
1

Parallel Computation Trends
and Summary

The ideas we have learned are a significant part of today’s
computing scene--from the HPC level downward. We identify

recent trends as a summary of the ideas learned.

2

Parallel Computation Trends

• Multi-threading -- Tolerate Latency
– HEP
– Alewife
– Tera
– SMT

• Multi-core Chips -- Use Si Well
• Cell -- Battle Latency Problems, Use Si Well

3

Latency -- Just Do Something Else

In theory a memory delay of λλλλ is not a show-
stopper; simply switch to other work while
waiting for a memory value to be returned

Requires (in theory) P log P threads, but it’s
actually λλλλP+, and grows however λ λ λ λ grows*

Threads are often abundant, but it is difficult
always to have λλλλP threads at each moment,
e.g. at decision points

* Which is a lot, recently

4

Hardware Implementations

• The idea of switching to execute instructions
from another thread when memory latency
stalls processor has been around a long time

• Early Honeywell machines used related ideas

• Denelcor HEP (~1982) designed by Burton Smith had 8
threads “in the air” at once

• The 1990s saw several efforts to build such machines

• We will check out two designs
• Alewife from Anant Agarwal’s group at MIT
• The Tera Computer from Burton Smith

5

The Hardware Solutions
• Focus on keeping 1 processor busy in the

presence of long latencies to shared memory,
but expect to use many such processors

• Use multithreading

• Requires no special software as long as the compiler can
produce more threads than processors

• Handles both predictable and unpredictable situations

• Handles long latencies even as they grow
• Doesn’t affect the memory consistency model, i.e. shared

variables must be locked or use other mechanism

utilization = work_time
work_time+switching+idle

6

Two Techniques for Multi-threading

• Blocked multithreading [Alewife] is like
timesharing … continue to execute until the
thread is blocked, then switch

• Has lower hardware impact

• Good single thread performance

• Interleaved multithreading [Tera] switches
execution on threads on each cycle

• Lower logical switching penalty

• Greater impact on hardware design

• Keeping multiple contexts is essential

7

Four Threads Using Blocked Approach
• Threads make memory reference every few

instructions -- 3 tick switch penalty
A

B

C

D

x x x x x x x x

x x x x x x x x x x

x x x
Memory Latency

i i

i i

8

Utilization of Blocked Approach

• Total instruction times: 45
• Total work instructions: 24
• Total switch time: 21
• Total wait time: 0
• Utilization = 24/45 = 53%

x x x x x x x x

x x x x x x x x x x

x x xi i

9

Benefits of Available Threads
• For the blocked approach the availability of

ready threads improves utilization

Number of threads

1 2 3 4 5 6 ...

P
ro

ce
ss

or
 U

til
iz

at
io

n 1.0

0.8

0.6

0.4

0.2

Switching time is
overhead that is not
recovered

Switching time is
overhead that is not
recovered

10

Six Threads With Interleaved Approach

A

B

C

D i i

E

F

Utilization is 24/27
or 89%
Utilization is 24/27
or 89%

11

Basics of Tera Design

• Instructions are [arithmetic, control, memory]
or [arithmetic, arithmetic, memory]

• Ready instructions issue on each tick, but
there is a 16 tick minimum issue delay for
consecutive instructions from a thread

T
Converts
latency
from 15
ticks to 69
… U = 7%

Converts
latency
from 15
ticks to 69
… U = 7%

12

Six Threads Revisited (Tera Design)

A

B

C

D

E

F Utilization is
23/70 or 33%
Utilization is
23/70 or 33%

i i

i

13

More On Tera

• Since there is a 16 instruction minimum issue
delay, it takes 16 threads to execute
sequentially without latency hiding

• Each (memory) instruction has a 3 bit tag
telling how many instructions forward are
independent of this memory reference (in this
thread)

• Average memory latency without contention
is 70 cycles

14

Still More On Tera

• Each processor has 128 full contexts
• Synchronization latency can even be covered
• When everything works, the Tera should

approximate a PRAM

Think of the Bulk Synchronous model with
completely decentralized supersteps
Think of the Bulk Synchronous model with
completely decentralized supersteps

15

SMT (Simultaneous Multithreading)

Parallel computation applied to serial processor
Superscalar machines can execute n

instructions per tick--but many slots not used

tim
e

tim
e

Instruction execution slot filled by green task

SMT

16

SMT Potential

• Consider 8-issue
superscalar … only
the black area is
useful work

• Processor designs
apply SMT

17

Multi-Core Processor Chips
• Why multi-core?

