CSEbL24 Parallel Computation

Lawrence Snyder
WWWw.cs.washington.edu/CSEp524

24 April 2007

Announcements

o New homework assigned at end of class

o Discuss this week’s assignment in 2 parts
n Red/Blue, now
n Essay, later this class

0 Project description circulated at break

Project thinking begins this week

Red/Blue Problem

o Write Peril-L code to implement Red/Blue
Goal is to get a scalable program
o Inputs:

n n xn board, initialized and allocated

n t, a small region used to sample

n Termination condition: some t x t on left > 90%
0 Rules of the game

n Red moves 1 right on 1st half step if cell free

n Blue moves 1 down on 2nd half step if cell free

o

3

View Possible Solutions Globally

o Shared allows threads to process rows/cols

|| | | [
EH:EEHE [H:ﬁ #Ei All references to
[

H H global memory

L M | [

o Allocate t x t threads ;H:EEE Must be

multiplexed

M |

multiplexing possible

o Scalable blocks ?Ei;ﬁi Maximize local work;

4

Red-Blue ... One Solution

int RB dn][n]; t|n, colors O=w,1=r,2=b
/* Initialize RB with data */ Get external data

int size=sqrt(P); ny=n/size; Procs along row/col
int bin GJsize][size]l[ny]; MM for passing cols
int bou GJ size][size]l[ny]; MM for passing rows
int thresh=.09; 90% threshold

forall thr,thc in (0:size-1,0..size-1) { 2Dthreads
int Lrb[nmy][ny]=is local (RB G ; Workonlocal assigned
int Ift[my],rgt[mnmy], top[nmy], bot[my]; Local neighbr storage
int xI =RB GnylLo 1; vyl RB G nyH 1; Global index
int xh = RB GnylLo 2; yh RB G nyH 2; Global index
i nt done=0, count R, count B; Termination variables

Cartoon of Red Move

o Get adjacent context from neighbors

A

o Compute local state

Similarly for blue moves

Cartoon of State Transfer

0 Save values in materialized global memory
Materialized Memory

Solution (Continued)

whil e (done==0) { Go till threshold
bou_ G thr][the][0:my-1]=Lrb[x1][yl:yh]; passleftcol
bin_GJ trh][the][0:ny-1]=Lrb[xh][yl:yh]; passrightcol
rgt[0: my-1]=bou_GJ thr][(thc+1)%y][O0: nmy-1]; lastcol+1
[ft[O0:my-1]=bin_GJthr][(thc-1)%ry][O0: nmy-1]; first col-1
noveRed(Lrb[][],rgt[],Ift[]); barrier;
bou GJthr][thc][0:my-1]=Lrb[x1:xh][yl]; passtoprow
bin GJtrh][thc][0: my-1]=Lrb[x1:xh][yh]; passbotrow
top[0: ny-1]=bin_GJ (thr-1)%y][thc][0: my-1]; toprow-1
bot [0: ny- 1] =bou_GJ (t hr +1) %y] [t hc] [0: my-1]; lastrow+1
noveBl ue(Lrb[][],bot[],top[]);

Solution Continued

if (thc == 0) Am | on left edge?
{for (k=0; k<ny/t; k++) { Do all my txt blocks
countR = 0; countB = 0; Count up colors

for (i=0; i<t; i++) {

for (j=0; j<t; j++) {

if (Lrb[i][j]==1)
count R++;

if (Lrb[i][j]==2)
count B++;

Solution Continued

[* After at x t block ... */
i f (countR/ (countR+tcount B)>=t hresh ||
count B/ (count R+count B) >=t hr esh)

done = 1, 1 color isover thresh
} Endof t x t tiles
} End of if for termtest
done=+/ done; Find out how others did; synchs
} End of while

} End of thread

10

Recap Solution

0 Scaled by available processors; t xt is min

Materialized memory implements a bulk
exchange, benefiting from fast transfer

Constructing context allows local compute
Termination performed by reduction

Why was the barrier needed?

