
1

CSE524 Parallel Computation

Lawrence Snyder
www.cs.washington.edu/CSEp524

27 March 2007

Course Logistics

o Teaching Assistant: Nathan Kuchta
o Text at Prof. Copy & Print, 4200, “The Ave”

o Class web page is our headquarters
o Take lecture notes -- the slides will be online

sometime after lecture
o Occasional homework problems, mostly

programming assignments
o Modest Project during last 2-3 weeks

Please ask questions when they arise

2

Text: Principles of Parallel Pgmming

o Why use it? For this class it’s better than any
book published

o It is a work in progress -- please be patient
o It has benefited from one pass by another class
o You can have a huge impact by commenting on:

n Mention all organizational issues, confusions, poor
explanations, technical errors, e.g. programming
errors, etc.

n Editors will scrub the text: Ignore spelling errors,
grammar errors, punctuation errors, etc.

n Use anonymous email for “private comments”

You may learn a lot about book writing!You may learn a lot about book writing!

Why Study Parallelism?

o After all, for most of our daily computer
uses, sequential processors are plenty fast
n It is a fundamental departure from the “normal”

computer model, therefore inherently cool
n The extra power from parallel computers is

enabling in science, engineering, business, …
n

n

n

3

Topic Overview

o Goal: To give a good idea of parallel computation
n Concepts -- looking at problems with “parallel eyes”
n Algorithms -- different resources; different goals
n Languages -- reduce control flow; increase

independence; new abstractions
n Hardware -- the challenge is communication, not

instruction execution
n Programming -- describe the computation without

saying it sequentially
n Practical wisdom about using parallelism

Familiar Parallel Techniques

o SETI and BOINC techniques -- zillions of
independent problem instances

o Pipelining -- perform multiple instances of a
multi-step operation

o Overlapping computation and
communication -- OS task switching

o Carry Look-ahead Adders -- logarithmic
circuit to compute carries

4

Non-Parallel Techniques

o Distributed computing, e.g. client/server
structure, is not usually parallel

o Divide-and-conquer is usually limited by
“sending and receiving” the data instances

o Techniques that assume nc processors for
n size problem

o Almost all techniques that focus on
reducing operation counts and building
complex data structures

Parallel vs Distributed Computing

o Comparisons are often matters of degree

Not AssumedAssumedReliable

CoarseFineGranularity

InfrequentFrequentInteractions

ConvenienceSpeedOverall Goal

DistributedParallelCharacteristic

5

Changing Paradigms

o Sequential summation to tree-based
summation
n Same number of operations; different order

246 810 16 1416

10
26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix

o Sweep up, sweep down

6 10 26 36 52 66 68 76

6

Fundamental Tool of || Pgmming

o Original research on parallel prefix
algorithm published by

R. E. Ladner and M. J. Fischer

Parallel Prefix Computation
Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm
requires twice as much time as
simple tournament global sum

The Ladner-Fischer algorithm
requires twice as much time as
simple tournament global sum

Applies to a wide class of operations

Write A Small Parallel Program

o Need to know something about machine …
use multicore architecture

L2

RAM
Memory

L1L1

P0 P1

7

Count 3s Problem

o Ideal solution …
n Sequential program

n + compiler magic

count = 0;
for (i=0; i<size; i++)

{
if (array[i] == 3)

count += 1;
}

count = 0;
for (i=0; i<size; i++)

{
if (array[i] == 3)

count += 1;
}

Compilers “Can’t” Convert to ||ism

o Effort to compile to ||ism began in 1970s
o Research has occupied some of the best

compiler writers

o Progress has been achieved
o Success so far limited to simple, clean cases

Intuition for low expectations : Fundamentally, compilers
apply correctness preserving transformations … but
generally, a parallel solution requires a paradigm shift
from the sequential approach

Intuition for low expectations : Fundamentally, compilers
apply correctness preserving transformations … but
generally, a parallel solution requires a paradigm shift
from the sequential approach