– Cynic says, how else can the Si be used?
– Marketing says, “multi-core advantages include a

better ratio of performance to power usage, less
heat dissipation, and a smaller physical footprint.
One prime market for multi-core SoCs appears to
be networking equipment such as firewalls that
deeply inspect packets or perform compute-
intensive spam filtering.”

• New multi-cores are SMP-on-a-chip
• Gang Broadcom (up to 8) chips together to get

ccNUMA through HyperTransport

18

Cell Computers

Cell computers were announced in the October
‘04 to much fanfare, and were hailed as a
major advance in performance

• Cooperative design by IBM, Sony and
Toshiba

• Details remain sketchy, but basics are clear
• The design has enormous floating-point power, making it

ideal for games, DSP, scientific and HPC computing

• The processor will become a building block for HPC
machines

• Programming to exploit power will be tough

19

Performance Is Tied To Interconnect
Cell Chip

Package has 1236 contacts: 506 are signals
44.8 GB/s Out, 32GB/s In, 25 GB/s Memory

DRAM System
Interface

20

Specs
• Clock speed over 4GHz.
• 100 GBytes per second aggregate Memory & I/O speed:
• Dual XDR controller gives 25.6 GBytes per second.
• Dual configurable interfaces give 76.8 GBytes per second.
• Memory currently limited to 256 MB per Cell (this applies to direct

connections only, additional memory can be accessed via I/O) .
• 8 X "SPEs", 128 bit vector engines, 128 registers each.• 2 instructions issued

per cycle per SPE.
• Peak = 256 GigaFlops (SP), Double precision math operations supported.
• 256KBytes "Local Store" per SPE.
• Internal communication is via 4 X 128 bit rings, up to 96 Bytes per cycle.
• PPE can handle 2 threads
• PPE includes VMX.
• PPE includes 512 KBytes Cache.
• 234 million transistors• 90nm SOI, Low K, 8 layers of metal & Copper

interconnect

21

Overall Cell Design

• PPC=PowerPC
• PPC CPU=PPE
• LSU=load/store unit
• SPE=SIMD or
synergistic proc elem
• EIB=element inter-
connect bus

22

General Purpose Processing

• The PPE is a simplified PowerPC with the
usual L1 cache, VM, FPU, etc.

• Dual-issue in order SMT--probably one issue/thread

• Very simplified issue logic and pipeline

• Primary task is to orchestrate the SPEs

23

SIMD Processing Elements
• 128-bit FP pipelined processor
• 128 GPRs
• Four private memory units with 256KB

capacity (total)
– Separate from system memory
– Not Coherent
– 6 cycle latency, SRAM

• Smallest addressable unit is 1024 bits
• 18 cycle branch prediction latency
• VMX ISA (nonstandard)
• Each instruction sources 3 operands and

produces 1 result

24

Summarizing CSE524

• But, first, a break

25

Our Original Goal

Goal: To give a good idea of parallelism
– Concepts -- look at problems with “parallel eyes”
– Algorithms -- different resources to work with
– Programming -- describe the computation without

saying it sequentially
– Languages -- reduce control flow; increase

independence
– Architecture -- HW support to share memory not?
– Hardware -- the challenge is communication, not

instruction execution

Start with HW, and review (pop) to Concepts ... Start with HW, and review (pop) to Concepts ...

