
1

1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

3 April 2007

2

Administrivia

o Grading: 20% HW, 70% Proj, 10% Talk
o Burn your book!

o Consumer software + CMPs
n MozoDojo, a graphic mosaic construction tool

o There a HW assigned at end today

MultiThreading : To make the best use possible of multi-core and
multi-processor machines, MozoDojo is heavily multithreaded. All
computations are dispatched on available processors. The
difference is huge between a single G4 and a CoreDuo processor.

Sign up for the email list

2

3

Review

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36

10

66+266

36

0+100

40

36+3036

76

0

0

Value?

Rule for
down flow?

4

Review Solution Send parent value
to left child; send
parent + left child
value to right child

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

3

5

Plan for today

o Parallel Hardware
n Shared: Multicore, SMP
n Distributed: Cluster, HPC Fire breather

o Models of Computation
n RAM
n PRAM
n CTA
n Reflection

o Communication modes
n Shared, Message Passing, One Sided

6

Flynn’s Taxonomy

o Michael Flynn had an early way to classify
machines, two forms of which are still used:

n SIMD -- single instruction, multiple data

n MIMD -- multiple instruction, multiple data

Flynn’s Taxonomy

Single
Data StreamInstruction Stream,

Multiple

Single

Multiple

Our interest is exclusively with MIMD

4

7

Digression on SIMD

o Applying one instruction to multiple values…
n Was important when memory was expensive

n Powerful for tight, “inner loop” crunching
n Performs in rigid lock-step w/apply|not protocol
n SIMD implements most parallelism inefficiently

Dilemma : How to get SIMD crunching power
with the flexibility needed to control program
logic efficiently? Cell is perhaps an answer.

Dilemma : How to get SIMD crunching power
with the flexibility needed to control program
logic efficiently? Cell is perhaps an answer.

8

The Problem w/Parallel Architectures

o The problem with parallel machines is
n They are different from sequential machines

n They are different from each other

o Both problems complicate programming

o Our solution: Adopt a machine model that
abstracts performance critical features

But first, Let’s look at some specific machines

5

9

Intel Core-Duo

10

Intel Core-Duo

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

6

11

MESI Protocol

o Standard Protocol for
cache - coherent
shared memory
n Mechanism for

multiple caches to give
single memory image

n We will not study it
n 4 states can be

amazingly rich

Thanks: Slater & Tibrewala of CMU

12

MESI, Intuitively

o Upon loading, a line is marked E,
subsequent reads are OK; write marks M

o Seeing another load, mark as S

o A write to an S, sends I to all, marks as M
o Another’s read to an M line, writes it back,

marks it S
o Read/write to an I misses
o Related scheme: MOESI (used by AMD)

7

13

AMD Dual Core Operton

14

AMD Dual Core Operton

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

8

15

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

Intel

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

AMD AMD

16

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD AMD AMD

9

17

SMP on a Bus

Bus

L1-I L1-D

Processor
P0

L2 Cache

Cache Control

Memory Memory Memory Memory

L1-I L1-D

Processor
P1

L2 Cache

Cache Control

L1-I L1-D

Processor
P2

L2 Cache

Cache Control

L1-I L1-D

Processor
P3

L2 Cache

Cache Control

18

SMP on a Bus

o The bus is a point that serializes references
o A serializing point is a shared mem enabler

Bus

L1-I L1-D

Processor
P0

L2 Cache

Cache Control

Memory Memory Memory Memory

L1-I L1-D

Processor
P1

L2 Cache

Cache Control

L1-I L1-D

Processor
P2

L2 Cache

Cache Control

L1-I L1-D

Processor
P3

L2 Cache

Cache Control

10

19

Sun Fire E25K

20

Cross-Bar Switch

o A crossbar is a network
connecting each processor
to every other processor

o Used in CMU’s 1971
C.MMP, 16 proc PDP-11s

o Crossbars grow as n2

making them impractical
for large n

B0

B1

B2

B3

11

21

Sun Fire E25K

o X-bar gives low latency for snoops allowing
for shared memory

o 18 x 18 X-bar is basically the limit

o Raising the number of processors per node
will, on average, increase congestion

o How could we make a larger machine?

