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Administrivia

o Grading: 20% HW, 70% Proj, 10% Talk
o Burn your book!

o Consumer software + CMPs
n MozoDojo, a graphic mosaic construction tool

o There a HW assigned at end today

MultiThreading : To make the best use possible of multi-core and 
multi-processor machines, MozoDojo is heavily multithreaded. All 
computations are dispatched on available processors. The 
difference is huge between a single G4 and a CoreDuo processor.

Sign up for the email list
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Review Solution Send parent value 
to left child; send 
parent + left child 
value to right child
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Plan for today

o Parallel Hardware
n Shared: Multicore, SMP
n Distributed: Cluster, HPC Fire breather

o Models of Computation
n RAM
n PRAM
n CTA
n Reflection

o Communication modes
n Shared, Message Passing, One Sided
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Flynn’s Taxonomy

o Michael Flynn had an early way to classify 
machines, two forms of which are still used:

n SIMD -- single instruction, multiple data

n MIMD -- multiple instruction, multiple data

Flynn’s Taxonomy                 

Single
Data StreamInstruction Stream,

Multiple

Single

Multiple

Our interest is exclusively with MIMD
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Digression on SIMD

o Applying one instruction to multiple values…
n Was important when memory was expensive

n Powerful for tight, “inner loop” crunching
n Performs in rigid lock-step w/apply|not protocol
n SIMD implements most parallelism inefficiently

Dilemma : How to get SIMD crunching power 
with the flexibility needed to control program 
logic efficiently?  Cell is perhaps an answer.

Dilemma : How to get SIMD crunching power 
with the flexibility needed to control program 
logic efficiently?  Cell is perhaps an answer.
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The Problem w/Parallel Architectures

o The problem with parallel machines is 
n They are different from sequential machines

n They are different from each other

o Both problems complicate programming

o Our solution: Adopt a machine model that 
abstracts performance critical features

But first, Let’s look at some specific machines
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Intel Core-Duo
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MESI Protocol

o Standard Protocol for
cache - coherent
shared memory
n Mechanism for 

multiple caches to give
single memory image

n We will not study it
n 4 states can be

amazingly rich 

Thanks: Slater & Tibrewala of CMU
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MESI, Intuitively

o Upon loading, a line is marked E, 
subsequent reads are OK; write marks M

o Seeing another load, mark as S

o A write to an S, sends I to all, marks as M
o Another’s read to an M line, writes it back, 

marks it S
o Read/write to an I misses 
o Related scheme: MOESI (used by AMD)
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AMD Dual Core Operton
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AMD Dual Core Operton
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Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

Intel

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

AMD AMD

16

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD AMD AMD



9

17

SMP on a Bus
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SMP on a Bus

o The bus is a point that serializes references
o A serializing point is a shared mem enabler
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Sun Fire E25K
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Cross-Bar Switch

o A crossbar is a network 
connecting each processor 
to every other processor 

o Used in CMU’s 1971 
C.MMP, 16 proc PDP-11s

o Crossbars grow as n2

making them impractical 
for large n

B0

B1

B2

B3
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Sun Fire E25K

o X-bar gives low latency for snoops allowing 
for shared memory

o 18 x 18 X-bar is basically the limit

o Raising the number of processors per node 
will, on average, increase congestion

o How could we make a larger machine?
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Co-Processor Architectures

o A powerful parallel design is to add 1 or 
more subordinate processors to std design
n Floating point instructions once implemented 

this way
n Graphics Processing Units - deep pipelining
n Cell Processor - multiple SIMD units
n Attached FPGA chip(s) - compile to a circuit

o These architectures will be discussed later
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Clusters

o Interconnecting 
with InfiniBand

o Switch-based 
technology
n Host channel 

adapters (HCA)
n Peripheral 

computer 
interconnect (PCI)

Thanks: IBM’s Clustering sytems using InfiniBand Hardware
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Clusters

o Cheap to build using commodity 
technologies

o Effective when interconnect is “switched”
o Easy to extend, usually in increments of 1
o Processors often have disks “nearby”
o No shared memory
o Latencies are usually large
o Programming uses message passing
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Supercomputer

o BlueGene/L
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BlueGene/L Specs

o A 64x32x32 torus = 65K 2-core processors
o Cut-through routing gives a worst-case 

latency of 6.4 µs
o Processor nodes are dual PPC-440 with 

“double hummer” FPUs
o Collective network performs global reduce 

for the “usual” functions
o #1 on November’s Top 500 at 280 TF
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Summarizing Architectures

o Two main classes
n Complete connection: CMPs, SMPs, X-bar

o Preserve single memory image
o Complete connection limits scaling to …
o Available to everyone

n Sparse connection: Clusters, Supercomputers, 
Networked computers used for parallelism (Grid)
o Separate memory images
o Can grow “arbitrarily” large
o Available to everyone with air conditioning

o Differences are significant; world views diverge
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The Parallel Programming Problem

o Some computations can be platform specific
o Most should be platform independent

o Parallel Software Development Problem: 
How do we neutralize the machine 
differences given that
n Some knowledge of execution behavior is 

needed to write programs that perform
n Programs must port across platforms 

effortlessly, meaning, by at most recompilation
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Options for Solving the PPP

o Leave the problem to the compiler …

30

Options for Solving the PPP

o Leave the problem to the compiler …
n Very low level parallelism (ILP) is already 

being exploited
n Sequential languages cause us to introduce 

unintentional sequentiality
n Parallel solutions often require a paradigm shift

n Compiler writers’ track record over past 3 
decades not promising … recall HPF

n Bottom Line: Compilers will get more helpful, 
but they probably won’t solve the PPP 
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Options for Solving the PPP

