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Announcements

o Homework submission issues
o Final project due Monday, 4 June 2007

o Next HW assigned next week

We will discuss homework shortly
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Unanswered Question from Last Time

o Question on topic of “no standard parallel 
model”: Sequential computers were quite 
different originally, before a machine (IBM 
701) gained widespread use. Won’t the 
widespread use of Intel (or AMD) CMPs 
have that same affect?
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Review

o High-level logic of last week’s lecture:
n Parallel architectures are diverse (looked at 5)
n Key difference: Memory structure
n In sequential programming, we use simple RAM model
n In parallel programming, PRAM misdirects us
n CTA abstracts machines; captures …

o Parallelism of multiple (full service) processors 
o Local vs nonlocal memory reference costs
o Vague memory structure details; no shared memory

n Different mechanisms impl. nonlocal memory reference
o Shared, message passing, one-sided
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CTA Abstracts BlueGene/L

o Consider BlueGene/L as a CTA machine

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ > 5000λλλλ > 5000
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CTA Abstracts Clusters

o Consider a cluster as a CTA

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ > 4000λλλλ > 4000
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CTA Abstracts X-bar SMPs

o Consider the SunFire E25K as a CTA

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ ~ 600λλλλ ~ 600
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CTA Abstracts Bus SMPs

o Consider Bus-based SMPs as CTAs
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CTA Abstracts CMPs

o Consider Core Duo & Dual Core Opteron 
as CTA machines
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Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

λλλλ ~ 100λλλλ ~ 100

10

CTA Abstracts Machines: Summary

o Naturally, the “match” between the CTA & a 
given ||-architecture differs from all others

o Two main differences--
n Controller--not particularly essential--can be 

efficiently emulated
n Nonlocal reference time--is smaller for small 

machines, larger for large machines, implying λ
increases as P increases … need it for scaling

Though λ is “too large” for small machines, the “error” forces 
programs towards more efficient solutions: more locality!
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Shared Memory and the CTA

o The CTA has no shared memory - meaning 
no guarantee of hardware implementing 
shared memory => cannot depend on it
n Some machines have shared memory, which is 

effectively their communication facility
n Some machines have no shared memory, 

meaning there’s another form of communication

o Either way, assume it is expensive relative  
to local computation to communicate
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Assignment from last week

o Homework Problem: Analyze the 
complexity of the Odd/Even Interchange 
Sort: Given array A[n], exchange o/e pairs 
if not ordered, then exchange e/o pairs if 
not ordered, then repeat until sorted

o Analyze in CTA model (i.e. for P, λ, d), and 
charge the o/e-e/o pair c time if operands 
are local; ignore all other local computation
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O/E - E/O Sort

o The array is assigned to memories

P0 P1 P2 P3

One Step:
get end neighbor values: λ
O/E half step: (n/P)c
get end neighbor values: λ
E/O half step: (n/P)c
And-reduce over done_?:λ log P

No. Steps: n/2 in worst case

One Step:
get end neighbor values: λ
O/E half step: (n/P)c
get end neighbor values: λ
E/O half step: (n/P)c
And-reduce over done_?:λ log P

No. Steps: n/2 in worst case

14

Parallelism vs Performance

o Naïvely, many reason that applying P
processors to a T time computation will 
result in T/P time performance

o Wrong!

n More or fewer instructions must be executed
n The hardware is different
n Parallel solution has difficult-to-quantify costs t hat the 

serial solution does not have, etc.

The Intuition: The serial and parallel solutions dif ferThe Intuition: The serial and parallel solutions dif fer

Consider Each Reason
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More Instructions Needed

o To implement parallel computations 
requires overhead that sequential 
computations do not need
n All costs associated with communication are 

overhead: locks, cache flushes, coherency, 
message passing protocols, etc.

n All costs associated with thread/process setup
n Lost optimizations -- many compiler 

optimizations not available in parallel setting
o Global variable register assignment
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More Instructions (Continued)

o Redundant execution can avoid 
communication -- a parallel optimization

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it 
… requires communication
(b) Communicate seed once, then each thread
generates its own random number … removes 
communication and gets parallelism, but by 
increasing instruction load

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it 
… requires communication
(b) Communicate seed once, then each thread
generates its own random number … removes 
communication and gets parallelism, but by 
increasing instruction load

