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Parallel Computation Trends 
and Summary

The ideas we have learned are a significant part of today’s 
computing scene--from the HPC level downward. We identify 

recent trends as a summary of the ideas learned.    
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Parallel Computation Trends

• Multi-threading -- Tolerate Latency
– HEP
– Alewife
– Tera
– SMT

• Multi-core Chips -- Use Si Well
• Cell -- Battle Latency Problems, Use Si Well
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Latency -- Just Do Something Else

In theory a memory delay of λλλλ is not a show-
stopper; simply switch to other work while 
waiting for a memory value to be returned

Requires (in theory) P log P threads, but it’s 
actually λλλλP+, and grows however λ λ λ λ grows*

Threads are often abundant, but it is difficult 
always to have λλλλP threads at each moment, 
e.g. at decision points

________________
* Which is a lot, recently
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Hardware Implementations

• The idea of switching to execute instructions 
from another thread when memory latency 
stalls processor has been around a long time

• Early Honeywell machines used related ideas

• Denelcor HEP (~1982) designed by Burton Smith had 8 
threads “in the air” at once

• The 1990s saw several efforts to build such machines

• We will check out two designs
• Alewife from Anant Agarwal’s group at MIT
• The Tera Computer from Burton Smith
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The Hardware Solutions
• Focus on keeping 1 processor busy in the 

presence of long latencies to shared memory, 
but expect to use many such processors

• Use multithreading

• Requires no special software as long as the compiler can 
produce more threads than processors

• Handles both predictable and unpredictable situations

• Handles long latencies even as they grow
• Doesn’t affect the memory consistency model, i.e. shared 

variables must be locked or use other mechanism

utilization =         work_time
work_time+switching+idle 
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Two Techniques for Multi-threading

• Blocked multithreading [Alewife] is like 
timesharing … continue to execute until the 
thread is blocked, then switch

• Has lower hardware impact

• Good single thread performance

• Interleaved multithreading [Tera] switches 
execution on threads on each cycle

• Lower logical switching penalty

• Greater impact on hardware design

• Keeping multiple contexts is essential
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Four Threads Using Blocked Approach
• Threads make memory reference every few 

instructions -- 3 tick switch penalty
A

B

C

D

x x x x x x x x

x x x x x x x x x x

x x x
Memory Latency

i i

i i



8

Utilization of Blocked Approach

• Total instruction times: 45
• Total work instructions: 24
• Total switch time: 21
• Total wait time: 0
• Utilization = 24/45 = 53%

x x x x x x x x

x x x x x x x x x x

x x xi i
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Benefits of Available Threads
• For the blocked approach the availability of 

ready threads improves utilization

Number of threads

1   2 3   4   5   6 ...

P
ro

ce
ss

or
 U

til
iz

at
io

n 1.0

0.8

0.6

0.4

0.2

Switching time is 
overhead that is not 
recovered

Switching time is 
overhead that is not 
recovered



10

Six Threads With Interleaved Approach
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Basics of Tera Design

• Instructions are [arithmetic, control, memory] 
or [arithmetic, arithmetic, memory]

• Ready instructions issue on each tick, but 
there is a 16 tick minimum issue delay for 
consecutive instructions from a thread

T
Converts 
latency 
from 15 
ticks to 69 
… U = 7% 

Converts 
latency 
from 15 
ticks to 69 
… U = 7% 
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Six Threads Revisited (Tera Design)
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More On Tera 

• Since there is a 16 instruction minimum issue 
delay, it takes 16 threads to execute 
sequentially without latency hiding

• Each (memory) instruction has a 3 bit tag 
telling how many instructions forward are 
independent of this memory reference (in this 
thread)

• Average memory latency without contention 
is 70 cycles
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Still More On Tera

• Each processor has 128 full contexts
• Synchronization latency can even be covered
• When everything works, the Tera should 

approximate a PRAM

Think of the Bulk Synchronous model with 
completely decentralized supersteps
Think of the Bulk Synchronous model with 
completely decentralized supersteps
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SMT (Simultaneous Multithreading)

Parallel computation applied to serial processor
Superscalar machines can execute n 

instructions per tick--but many slots not used 

tim
e

tim
e

Instruction execution slot filled by green task

SMT
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SMT Potential

• Consider 8-issue
superscalar … only 
the black area is 
useful work

• Processor designs 
apply SMT 
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Multi-Core Processor Chips
• Why multi-core?