26

Routing
• Chaos routing is effective because “non-

minimal” adaptivity can by-pass congestion
– Light traffic, randomize routes over a regular,

symmetric, consistent networks, avoids creating
hot spots; no point where packets can get “stuck”

– Moderate traffic, wait in a node for a route to clear,
this is better than “hot potato” which must route

– Heavy traffic and faults, deroute in the wrong
direction to move around the problem

Higher throughput, lower latency, higher load-
carrying capacity than other routers
Higher throughput, lower latency, higher load-
carrying capacity than other routers

27

Chaos Routing (continued)
• Deadlock is not possible because of packet

exchange protocol
• Probabilistically livelock-free,

– As good or better than deterministically livelock-
free in practice

– Solves difficult (but rare) problem for adaptive
routers by randomizing, and gambling

• Chaos is not perfect; not good with wormhole
– Inefficient for long messages; use two nets or pick

a variable length packet with large-ish maximum

28

Networks
• Full cross-bar is not practical
• Direct and Indirect Networks are alternatives

– Indirect, e.g. Ω-network
• Has only “long” paths of O(log P), no nearest neighbor

• Multiple references to a location can collide, so try
combining at the switches

• In fact, exploit combining with Fetch&Add -- it’s better for
shared memory than Test&Set because it “schedules”

• Both Fetch&Adds and Load/Stores can be combined

• Combining requires “smart” switches that slow net

• Analysis shows combining opportunities are rare; hot
spots due to colliding references to different locations is
the problem

F&A + combine is smart but flawed F&A + combine is smart but flawed

29

Networks (continued)
• Direct Networks

– Short, nearest neighbor paths are available
– Adaptive routing techniques are available
– Much more asynchronous; NIC is extra processor
– Different load properties for different architectures

• Non-shared memory, network carries little overhead

• Shared memory, network carries coherency protocol
messages, which can be “proportional to the sharing”

– n-ary, d-cubes are realistic topologies
• Torus is better because of symmetry

• Fat trees also work; hypercube has “log P node degree”

Direct (regular) networks are only choice Direct (regular) networks are only choice

30

Architecture
Main architecture decision: hardware support

for shared memory or not?
– Non-shared memory architectures are successful

• Simpler designs, means faster designs

• Leave memory management to software/programmer
• A single address space is easy and useful

• “Proper HW support for shared memory” is still unknown
and getting less realistic as technology improves

• Avoid message passing and its copy/marshal overhead

• One-sided communication (shmem) is very efficient
because it reduces communication’s synchronization

• Shmem allows “strided communication” with pipelining

Single address space, 1-sided communication is bestSingle address space, 1-sided communication is best

31

Architecture (continued)
• Shared memory

– Technically very difficult -- and therefore slow -- to
keep memory coherent

– DSM can be implemented by a directory scheme
• Record sharers/dirty features for each cache line

• Directory can double the memory requirements of
machines, though some simplifications are possible

• Follow distributed version of coherency protocol because
no bus for defining “timing sequence”; use mem location

• Invalidations, acknowledgements increase with sharing

DSM best when not used, i.e. manage mem yourselfDSM best when not used, i.e. manage mem yourself

32

Architecture (continued)
• Symmetric-multiprocessors (SMPs) are an

effective way to share memory on a small
scale

• Cache controllers snoop memory bus

• The bus becomes the “time sequencing” point of the
system, where modification order is defined

• Various protocols speed performance with greater
complexity

• Bus is serially used, limiting generalization to small #s

SMP is a standard architecture SMP is a standard architecture

33

Languages
• Shared memory is difficult to use (races,

synch); not efficiently implemented
• Message passing with sequential language (C |

Fortran) + (MPI | PVM) is current standard
– Least common denominator -- runs everywhere
– A huge amount of work (6x code explosion)
– Only the API is standard; semantics vary, making

any program implementation-specific; limit
portability

– Message passing is costly on architectures with
“good” communication, e.g. 1-sided, SMP

Use msg passing if you must; but there’s a better way Use msg passing if you must; but there’s a better way