Is less data motion possible?

o

O o o o

A good exercise: Analyze R/B complexity for different P

Schwartz’s Algorithm

o Jack Schwartz (NYU) asked: What is optimal
number of processors to combine n values?

n Reasonable Answer: binary tree w/ values at
leaves has O(log n) complexity

n To this solution add log n more values to leaves
n Same complexity (O(log n)), but nlog n values!
o Generally P is not a variable, and P << n
o Use Schwartz as heuristic: Prefer to work at

leaves rather than enlarge (make a deeper)
tree, implying tree will have log P height

12

Expressing A Tree

o Consider writing tree-based sum in Peril-L

n Processors will have several roles: leaf, intr node

n Solve synchronization with materialized memory
o Stages:

n Compute result at leaves

n Threads have IDs in O - 2P-1, pass if 0 = ID%?2

n Even threads add, pass value if 0 != 1D%4

n Etc.

13

Peril-L Code for Collective Ops

o0 Thread logic is easy ... initialize stride = 1
nodeval GJtID = tally; Send local val to tree node
while (stride < P) { Begin logic for tree

if (t1D Y% 2*stride) == 0) {
nodeval _GJ t1 D] = nodeval _GJtID] +
nodeval GO tID + stride]);
stride = 2*stride;
}
el se
break;

—— Reverse to broadcast

Materialized Memory Self-Synchs

Asynchronous Trees

o MM gives asynchronous tree, preferred
over a “leveled” tree using barriers

o Notice that once a thread’s role is complete
it can continue computing

o For collective op + broadcast, a tree
implemented with materialized memory
allows half of the threads to continue

o The Principle: Relax synchronization rules
wherever possible!

16

Block Allocations

o The Red/Blue computation illustrated a 2D-
block data parallel allocation of the problem

o Generally block allocations are better for
data transmission: surface to volume
advantage ... since only edges are x-mitted

&

T
Eg gg VS
X

Now scale problem 4x

17

Different Regimens

o Though block is generally a good allocation
it's not absolute:

P=1, all P=2, row-wise

comm saves column

wasted comm
P=4, rows Where is

Vs and blocks the point of
are awash dim. return?

18

Shadow Buffers/Fluff

o To simplify local computation in cases
where nearest neighbors values x-mitted,
allocate in-place memory to store values:

o

[ENEEEEEN]

o Array can be referenced as if it's all local
— Edge storage (rgt,...) illustrated in R/B

.
[EEEEEEEN]

19

Aspect Ratio

o Generally P and n do not allow for a perfectly
balanced allocation ...

o Several ways to assign arrays to processors

E @@@ G I
- mmee TR

Quotient + Ceiling + I
~— remainder floor |

20

10

Assigning Processor 0 Work

o P, is often assigned “other duties”, such as
n Orchestrate /O
n Root node for combining trees
n Work Queue Manager ...

0 Assigning P, the smallest quantum of work
helps it avoid becoming a bottleneck

n For either quotient + remainder or ceiling/floor
P, should be the last processor

This is a late-stage tuning matter

21

Solving Array Problems on CMPs

0 How important are these topics for CMPs?

Front Side Bus m@

Cross-Bar Interconnect
Memory Bus Controller

System Request Interface

Speed comes
L2 Cache L2 cache | L2 cache || from staying
Intel in L1 cache

L1-l {L1-D | L1-l |L1-D
L1-I'|L1-D| L1-I |L1-D I ‘

Processor | Processor

Processor | Processor PO Pl

PO P1

22

11

Locality Always Matters

o Array computations on CMPs

n Dense Allocation vs Fluff

n Issue is cache invalidation

n Keeping MM managed
intermediate buffers keeps — e
array and fluff local (L1) H st)

n Sharing causes elements
at edge to repeatedly
invalidate killing locality H

E—
| |

|

|

.
| —

———
| |

| |
T
| —

— 1 False sharing an issue, too =

Reduce For Global Sum

0 Reduce abstraction vs sum G += 1

n Reduce raises level of abstration

n Reduce provides private var implementation
o Tree implementation of reduce

n lrrelevant for tiny numbers of processors

Bottom Line: CTA machine model not
strictly required for CMPs. Using it yields
scalable programs that benefit CMPs in
most ways without causing any harm.