8

Try 1: Divide Into Separate Parts

o Threading solution

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16 t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;
int start = id * length_per_thread;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)

count += 1;
}

int length_per_thread = length/t;
int start = id * length_per_thread;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)

count += 1;
}

Try 1: Races

o Two processes interfere on memory writes

Thread 1 Thread 2
count ⇔ 0

time

count ⇔ 1
count ⇔ 1

Thread 1 Thread 2
count ⇔ 0

time

count ⇔ 1
count ⇔ 1

load

increment
store

load
increment

store

9

Try 2: Protect Memory References

o Protect Memory References

mutex m;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)

{
mutex_lock(m);
count += 1;

mutex_unlock(m);
}

}

mutex m;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)

{
mutex_lock(m);
count += 1;

mutex_unlock(m);
}

}

Try 2: Correct Program Runs Slow

o Serializing at the mutex
n The processors wait on each other

Performance

serial Try 2

0.91

5.02
6.81

t=1 t=2

10

Closer Look

o Lock Reference and Contention

L2

RAM
Memory

L1L1

P0 P1

mutex m;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)

{
mutex_lock(m);
count += 1;

mutex_unlock(m);
}

}

mutex m;
for (i=start; i<start+length_per_thread; i++)

{
if (array[i] == 3)

{
mutex_lock(m);
count += 1;

mutex_unlock(m);
}

}

Try 3: Accumulate Into Private Count

o Each processor adds into its own memory;
combine at the end

for (i=start; i<start+length_per_thread; i++)
{

if (array[i] == 3)
{

private_count[t] += 1;
}

}
mutex_lock(m);
count += private_count[t];

mutex_unlock(m);

for (i=start; i<start+length_per_thread; i++)
{

if (array[i] == 3)
{

private_count[t] += 1;
}

}
mutex_lock(m);
count += private_count[t];

mutex_unlock(m);

11

Try 3: Keeping Up, But Not Gaining

o Sequential and 1 processor match, but it’s
a loss with 2 processors

0.91
Performance

serial Try 3

0.91 1.15

t=1 t=2

Try 3: False Sharing

o Private var ≠ private cache-line

private_count[0]

private_count[1]

Thread modifying
private_count[0]

private_count[0]

private_count[1]

Thread modifying
private_count[1]

private_count[0] private_count[1]

L2

RAM
Memory

L1L1

P0 P1

12

Try 4: Force Into Different Lines

o Padding the private variables forces them
into separate cache lines and removes
false sharing

struct padded_int
{

int value;
char padding[128];

} private_count[MaxThreads];

struct padded_int
{

int value;
char padding[128];

} private_count[MaxThreads];

Success!!

o Two processors are almost twice as fast

Is this the best solution???

Performance

serial Try 4

0.91 0.51
t=1 t=2

0.91

13

Break

Our Goals In Parallel Programming

o Goal: Scalable programs with performance
and portability
n Scalable: More processors can be “usefully”

added to solve the problem faster
n Performance: Programs run as fast as those

produced by experienced parallel
programmers for the specific machine

n Portability: The programs run well on all
parallel platforms

14

Challenges of Parallel Programming

o Has different costs, different advantages
o Requires different, unfamiliar algorithms
o Must use different abstractions
o More complex to understand a program’s

behavior
o More difficult to control the interactions of

the program’s components
o Knowledge/tools/understanding more

primitive

Program A Parallel Sum

o Return to problem of writing a parallel sum
o Sketch solution in class

15

Program A Parallel Sum

o Return to problem of writing a parallel sum
o Sketch solution in class

o when n > P

Program A Parallel Sum

o Return to problem of writing a parallel sum
o Sketch solution in class

o when n > P
o and communication time = 30 ticks

16

Program A Parallel Sum

o Return to problem of writing a parallel sum
o Sketch solution in class

o when n > P
o and communication time = 30 ticks
o n = 1024, P = 8
o compute performance