– Cynic says, how else can the Si be used?
– Marketing says, “multi-core advantages include a 

better ratio of performance to power usage, less 
heat dissipation, and a smaller physical footprint. 
One prime market for multi-core SoCs appears to 
be networking equipment such as firewalls that 
deeply inspect packets or perform compute-
intensive spam filtering.”

• New multi-cores are SMP-on-a-chip
• Gang Broadcom (up to 8) chips together to get 

ccNUMA through HyperTransport
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Cell Computers

Cell computers were announced in the October 
‘04 to much fanfare, and were hailed as a 
major advance in performance

• Cooperative design by IBM, Sony and 
Toshiba

• Details remain sketchy, but basics are clear
• The design has enormous floating-point power, making it 

ideal for games, DSP, scientific and HPC computing

• The processor will become a building block for HPC 
machines

• Programming to exploit power will be tough
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Performance Is Tied To Interconnect
Cell Chip

Package has 1236 contacts: 506 are signals
44.8 GB/s Out, 32GB/s In, 25 GB/s Memory 

DRAM System 
Interface
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Specs
• Clock speed over 4GHz.
• 100 GBytes per second aggregate Memory & I/O speed:
• Dual XDR controller gives 25.6 GBytes per second.
• Dual configurable interfaces give 76.8 GBytes per second.
• Memory currently limited to 256 MB per Cell (this applies to direct 

connections only, additional memory can be accessed via I/O) .
• 8 X "SPEs", 128 bit vector engines, 128 registers each.• 2 instructions issued 

per cycle per SPE.
• Peak = 256 GigaFlops (SP), Double precision math operations supported.
• 256KBytes "Local Store" per SPE.
• Internal communication is via 4 X 128 bit rings, up to 96 Bytes per cycle.
• PPE can handle 2 threads 
• PPE includes VMX.
• PPE includes 512 KBytes Cache.
• 234 million transistors• 90nm SOI, Low K, 8 layers of metal & Copper 

interconnect
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Overall Cell Design

• PPC=PowerPC
• PPC CPU=PPE
• LSU=load/store unit
• SPE=SIMD or
synergistic proc elem
• EIB=element inter-
connect bus
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General Purpose Processing

• The PPE is a simplified PowerPC with the 
usual L1 cache, VM, FPU, etc.

• Dual-issue in order SMT--probably one issue/thread

• Very simplified issue logic and pipeline

• Primary task is to orchestrate the SPEs
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SIMD Processing Elements 
• 128-bit FP pipelined processor
• 128 GPRs
• Four private memory units with 256KB 

capacity (total)
– Separate from system memory
– Not Coherent
– 6 cycle latency, SRAM 

• Smallest addressable unit is 1024 bits
• 18 cycle branch prediction latency
• VMX ISA (nonstandard)
• Each instruction sources 3 operands and 

produces 1 result
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Summarizing CSE524

• But, first, a break
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Our Original Goal

Goal:  To give a good idea of parallelism
– Concepts -- look at problems with “parallel eyes”
– Algorithms -- different resources to work with
– Programming -- describe the computation without 

saying it sequentially
– Languages -- reduce control flow; increase 

independence
– Architecture -- HW support to share memory not?
– Hardware -- the challenge is communication, not 

instruction execution

Start with HW, and review (pop) to Concepts ... Start with HW, and review (pop) to Concepts ... 
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Routing
• Chaos routing is effective because “non-

minimal” adaptivity can by-pass congestion
– Light traffic, randomize routes over a regular, 

symmetric, consistent networks, avoids creating 
hot spots; no point where packets can get “stuck” 

– Moderate traffic, wait in a node for a route to clear, 
this is better than “hot potato” which must route

– Heavy traffic and faults, deroute in the wrong 
direction to move around the problem

Higher throughput, lower latency, higher load-
carrying capacity than other routers
Higher throughput, lower latency, higher load-
carrying capacity than other routers
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Chaos Routing (continued)
• Deadlock is not possible because of packet 

exchange protocol
• Probabilistically livelock-free, 

– As good or better than deterministically livelock-
free in practice 

– Solves difficult (but rare) problem for adaptive 
routers by randomizing, and gambling

