

a11

a21

a11b11

a21b11

a11b12

a21b12

Switch orientation --
by using a column of
A and a row of B
compute all 1st terms
of the dot products

Switch orientation --
by using a column of
A and a row of B
compute all 1st terms
of the dot products

+*
1

1
= +*

2

2
*

n

n
… +

19

37

SUMMA

o Scalable Universal Matrix Multiplication Alg
n Invented by van de Geijn & Watts of UT Austin

n Claimed best machine independent MM

o Whereas MM is usually A row x B column,
SUMMA is A column x B row because
computation switches from sense
n Normal: Compute all terms of dot product
n SUMMA: Computer first term of all dot products

Strange. But fast!

38

SUMMA Assumptions

o Threads have two indices, handle t x t block
o Let p = P1/2, then thread u,v

n reads all columns of A for indices u*t:(u+1)*t-1,j
n reads all rows of B for indices i,v*t:(v+1)*t-1
n The arrays will be in global memory and

referenced as needed
A BC

20

39

Solve SUMMA In Peril-L

o Arrays in Global Memory
o Consider how processors reference arrays

n Where do operands come from?
n Where are results saved?

A BC

www.cs.utexas.edu/users/rvdg/abstracts/SUMMA.html

40

Homework

o Read the remainder of Chapter 5
o Write a version of SUMMA in Peril-L

o Decide on Project Topic -- write a
paragraph description of the computation
that you expect to solve for the term project

o We will use a cluster making MPI and ZPL
the most amenable languages we’ll discuss