34

Languages (continued)
• ZPL 1st (and still only) parallel language with

performance model (WYSIWYG)
– Designed from first principles to help programmers
– No explicit concurrency, communication, or synch.
– Programmer is insulated from details, but it is

possible to write efficient solutions with WYSIWYG
– Compiler is heavily optimized, both seq. and para.
– The communication abstraction is Ironman -- four

procedures that mark sender’s/receiver’s active
regions -- uses native communication of machine

ZPL is convenient and efficient ZPL is convenient and efficient

35

Languages (continued)
• ZPL’s performance model

– Allows programmers “to keep their distance” from
the implementing hardware -- portable!

– Relies on abstract machine -- CTA
• CTA gives key structural information, memory reference

time, processors, characteristics of interconnection net

• CTA gives parallel costs; vN defines sequential costs

• Give ZPL’s runtime model, work & data allocation

• Describe costs of ZPL’s constructs in CTA terms

– No absolute performance possible, but relative is
good enough for quality programming -- performs!

The most significant idea of this class The most significant idea of this class

36

Programming
Everyone thinks shared memory is the natural

parallel extension of sequential computing:
“Ignore memory reference time like vN model,
and let HW give the flat memory illusion”

• Memory reference time is key to good algs:
– Find maximum is the example

• Best ignore-memory-time (PRAM) is Valiant O(log log P)

• Best consider-memory-time (CTA) is tournament O(log P)

• (Actual?) implementation of Valiant’s alg O(log P loglog P)

• Actual implementation of tournament O(log P)

PRAM hides a critical cost => it’s hard to get results PRAM hides a critical cost => it’s hard to get results

37

Programming (continued)
• The CTA replaces the PRAM as a realistic,

but still abstract model of parallel computation
– CTA models all existing hardware, but is “far

enough away” to be independent of all
– CTA is concerned with a few features, processors,

non-local memory reference time, λ, interconnect,
which has unspecified topology, low degree

– Practicing programmers writing message passing
code are in effect using the CTA

– CTA is key to expressing costs of HLL like vN

A machine model separates SW & HW development A machine model separates SW & HW development

38

Concepts
• The powerful parallel computation ideas are:

– Pipelining, perform some operations and then pass
the task along for completion by other units

– Overlap, perform communication & computation
simultaneously since they need separate resources

– Partition, form independent (as possible) tasks and
assign separate processors to each

– Most parallel algorithms use a combination of these
• Languages should support these concepts

• ZPL does overlap and partitioning for all computations up to
available resources, and has abstraction for pipelining

More abstractly: Decompose into independent parts More abstractly: Decompose into independent parts

39

Concepts (continued)
• Matrix multiplication -- the most studied

parallel algorithm
– Many solutions; van de Geijn,Watts SUMMA best

• Uses broadcast communication of rows/columns

• Restructures the problem to “use data completely”
• Efficiently uses temporary space

• Most natural and convenient (and efficient) ZPL program

• Other algs show ‘problem space promotion’ technique

Problem space promotion is a parallel programming
technique in which a problem with d dimensional data
d is logically solved in a higher dimension, usually d+1

Problem space promotion is a parallel programming
technique in which a problem with d dimensional data
d is logically solved in a higher dimension, usually d+1

Avoid iterationAvoid iteration

40

Concepts (continued)
• Summary for successful parallel computation

– Rather than using a shared memory abstraction,
use the CTA model; it reflects costs accurately

– Use ZPL for programming to get convenience,
speed and portability; use MP as last resort

– Be suspicious of claims like the “problems” with
shared memory have been solved by new machine

– When choosing architecture, prefer support for
global addressing, 1-sided communication, point-to-
point network, (randomizing) non-minimal adaptive
routing, SMP nodes

The perfect parallel machine has yet to be built The perfect parallel machine has yet to be built

41

Summary’s Summary

• This has been a very enjoyable class to teach
• Good luck with the remainder of your MS

degree