o Adopt a very abstract language that can 
target to any platform …

32

Options for Solving the PPP

o Adopt a very abstract language that can 
target to any platform …
n No one wants to learn a new language, no 

matter how cool
n How does a programmer know how efficient or 

effective his/her code is? Interpreted code?
n What are the “right” abstractions and 

statement forms for such a language? 
o Emphasize programmer convenience?
o Emphasize compiler translation effectiveness?
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Options for Solving the PPP

o Agree on a set of parallel primitives (spawn 
process, lock location, etc.) and create 
libraries that work w/ sequential code …
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Options for Solving the PPP

o Agree on a set of parallel primitives (spawn 
process, lock location, etc.) and create 
libraries that work w/ sequential code …
n Libraries are a mature technology

n To work with multiple languages, limit base 
language assumptions … L.C.D. facilities

n Libraries use a stylized interface (fcn call) 
limiting parallelism-specific abstractions possible

n Achieving consistent semantics is difficult
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Options for Solving the PPP

o Create an abstract machine model that 
accurately describes common capabilities 
and let the language facilities catch up …
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Options for Solving the PPP

o Create an abstract machine model that 
accurately describes common capabilities 
and let the language facilities catch up …
n Not a full solution until languages are available

n The solution works in sequential world (RAM)
n Requires discovering (and predicting) what the 

common capabilities are
n Solution needs to be (continually) validated

against actual experience
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Options for Solving the PPP

o Leave the problem to the compiler …
o Adopt a very abstract language that can 

target to any platform …
o Agree on a set of parallel primitives (spawn 

process, lock location, etc.) and create 
libraries that work w/ sequential code …

o Create an abstract machine model that 
accurately describes common capabilities 
and let the language facilities catch up …

38

Break
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Reason by Analogy: RAM Model

o The Random Access Machine is our friend
n Control, ALU, (Unlimited) Memory, [Input, Output] 

n Fetch/execute cycle runs 1 inst. pointed at by PC
n Memory references are “unit time” independent 

of location
o Gives RAM it’s name in preference to von Neumann
o “Unit time” is not literally true, but caches fake it

n Executes “3-address” instructions

It’s so intuitive, it seems like there’s no other w ay to compute!
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How To Use the RAM

o When reasoning about performance …
n Worry about how many instructions executed 

because execution time proportional to cycles
n Treat memory references (operand fetch) as a 

negligible part of the instruction execution
n Estimate time and space needs based on 

increasing problem size, O(n)
o Linear search vs Binary search

n Crucial to effectively using C, etc.
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Generalization of RAM: PRAM

o Parallel Random Access Machine (PRAM)
n Unlimited number of processors

n Processors are standard RAM machines, 
executing synchronously

n Memory reference is “unit time”
n Outcome of collisions at memory specified

o EREW, CREW, CRCW …

o Model fails bc synchronous execution w/ 
unit cost memory reference does not scale 
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CTA Model

o Candidate Type Architecture: A model with 
P standard processors, d degree, λ latency

o Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is λ
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What CTA Doesn’t Describe

o CTA has no global memory … but memory 
could be globally addressed

o Mechanism for referencing memory not 
specified: shared, message passing, 1-side

o Interconnection network not specified 

o λ is not specified beyond λ>>1 -- cannot be 
because every machine is different

o Controller, combining network “optional”
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Typical Values for λ

o Lambda can be estimated for any machine 
(given numbers include no contention or 
congestion)

5000BlueGene/LSuper

4100-5100Itanium + MyrinetCluster

400-660Sun Fire E25KSMP

100AMDCMP

As with merchandizing: It’s location, location, location! 
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PRAM Mispredicts Preferred Alg

o Consider finding maximum of n numbers
o Best algorithm

n CRCW PRAM: Valiant’s algorithm O(log log n)
n CTA Model: Tournament algorithm O(log n)

o Observed performance real implementation
n PRAM: O(log n log log n)
n CTA: O(log n)

o We do not want a model that directs us to 
an impractical solution 
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Apply CTA to Count 3s

o How does CTA guide us for Count 3s pgm
n Array segments will be allocated to local mem

n Each processor should count 3s in its segment
n Global total should be formed using reduction
n Performance is 

o Full parallelism for local processing

o λ log n for combining (and broadcast)
o Base of log should be large, i.e high degree nodes

o Same solution as before, but by different rt
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Communication Mechanisms

o Shared addressing
n One consistent memory image; primitives are 

load and store
n Must protect locations from races
n Widely considered most convenient, though it 

is often tough to get a program to perform

n CTA implies that best practice is to keep as 
much of the problem private; use sharing only 
to communicate

A common pitfall: Logic is too fine grain 
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Communication Mechanisms

o Message Passing
n No global memory image; primitives are send() 

and recv()
n Required for most large machines
n User writes in sequential language with 

message passing library:
o Message Passing Interface (MPI)
o Parallel Virtual Machine (PVM)

n CTA implies that best practice is to build and 
use own abstractions

Lack of abstractions makes message passing brutal 
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Communication Mechanisms

o One Sided Communication
n One global address space; primitives are get() 

and put()
n Consistency is the programmer’s responsibility
n Elevating mem copy to a comm mechanism 
n Programmer writes in sequential language with 

library calls -- not widely available unfortunately
n CTA implies that best practice is to build and 

use own abstractions

One-sided is lighter weight than message passing
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Assignment for next week

o Read Chapter 3
o Homework Problem: Analyze the 

complexity of the Odd/Even Interchange 
Sort: Given array A[n], exchange o/e pairs 
if not ordered, then exchange e/o pairs if 
not ordered, then repeat until sorted

o Analyze in CTA model (i.e. for P, λ, d), and 
charge the o/e-e/o pair c time if operands 
are local; ignore all other local computation