A common (and recommended) programming trick
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Fewer Instructions

o Searches illustrate the possibility of parallelism 
requiring fewer instructions

o Independently searching subtrees means an item 
is likely to be found faster than sequential
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Threads

o A thread consists of program code, a 
program counter, call stack, and a small 
amount of thread-specific data
n Threads share access to memory (and the file 

system) with other threads
n Threads communicate through the shared 

memory
n The native memory model of computers does 

not automatically accommodate safe 
concurrent memory reference

Shared memory parallel programming
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Processes

o A process is a thread in its own private 
address space
n Processes do not communicate through 

shared memory, but need another mechanism 
like message passing

n Key issue: How is the problem divided among 
the processes, which includes data and work

n Processes (logically subsume) threads

Message-passing parallel programming
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Compare Threads & Processes

o Both have code, PC, call stack, local data
n Threads -- One address space

n Processes -- Separate address spaces

o Weight and Agility
n Threads: lighter weight, faster to setup, tear 

down, perform communication

n Processes: heavier weight, setup and tear 
down more time consuming, communication is 
slower
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Terminology

o Terms used to refer to a unit of parallel 
computation include: thread, process, 
processor, …
n Technically, thread and process are SW, 

processor is HW
n Usually, it doesn’t matter

Most frequently the term processor is used
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Parallelism vs Performance

o Sequential hardware ≠ parallel hardware
n There is more parallel hardware, e.g. memory

n There is more cache on parallel machines
n Sequential computer ≠ 1 processor of || 

computer, because of cache coherence hw
o Important in multicore context

n Parallel channels to disk, possibly

?

These differences tend to favor || machine
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Superlinear Speed up

o Additional cache is an advantage of ||ism

o The effect is to make execution time < T/P
because data (& program) reference faster

o Cache-effects help mitigate other || costs

PS P0 P1 P2 P3

vs
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“Cooking” The Speedup Numbers

o The sequential computation should not be 
charged for any || costs … consider

o If referencing memory in other processors 
takes time (λ) and data is distributed, then 
one processor solving the problem results 
in greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems
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Other Parallel Costs

o Wait: All computations must wait at points, 
but serial computation waits are well known

o Parallel waiting …
n For serialization to assure correctness
n Congestion in communication facilities

o Bus contention; network congestion; etc.

n Stalls: data not available/recipient busy

o These costs are generally time-dependent, 
implying that they are highly variable
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Bottom Line …

o Applying P processors to a problem with a 
time T (serial) solution can be either …

better or worse …

it’s up to programmers to exploit the 
advantages and avoid the disadvantages
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Break
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Two kinds of performance

o Latency -- time required before the result 
available
n Latency, measured in seconds; called transmit 

time or execution time or just time

o Throughput -- amount of work completed in
a given amount of time
n Throughput, measured in “work”/sec, where

“work” can be bits, instructions, jobs, etc.; also 
called bandwidth in communication

Both terms apply to computing and communications
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Latency

o Reducing latency (execution time) is a 
principal goal of parallelism

o There is upper limit on reducing latency
n Speed of light, esp. for bit transmissions
n (Clock rate) x (issue width), for instructions
n Diminishing returns (overhead) for problem 

instances

Hitting the upper limit is rarely a worry
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Throughput

o Throughput improvements are often easier to
achieve by adding hardware
n More wires improve bits/second
n Use processors to run separate jobs
n Pipelining is a powerful technique to execute more 

(serial) operations in unit time
timeinstructions

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Better throughput often hyped as better latency
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Digress: Inherently Sequential

o As an artifact of P-completeness theory, we 
have the idea of Inherently Sequential --
computations not appreciably improved by 
parallelism

o Probably not much of a limitation

Circuit Value Problem: Given a circuit α over Boolean 
input values values b1, …, bn and designated output 
value y, is the circuit true for y? 
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Latency Hiding

o Reduce wait times by switching to work on 
different operation
n Old idea, dating back to Multics
n In parallel computing it’s called latency hiding

o Idea most often used to lower λ costs
n Have many threads ready to go …
n Execute a thread until it makes nonlocal ref
n Switch to next thread
n When nonlocal ref is filled, add to ready list

Tera MTA did this at instruction level
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Latency Hiding (Continued)

o Latency hiding requires …
n Consistently large supply of threads ~ λ/e
where e = average # cycles between nonlocal refs
n Enough network throughput to have many requests in 

the air at once

o Latency hiding has been claimed to make shared 
memory feasible with large λ

t1
t2

t3
t4

t5
t1

Nonlocal data
reference time

Nonlocal data
reference time

There are difficulties
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Latency Hiding (Continued)

o Challenges to supporting shared memory
n Threads must be numerous, and the shorter 

the interval between nonlocal refs, the more
o Running out of threads stalls the processor

n Context switching to next thread has overhead
o Many hardware contexts -- or --
o Waste time storing and reloading context

n Tension between latency hiding & caching
o Shared data must still be protected somehow

n Other technical issues
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Amdahl’s Law

o If 1/S of a computation is inherently 
sequential, then the maximum performance 
improvement is limited to a factor of S

TP = 1/S × TS + (1-1/S) × TS / P

o Amdahl’s Law, like the Law of Supply and 
Demand, is a fact

Gene Amdahl -- IBM Mainframe Architect

TS=sequential time
TP=parallel time
P =no. processors

TS=sequential time
TP=parallel time
P =no. processors
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Interpreting Amdahl’s Law

o Consider the equation

o With no charge for || costs, let P → ∞ then 
TP → 1/S × TS

o Amdahl’s Law applies to problem instances

TP = 1/S TS + (1-1/S) TS / P

The best parallelism can do to is to eliminate 
the parallelizable work; the sequential remains