24

12

Load Balancing

o Certain computations are inherently
imbalanced ... LU Decomposition is one

R

gray is balanced work, white & black are finished
o Standard block decomposition quickly

becomes very biased = %

n Cyclic and block cyclic allocation are one fix

Details in the appendix

25

Work Queue, A Balancing Act(ivity)

o When work is generated dynamically, a work
gueue leads to reasonable balance
o Solution components:

n Queue -- often a cyclically managed global array

n Work or task descriptors -- succinct statements
of the task to perform, often only index or bound

0 Process:
n As work is created, append to queue
n On task completion, remove work from Q-head

26

13

Work Queue Considerations

0 Synchronization
n Threads modifying the queue do so exclusively

n Independent modification of head (remove) &
tail (append) is dangerous, tough to do right

taili ihead

o Work quantum (grain) must exceed the
overhead of queue manipulation and comm

n Large quantum may lead to poor “end game”

27

Considerations (Continued)

o Ordering, though strict at queue remove,
may not be strict when viewed at completion
o Work assignment interacts with locality

n Want strategies where descriptor embodies all
data needed for task: chess move search

n Avoid global memory reference by caching data:

floor planning, place and route, etc.

n When global reference inevitable, grain size
should must cover comm costs too

——1 Work quantum must be variable, not scalable

28

14

Break

29

Essay On ‘Quicksort’

o Discuss

“Quicksort is an example of a sequential
algorithm that is a good candidate to be
incrementally transformed into a parallel
algorithm”

o Where does the belief come from?

o What aspects are compatible/incompatible
with the CTA?

30

15

Reconceptualizing a Computation

0 Good parallel solutions result from
rethinking a computation ...

n Sometimes that amounts to ordering scalar
operations

n Sometimes it requires starting from scratch

0o The SUMMA matrix multiplication algorithm
is the poster computation for rethinking!

——1 This computation is part of homework assignment —

31

Return To A Lecture 1 Computation

o Matrix Multiplication on Processor Grid

P [TTPs ol Po [P
Py || |Ps = P, P P2 || [Ps
C A 5
n Matrices A and B producing [P,
n x n result C where
Crs = Z:lsksn Ark*Bks Tem

32

16

Applying Scalable Techniques

0 Assume each processor stores block of C,
A, B; assume “can’t” store all of any matrix

o To compute ¢, a processor needs all of
row r of A and column s of B.

o Consider strategies for minimizing data
movement, because that is iﬂ;
the greatest cost -- what are

H B [| Tem
they’) m= *1+ *2+ R o H
Dl DZ Dn

33

Grab All Rows/Columns At Once

o If all rows/columns are present, it’s local
C A B

*Each element requires O(n) operations
Modern pipelined processors benefit
from large blocks of work

*But memory space and BW are issues

34

17

Process t x t Blocks

o0 Referring to local storage
for (r=0; r <t; r++){
for (s=0; s < t; s++){
c[r][s] = 0.0;
for (k=0; k < n; k++){

cfrifs] += a[r][k]*b[K][s];

Sweeter caching

j== — A
e

B

Only move a t x t block at a time

35

Change Of View Point

o Don’t think of row-times-column

C A

B

by, by,
Ay b a,by, = ::13_*_ :2+ ¥ :
0) O, o

3,1014] 85105,

Switch orientation --
by using a column of

A and arow of B

compute all 1st terms
of the dot products

36

18

SUMMA

0 Scalable Universal Matrix Multiplication Alg
n Invented by van de Geijn & Watts of UT Austin
n Claimed best machine independent MM

o Whereas MM is usually A row x B column,
SUMMA is A column x B row because
computation switches from sense
n Normal: Compute all terms of dot product
n SUMMA: Computer first term of all dot products

Strange. But fast!

37

SUMMA Assumptions

o Threads have two indices, handle t x t block

o Let p =P then thread u,v
n reads all columns of A for indices u*t:(u+1)*t-1,j
n reads all rows of B for indices i,v*t:(v+1)*t-1

n The arrays will be in global memory and
referenced as needed

G =A“ B —

38

19

Solve SUMMA In Peril-L

o Arrays in Global Memory

o Consider how processors reference arrays
n Where do operands come from?
n Where are results saved?

C A B

— www.cs.utexas.edu/users/rvdg/abstracts/SUMMA.html -

Homework

o Read the remainder of Chapter 5
o Write a version of SUMMA in Peril-L
o Decide on Project Topic -- write a

paragraph description of the computation
that you expect to solve for the term project

o We will use a cluster making MPI and ZPL
the most amenable languages we’ll discuss

40

20

