
1

1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

10 April 2007

2

Announcements

o Homework submission issues
o Final project due Monday, 4 June 2007

o Next HW assigned next week

We will discuss homework shortly

2

3

Unanswered Question from Last Time

o Question on topic of “no standard parallel
model”: Sequential computers were quite
different originally, before a machine (IBM
701) gained widespread use. Won’t the
widespread use of Intel (or AMD) CMPs
have that same affect?

4

Review

o High-level logic of last week’s lecture:
n Parallel architectures are diverse (looked at 5)
n Key difference: Memory structure
n In sequential programming, we use simple RAM model
n In parallel programming, PRAM misdirects us
n CTA abstracts machines; captures …

o Parallelism of multiple (full service) processors
o Local vs nonlocal memory reference costs
o Vague memory structure details; no shared memory

n Different mechanisms impl. nonlocal memory reference
o Shared, message passing, one-sided

3

5

CTA Abstracts BlueGene/L

o Consider BlueGene/L as a CTA machine

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ > 5000λλλλ > 5000

6

CTA Abstracts Clusters

o Consider a cluster as a CTA

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ > 4000λλλλ > 4000

4

7

CTA Abstracts X-bar SMPs

o Consider the SunFire E25K as a CTA

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ ~ 600λλλλ ~ 600

8

CTA Abstracts Bus SMPs

o Consider Bus-based SMPs as CTAs

Bus

L1-I L1-D

Processor
P0

L2 Cache

Cache Control

Memory Memory Memory Memory

L1-I L1-D

Processor
P1

L2 Cache

Cache Control

L1-I L1-D

Processor
P2

L2 Cache

Cache Control

L1-I L1-D

Processor
P3

L2 Cache

Cache Control

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ ~ 100sλλλλ ~ 100s

5

9

CTA Abstracts CMPs

o Consider Core Duo & Dual Core Opteron
as CTA machines

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ ~ 100λλλλ ~ 100

10

CTA Abstracts Machines: Summary

o Naturally, the “match” between the CTA & a
given ||-architecture differs from all others

o Two main differences--
n Controller--not particularly essential--can be

efficiently emulated
n Nonlocal reference time--is smaller for small

machines, larger for large machines, implying λ
increases as P increases … need it for scaling

Though λ is “too large” for small machines, the “error” forces
programs towards more efficient solutions: more locality!

6

11

Shared Memory and the CTA

o The CTA has no shared memory - meaning
no guarantee of hardware implementing
shared memory => cannot depend on it
n Some machines have shared memory, which is

effectively their communication facility
n Some machines have no shared memory,

meaning there’s another form of communication

o Either way, assume it is expensive relative
to local computation to communicate

12

Assignment from last week

o Homework Problem: Analyze the
complexity of the Odd/Even Interchange
Sort: Given array A[n], exchange o/e pairs
if not ordered, then exchange e/o pairs if
not ordered, then repeat until sorted

o Analyze in CTA model (i.e. for P, λ, d), and
charge the o/e-e/o pair c time if operands
are local; ignore all other local computation

7

13

O/E - E/O Sort

o The array is assigned to memories

P0 P1 P2 P3

One Step:
get end neighbor values: λ
O/E half step: (n/P)c
get end neighbor values: λ
E/O half step: (n/P)c
And-reduce over done_?:λ log P

No. Steps: n/2 in worst case

One Step:
get end neighbor values: λ
O/E half step: (n/P)c
get end neighbor values: λ
E/O half step: (n/P)c
And-reduce over done_?:λ log P

No. Steps: n/2 in worst case

14

Parallelism vs Performance

o Naïvely, many reason that applying P
processors to a T time computation will
result in T/P time performance

o Wrong!

n More or fewer instructions must be executed
n The hardware is different
n Parallel solution has difficult-to-quantify costs t hat the

serial solution does not have, etc.

The Intuition: The serial and parallel solutions dif ferThe Intuition: The serial and parallel solutions dif fer

Consider Each Reason

8

15

More Instructions Needed

o To implement parallel computations
requires overhead that sequential
computations do not need
n All costs associated with communication are

overhead: locks, cache flushes, coherency,
message passing protocols, etc.

n All costs associated with thread/process setup
n Lost optimizations -- many compiler

optimizations not available in parallel setting
o Global variable register assignment

16

More Instructions (Continued)

o Redundant execution can avoid
communication -- a parallel optimization

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it
… requires communication
(b) Communicate seed once, then each thread
generates its own random number … removes
communication and gets parallelism, but by
increasing instruction load

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it
… requires communication
(b) Communicate seed once, then each thread
generates its own random number … removes
communication and gets parallelism, but by
increasing instruction load

A common (and recommended) programming trick

9

17

Fewer Instructions

o Searches illustrate the possibility of parallelism
requiring fewer instructions

o Independently searching subtrees means an item
is likely to be found faster than sequential