The best parallelism can do to is to eliminate 
the parallelizable work; the sequential remains

Parallelism seemingly has little potential
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More On Amdahl’s Law

o Amdahl’s Law assumes a fixed problem 
instance: Fixed n, fixed input, perfect 
speedup
n The algorithm can change to become more ||

n Problem instances grow implying proportion of
work that is sequential may reduce

n … Many, many realities including parallelism in 
‘sequential’ execution imply analysis is simplistic 

o Amdahl is a fact; it’s not a show-stopper
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Performance Loss: Overhead

o Threads and processes incur overhead

o Obviously, the cost of creating a thread or 
process must be recovered through parallel 
performance:

(t + os + otd + cost(t))/2 < t
∴ os + otd + cost(t) < t

Thread

Process
Setup Tear down

t = execution time
os = setup, otd = tear down
cost(t) = all other || costs

t = execution time
os = setup, otd = tear down
cost(t) = all other || costs
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Performance Loss: Contention

o Contention, the action of one processor interferes
with another processor’s actions, is an elusive 
quantity
n Lock contention: One processor’s lock stops other 

processors from referencing; they must wait
n Bus contention: Bus wires are in use by one processor’s 

memory reference
n Network contention: Wires are in use by one packet, 

blocking other packets
n Bank contention: Multiple processors try to access a 

memory simultaneously

Contention is very time dependent, that is, variable
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Performance Loss: Load Imbalance

o Load imbalance, work not evenly assigned 
to the processors, underutilizes parallelism
n The assignment of work, not data, is key
n Static assignments, being rigid, are more 

prone to imbalance
n Because dynamic assignment carries 

overhead, the quantum of work must be large 
enough to amortize the overhead

n With flexible allocations, load balance can be 
solved late in the design programming cycle
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The Best Parallel Programs …

o Performance is maximized if processors 
execute continuously on local data without 
interacting with other processors
n To unify the ways in which processors could 

interact, we adopt the concept of dependence
n A dependence is an ordering relationship 

between two computations
o Dependences are usually induced by read/write
o Dependences that cross processor boundaries

induce a need to synchronize the threads 
Dependences are well-studied in compilers
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Dependences

o Dependences are orderings that must be 
maintained to guarantee correctness
n Flow-dependence: read after write

n Anti-dependence: write after read
n Output-dependence: write after write

o True dependences affect correctness
o False dependences arise from memory 

reuse

True
False
False
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Example of Dependences

o Both true and false dependences
1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;
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o Both true and false dependences

o Flow-dependence read after write; must be 
preserved for correctness

o Anti-dependence write after read; can be 
eliminated with additional memory

Example of Dependences

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;



23

45

Removing Anti-dependence

o Change variable names

1. first_sum = a + 1;
2. first_term = first_sum * scale1;
3. second_sum = b + 1;
4. second_term = second_sum * scale2;

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;
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Granularity

o Granularity is used in many contexts…here 
granularity is the amount of work between 
cross-processor dependences
n Important because interactions usually cost

n Generally, larger grain is better
+ fewer interactions, more local work
- can lead to load imbalance

n Batching is an effective way to increase grain
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Locality

o The CTA motivates us to maximize locality
n Caching is the traditional way to exploit locality 

… but it doesn’t translate directly to ||ism
n Redesigning algorithms for parallel execution 

often means repartitioning to increase locality
n Locality often requires redundant storage and 

redundant computation, but in limited 
quantities they help
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Measuring Performance

o Execution time … what’s time?
n ‘Wall clock’ time

n Processor execution time
n System time

o Paging and caching can affect time
n Cold start vs warm start

o Conflicts w/ other users/system components
o Measure kernel or whole program
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FLOPS

o Floating Point Operations Per Second is a 
common measurement for scientific pgms
n Even scientific computations use many ints

n Results can often be influenced by small, low-
level tweaks having little generality: mult/add

n Translates poorly across machines because it 
is hardware dependent

n Limited application

50

Speedup and Efficiency

o Speedup is the factor of improvement for P
processors: TS/TP

0

Processors

PerformancePerformance

640

Program1

Program2

48

Speedup
Efficiency =
Speedup/ P
Efficiency =
Speedup/ P
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Issues with Speedup, Efficiency

o Speedup is best applied when hardware is 
constant, or for family within a generation
n Need to have computation, communication is 

same ratio
n Great sensitivity to the TS value

o TS should be time of best sequential program on 1 
processor of ||-machine

o TP=1  ≠ TS Measures relative speedup
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Scaled v. Fixed Speedup

o As P increases, the amount of work per 
processor diminishes, often below the amt 
needed to amortize costs

o Speedup curves bend dn

o Scaled speedup keeps
the work per processor
constant, allowing other affects to be seen

o Both are important

0

Processors

PerformancePerformance

640

Program1
Program2

48

Speedup

If not stated, speedup  is fixed speedup
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Assignment

o Read Chapter 4