22

Co-Processor Architectures

o A powerful parallel design is to add 1 or
more subordinate processors to std design
n Floating point instructions once implemented

this way
n Graphics Processing Units - deep pipelining
n Cell Processor - multiple SIMD units
n Attached FPGA chip(s) - compile to a circuit

o These architectures will be discussed later

12

23

Clusters

o Interconnecting
with InfiniBand

o Switch-based
technology
n Host channel

adapters (HCA)
n Peripheral

computer
interconnect (PCI)

Thanks: IBM’s Clustering sytems using InfiniBand Hardware

24

Clusters

o Cheap to build using commodity
technologies

o Effective when interconnect is “switched”
o Easy to extend, usually in increments of 1
o Processors often have disks “nearby”
o No shared memory
o Latencies are usually large
o Programming uses message passing

13

25

Supercomputer

o BlueGene/L

26

BlueGene/L Specs

o A 64x32x32 torus = 65K 2-core processors
o Cut-through routing gives a worst-case

latency of 6.4 µs
o Processor nodes are dual PPC-440 with

“double hummer” FPUs
o Collective network performs global reduce

for the “usual” functions
o #1 on November’s Top 500 at 280 TF

14

27

Summarizing Architectures

o Two main classes
n Complete connection: CMPs, SMPs, X-bar

o Preserve single memory image
o Complete connection limits scaling to …
o Available to everyone

n Sparse connection: Clusters, Supercomputers,
Networked computers used for parallelism (Grid)
o Separate memory images
o Can grow “arbitrarily” large
o Available to everyone with air conditioning

o Differences are significant; world views diverge

28

The Parallel Programming Problem

o Some computations can be platform specific
o Most should be platform independent

o Parallel Software Development Problem:
How do we neutralize the machine
differences given that
n Some knowledge of execution behavior is

needed to write programs that perform
n Programs must port across platforms

effortlessly, meaning, by at most recompilation

15

29

Options for Solving the PPP

o Leave the problem to the compiler …

30

Options for Solving the PPP

o Leave the problem to the compiler …
n Very low level parallelism (ILP) is already

being exploited
n Sequential languages cause us to introduce

unintentional sequentiality
n Parallel solutions often require a paradigm shift

n Compiler writers’ track record over past 3
decades not promising … recall HPF

n Bottom Line: Compilers will get more helpful,
but they probably won’t solve the PPP

16

31

Options for Solving the PPP

o Adopt a very abstract language that can
target to any platform …

32

Options for Solving the PPP

o Adopt a very abstract language that can
target to any platform …
n No one wants to learn a new language, no

matter how cool
n How does a programmer know how efficient or

effective his/her code is? Interpreted code?
n What are the “right” abstractions and

statement forms for such a language?
o Emphasize programmer convenience?
o Emphasize compiler translation effectiveness?

17

33

Options for Solving the PPP

o Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …

34

Options for Solving the PPP

o Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …
n Libraries are a mature technology

n To work with multiple languages, limit base
language assumptions … L.C.D. facilities

n Libraries use a stylized interface (fcn call)
limiting parallelism-specific abstractions possible

n Achieving consistent semantics is difficult

18

35

Options for Solving the PPP

o Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

36

Options for Solving the PPP

o Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …
n Not a full solution until languages are available

n The solution works in sequential world (RAM)
n Requires discovering (and predicting) what the

common capabilities are
n Solution needs to be (continually) validated

against actual experience

19

37

Options for Solving the PPP

o Leave the problem to the compiler …
o Adopt a very abstract language that can

target to any platform …
o Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create
libraries that work w/ sequential code …

o Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

38

Break

20

39

Reason by Analogy: RAM Model

o The Random Access Machine is our friend
n Control, ALU, (Unlimited) Memory, [Input, Output]

n Fetch/execute cycle runs 1 inst. pointed at by PC
n Memory references are “unit time” independent

of location
o Gives RAM it’s name in preference to von Neumann
o “Unit time” is not literally true, but caches fake it

n Executes “3-address” instructions

It’s so intuitive, it seems like there’s no other w ay to compute!