18

Threads

o A thread consists of program code, a
program counter, call stack, and a small
amount of thread-specific data
n Threads share access to memory (and the file

system) with other threads
n Threads communicate through the shared

memory
n The native memory model of computers does

not automatically accommodate safe
concurrent memory reference

Shared memory parallel programming

10

19

Processes

o A process is a thread in its own private
address space
n Processes do not communicate through

shared memory, but need another mechanism
like message passing

n Key issue: How is the problem divided among
the processes, which includes data and work

n Processes (logically subsume) threads

Message-passing parallel programming

20

Compare Threads & Processes

o Both have code, PC, call stack, local data
n Threads -- One address space

n Processes -- Separate address spaces

o Weight and Agility
n Threads: lighter weight, faster to setup, tear

down, perform communication

n Processes: heavier weight, setup and tear
down more time consuming, communication is
slower

11

21

Terminology

o Terms used to refer to a unit of parallel
computation include: thread, process,
processor, …
n Technically, thread and process are SW,

processor is HW
n Usually, it doesn’t matter

Most frequently the term processor is used

22

Parallelism vs Performance

o Sequential hardware ≠ parallel hardware
n There is more parallel hardware, e.g. memory

n There is more cache on parallel machines
n Sequential computer ≠ 1 processor of ||

computer, because of cache coherence hw
o Important in multicore context

n Parallel channels to disk, possibly

?

These differences tend to favor || machine

12

23

Superlinear Speed up

o Additional cache is an advantage of ||ism

o The effect is to make execution time < T/P
because data (& program) reference faster

o Cache-effects help mitigate other || costs

PS P0 P1 P2 P3

vs

24

“Cooking” The Speedup Numbers

o The sequential computation should not be
charged for any || costs … consider

o If referencing memory in other processors
takes time (λ) and data is distributed, then
one processor solving the problem results
in greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems

13

25

Other Parallel Costs

o Wait: All computations must wait at points,
but serial computation waits are well known

o Parallel waiting …
n For serialization to assure correctness
n Congestion in communication facilities

o Bus contention; network congestion; etc.

n Stalls: data not available/recipient busy

o These costs are generally time-dependent,
implying that they are highly variable

26

Bottom Line …

o Applying P processors to a problem with a
time T (serial) solution can be either …

better or worse …

it’s up to programmers to exploit the
advantages and avoid the disadvantages

14

27

Break

28

Two kinds of performance

o Latency -- time required before the result
available
n Latency, measured in seconds; called transmit

time or execution time or just time

o Throughput -- amount of work completed in
a given amount of time
n Throughput, measured in “work”/sec, where

“work” can be bits, instructions, jobs, etc.; also
called bandwidth in communication

Both terms apply to computing and communications

15

29

Latency

o Reducing latency (execution time) is a
principal goal of parallelism

o There is upper limit on reducing latency
n Speed of light, esp. for bit transmissions
n (Clock rate) x (issue width), for instructions
n Diminishing returns (overhead) for problem

instances

Hitting the upper limit is rarely a worry

30

Throughput

o Throughput improvements are often easier to
achieve by adding hardware
n More wires improve bits/second
n Use processors to run separate jobs
n Pipelining is a powerful technique to execute more

(serial) operations in unit time
timeinstructions

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Better throughput often hyped as better latency

16

31

Digress: Inherently Sequential

o As an artifact of P-completeness theory, we
have the idea of Inherently Sequential --
computations not appreciably improved by
parallelism

o Probably not much of a limitation

Circuit Value Problem: Given a circuit α over Boolean
input values values b1, …, bn and designated output
value y, is the circuit true for y?

32

Latency Hiding

o Reduce wait times by switching to work on
different operation
n Old idea, dating back to Multics
n In parallel computing it’s called latency hiding

o Idea most often used to lower λ costs
n Have many threads ready to go …
n Execute a thread until it makes nonlocal ref
n Switch to next thread
n When nonlocal ref is filled, add to ready list

Tera MTA did this at instruction level

17

33

Latency Hiding (Continued)

o Latency hiding requires …
n Consistently large supply of threads ~ λ/e
where e = average # cycles between nonlocal refs
n Enough network throughput to have many requests in

the air at once

o Latency hiding has been claimed to make shared
memory feasible with large λ

t1
t2

t3
t4

t5
t1

Nonlocal data
reference time

Nonlocal data
reference time

There are difficulties

34

Latency Hiding (Continued)

o Challenges to supporting shared memory
n Threads must be numerous, and the shorter

the interval between nonlocal refs, the more
o Running out of threads stalls the processor

n Context switching to next thread has overhead
o Many hardware contexts -- or --
o Waste time storing and reloading context

n Tension between latency hiding & caching
o Shared data must still be protected somehow

n Other technical issues

18

35

Amdahl’s Law

o If 1/S of a computation is inherently
sequential, then the maximum performance
improvement is limited to a factor of S

TP = 1/S × TS + (1-1/S) × TS / P

o Amdahl’s Law, like the Law of Supply and
Demand, is a fact

Gene Amdahl -- IBM Mainframe Architect

TS=sequential time
TP=parallel time
P =no. processors

TS=sequential time
TP=parallel time
P =no. processors

36

Interpreting Amdahl’s Law

o Consider the equation

o With no charge for || costs, let P → ∞ then
TP → 1/S × TS

o Amdahl’s Law applies to problem instances

TP = 1/S TS + (1-1/S) TS / P

The best parallelism can do to is to eliminate
the parallelizable work; the sequential remains