Program A Parallel Sum

o Return to problem of writing a parallel sum
o Sketch solution in class

o when n > P
o and communication time = 30 ticks
o n = 1024
o compute performance
o Now scale to 64 processors

This analysis will become standard, intuitive

17

Matrix Product: || Poster Algorithm

o Matrix multiplication is most studied parallel
algorithm (analogous to sequential sorting)

o Many solutions known
n Illustrate a variety of complications
n Demonstrate great solutions

o Our goal: explore variety of issues
n Amount of concurrency
n Data placement
n Granularity

Exceptional by requiring O(n3) ops on O(n2) data

Recall the computation…

o Matrix multiplication of (square n x n)
matrices A and B producing n x n result C
where Crs � ≤k≤n Ark *Bks

C A B

+*
1

1
= +*

2

2
*

n

n
… +

=

18

Extreme Matrix Multiplication

o The multiplications are independent (do in
any order) and the adds can be done in a
tree

*
1

1
*

2

2
*

3

3

...

*
n

n

...

=

+ +

+

O(n) processors
for each result
element implies
O(n3) total

Time: O(log n)

O(n) processors
for each result
element implies
O(n3) total

Time: O(log n)

Strassen Not
Relevant

O(log n) MM in the real world …

Good properties
n Extremely parallel … shows limit of

concurrency
n Very fast -- log2 n is a good bound … faster?

Bad properties
n Ignores memory structure and reference

collisions
n Ignores data motion and communication costs
n Under-uses processors -- half of the

processors do only 1 operation

19

Where is the data?

o Data references collisions and communication costs
are important to final result … need a model … can
generalize the standard RAM to get PRAM

P3

A BC

Memory

P7P6P5P4P2P1P0

Parallel Random Access Machine

o Any number of processors, including nc

o Any processor can reference any memory in “unit
time”

o Resolve Memory Collisions
n Read Collisions -- simultaneous reads to location are OK
n Write Collisions -- simultaneous writes to loc need a rule:

o Allowed, but must all write the same value
o Allowed, but value from highest indexed processor wins
o Allowed, but a random value wins
o Prohibited

Caution: The PRAM is not model we advocate

20

PRAM says O(log n) MM is good

o PRAM allows any # processors => O(n2) OK
o A and B matrices are read simultaneously,

but that’s OK

o C is written simultaneously, but no location
is written by more than 1 processor => OK

PRAM model implies O(log n) algorithm is
best … but in real world, we suspect not
PRAM model implies O(log n) algorithm is
best … but in real world, we suspect not

We return to this point next week

Where else could data be?

o Local memories of separate processors …

o Each processor could compute block of C
n Avoid keeping multiple copies of A and B

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers

21

Data Motion

o Getting rows and columns to processors

n Allocate matrices in blocks

n Ship only portion being used

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp

Blocking Improves Locality

o Compute a b x b block of the result

o Advantages
n Reuse of rows, columns = caching effect

n Larger blocks of local computation = hi locality

A BC

22

Caching in Parallel Computers

o Blocking = caching … why not automatic?
n Blocking improves locality, but it is generally a

manual optimization in sequential computation
n Caching exploits two forms of locality

o Temporal locality -- refs clustered in time
o Spatial locality -- refs clustered by address

o When multiple threads touch the data,
global reference sequence may not exhibit
clustering limited to one thread -- thrashing

Sweeter Blocking

o It’s possible to do even better blocking …

o Completely use the cached values before
reloading

A BC

23

Best MM Algorithm?

o We haven’t decided on a good MM solution
o A variety of factors have emerged

n A processor’s connection to memory, unknown
n Number of processors available, unknown
n Locality--always important in computing--

o Using caching is complicated by multiple threads
o Contrary to high levels of parallelism

o Conclusion: Need a better understanding of
the constraints of parallelism

Next week, architectural details + model of ||ism

Next Week …

o Read Chapter 2 and study the CTA
n You may need to answer questions on it …