40

How To Use the RAM

o When reasoning about performance …
n Worry about how many instructions executed

because execution time proportional to cycles
n Treat memory references (operand fetch) as a

negligible part of the instruction execution
n Estimate time and space needs based on

increasing problem size, O(n)
o Linear search vs Binary search

n Crucial to effectively using C, etc.

21

41

Generalization of RAM: PRAM

o Parallel Random Access Machine (PRAM)
n Unlimited number of processors

n Processors are standard RAM machines,
executing synchronously

n Memory reference is “unit time”
n Outcome of collisions at memory specified

o EREW, CREW, CRCW …

o Model fails bc synchronous execution w/
unit cost memory reference does not scale

42

CTA Model

o Candidate Type Architecture: A model with
P standard processors, d degree, λ latency

o Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is λ

22

43

What CTA Doesn’t Describe

o CTA has no global memory … but memory
could be globally addressed

o Mechanism for referencing memory not
specified: shared, message passing, 1-side

o Interconnection network not specified

o λ is not specified beyond λ>>1 -- cannot be
because every machine is different

o Controller, combining network “optional”

44

Typical Values for λ

o Lambda can be estimated for any machine
(given numbers include no contention or
congestion)

5000BlueGene/LSuper

4100-5100Itanium + MyrinetCluster

400-660Sun Fire E25KSMP

100AMDCMP

As with merchandizing: It’s location, location, location!

23

45

PRAM Mispredicts Preferred Alg

o Consider finding maximum of n numbers
o Best algorithm

n CRCW PRAM: Valiant’s algorithm O(log log n)
n CTA Model: Tournament algorithm O(log n)

o Observed performance real implementation
n PRAM: O(log n log log n)
n CTA: O(log n)

o We do not want a model that directs us to
an impractical solution

46

Apply CTA to Count 3s

o How does CTA guide us for Count 3s pgm
n Array segments will be allocated to local mem

n Each processor should count 3s in its segment
n Global total should be formed using reduction
n Performance is

o Full parallelism for local processing

o λ log n for combining (and broadcast)
o Base of log should be large, i.e high degree nodes

o Same solution as before, but by different rt

24

47

Communication Mechanisms

o Shared addressing
n One consistent memory image; primitives are

load and store
n Must protect locations from races
n Widely considered most convenient, though it

is often tough to get a program to perform

n CTA implies that best practice is to keep as
much of the problem private; use sharing only
to communicate

A common pitfall: Logic is too fine grain

48

Communication Mechanisms

o Message Passing
n No global memory image; primitives are send()

and recv()
n Required for most large machines
n User writes in sequential language with

message passing library:
o Message Passing Interface (MPI)
o Parallel Virtual Machine (PVM)

n CTA implies that best practice is to build and
use own abstractions

Lack of abstractions makes message passing brutal

25

49

Communication Mechanisms

o One Sided Communication
n One global address space; primitives are get()

and put()
n Consistency is the programmer’s responsibility
n Elevating mem copy to a comm mechanism
n Programmer writes in sequential language with

library calls -- not widely available unfortunately
n CTA implies that best practice is to build and

use own abstractions

One-sided is lighter weight than message passing

50

Assignment for next week

o Read Chapter 3
o Homework Problem: Analyze the

complexity of the Odd/Even Interchange
Sort: Given array A[n], exchange o/e pairs
if not ordered, then exchange e/o pairs if
not ordered, then repeat until sorted

o Analyze in CTA model (i.e. for P, λ, d), and
charge the o/e-e/o pair c time if operands
are local; ignore all other local computation