The best parallelism can do to is to eliminate
the parallelizable work; the sequential remains

Parallelism seemingly has little potential

19

37

More On Amdahl’s Law

o Amdahl’s Law assumes a fixed problem
instance: Fixed n, fixed input, perfect
speedup
n The algorithm can change to become more ||

n Problem instances grow implying proportion of
work that is sequential may reduce

n … Many, many realities including parallelism in
‘sequential’ execution imply analysis is simplistic

o Amdahl is a fact; it’s not a show-stopper

38

Performance Loss: Overhead

o Threads and processes incur overhead

o Obviously, the cost of creating a thread or
process must be recovered through parallel
performance:

(t + os + otd + cost(t))/2 < t
∴ os + otd + cost(t) < t

Thread

Process
Setup Tear down

t = execution time
os = setup, otd = tear down
cost(t) = all other || costs

t = execution time
os = setup, otd = tear down
cost(t) = all other || costs

20

39

Performance Loss: Contention

o Contention, the action of one processor interferes
with another processor’s actions, is an elusive
quantity
n Lock contention: One processor’s lock stops other

processors from referencing; they must wait
n Bus contention: Bus wires are in use by one processor’s

memory reference
n Network contention: Wires are in use by one packet,

blocking other packets
n Bank contention: Multiple processors try to access a

memory simultaneously

Contention is very time dependent, that is, variable

40

Performance Loss: Load Imbalance

o Load imbalance, work not evenly assigned
to the processors, underutilizes parallelism
n The assignment of work, not data, is key
n Static assignments, being rigid, are more

prone to imbalance
n Because dynamic assignment carries

overhead, the quantum of work must be large
enough to amortize the overhead

n With flexible allocations, load balance can be
solved late in the design programming cycle

21

41

The Best Parallel Programs …

o Performance is maximized if processors
execute continuously on local data without
interacting with other processors
n To unify the ways in which processors could

interact, we adopt the concept of dependence
n A dependence is an ordering relationship

between two computations
o Dependences are usually induced by read/write
o Dependences that cross processor boundaries

induce a need to synchronize the threads
Dependences are well-studied in compilers

42

Dependences

o Dependences are orderings that must be
maintained to guarantee correctness
n Flow-dependence: read after write

n Anti-dependence: write after read
n Output-dependence: write after write

o True dependences affect correctness
o False dependences arise from memory

reuse

True
False
False

22

43

Example of Dependences

o Both true and false dependences
1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;

44

o Both true and false dependences

o Flow-dependence read after write; must be
preserved for correctness

o Anti-dependence write after read; can be
eliminated with additional memory

Example of Dependences

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;

23

45

Removing Anti-dependence

o Change variable names

1. first_sum = a + 1;
2. first_term = first_sum * scale1;
3. second_sum = b + 1;
4. second_term = second_sum * scale2;

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;

46

Granularity

o Granularity is used in many contexts…here
granularity is the amount of work between
cross-processor dependences
n Important because interactions usually cost

n Generally, larger grain is better
+ fewer interactions, more local work
- can lead to load imbalance

n Batching is an effective way to increase grain

24

47

Locality

o The CTA motivates us to maximize locality
n Caching is the traditional way to exploit locality

… but it doesn’t translate directly to ||ism
n Redesigning algorithms for parallel execution

often means repartitioning to increase locality
n Locality often requires redundant storage and

redundant computation, but in limited
quantities they help

48

Measuring Performance

o Execution time … what’s time?
n ‘Wall clock’ time

n Processor execution time
n System time

o Paging and caching can affect time
n Cold start vs warm start

o Conflicts w/ other users/system components
o Measure kernel or whole program

25

49

FLOPS

o Floating Point Operations Per Second is a
common measurement for scientific pgms
n Even scientific computations use many ints

n Results can often be influenced by small, low-
level tweaks having little generality: mult/add

n Translates poorly across machines because it
is hardware dependent

n Limited application

50

Speedup and Efficiency

o Speedup is the factor of improvement for P
processors: TS/TP

0

Processors

PerformancePerformance

640

Program1

Program2

48

Speedup
Efficiency =
Speedup/ P
Efficiency =
Speedup/ P

26

51

Issues with Speedup, Efficiency

o Speedup is best applied when hardware is
constant, or for family within a generation
n Need to have computation, communication is

same ratio
n Great sensitivity to the TS value

o TS should be time of best sequential program on 1
processor of ||-machine

o TP=1 ≠ TS Measures relative speedup

52

Scaled v. Fixed Speedup

o As P increases, the amount of work per
processor diminishes, often below the amt
needed to amortize costs

o Speedup curves bend dn

o Scaled speedup keeps
the work per processor
constant, allowing other affects to be seen

o Both are important

0

Processors

PerformancePerformance

640

Program1
Program2

48

Speedup

If not stated, speedup is fixed speedup

27

53

Assignment

o Read Chapter 4