• Chaos is not perfect; not good with wormhole
– Inefficient for long messages; use two nets or pick 

a variable length packet with large-ish maximum 
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Networks
• Full cross-bar is not practical 
• Direct and Indirect Networks are alternatives

– Indirect, e.g. Ω-network
• Has only “long” paths of O(log P), no nearest neighbor

• Multiple references to a location can collide, so try 
combining at the switches

• In fact, exploit combining with Fetch&Add -- it’s better for 
shared memory than Test&Set because it “schedules”

• Both Fetch&Adds and Load/Stores can be combined

• Combining requires “smart” switches that slow net

• Analysis shows combining opportunities are rare; hot 
spots due to colliding references to different locations is 
the problem

F&A + combine is smart but flawed F&A + combine is smart but flawed 
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Networks (continued)
• Direct Networks

– Short, nearest neighbor paths are available
– Adaptive routing techniques are available
– Much more asynchronous; NIC is extra processor
– Different load properties for different architectures

• Non-shared memory, network carries little overhead

• Shared memory, network carries coherency protocol 
messages, which can be “proportional to the sharing”

– n-ary, d-cubes are realistic topologies
• Torus is better because of symmetry

• Fat trees also work; hypercube has “log P node degree”

Direct (regular) networks are only choice Direct (regular) networks are only choice 
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Architecture
Main architecture decision: hardware support 

for shared memory or not?
– Non-shared memory architectures are successful

• Simpler designs, means faster designs

• Leave memory management to software/programmer
• A single address space is easy and useful

• “Proper HW support for shared memory” is still unknown 
and getting less realistic as technology improves

• Avoid message passing and its copy/marshal overhead

• One-sided communication (shmem) is very efficient 
because it reduces communication’s synchronization

• Shmem allows “strided communication” with pipelining

Single address space, 1-sided communication is bestSingle address space, 1-sided communication is best
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Architecture (continued)
• Shared memory

– Technically very difficult -- and therefore slow -- to 
keep memory coherent

– DSM can be implemented by a directory scheme
• Record sharers/dirty features for each cache line

• Directory can double the memory requirements of 
machines, though some simplifications are possible

• Follow distributed version of coherency protocol because 
no bus for defining “timing sequence”; use mem location

• Invalidations, acknowledgements increase with sharing

DSM best when not used, i.e. manage mem yourselfDSM best when not used, i.e. manage mem yourself



32

Architecture (continued)
• Symmetric-multiprocessors (SMPs) are an 

effective way to share memory on a small 
scale

• Cache controllers snoop memory bus

• The bus becomes the “time sequencing” point of the 
system, where modification order is defined

• Various protocols speed performance with greater 
complexity

• Bus is serially used, limiting generalization to small #s

SMP is a standard architecture SMP is a standard architecture 
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Languages
• Shared memory is difficult to use (races, 

synch); not efficiently implemented
• Message passing with sequential language (C | 

Fortran) + (MPI | PVM) is current standard
– Least common denominator -- runs everywhere
– A huge amount of work (6x code explosion)
– Only the API is standard; semantics vary, making 

any program implementation-specific; limit 
portability

– Message passing is costly on architectures with 
“good” communication, e.g. 1-sided, SMP 

Use msg passing if you must; but there’s a better way Use msg passing if you must; but there’s a better way 
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Languages (continued)
• ZPL 1st (and still only) parallel language with 

performance model (WYSIWYG)
– Designed from first principles to help programmers
– No explicit concurrency, communication, or synch.
– Programmer is insulated from details, but it is 

possible to write efficient solutions with WYSIWYG
– Compiler is heavily optimized, both seq. and para.
– The communication abstraction is Ironman -- four 

procedures that mark sender’s/receiver’s active 
regions -- uses native communication of machine

ZPL is convenient and efficient  ZPL is convenient and efficient  
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Languages (continued)
• ZPL’s performance model

– Allows programmers “to keep their distance” from 
the implementing hardware -- portable!

– Relies on abstract machine -- CTA
• CTA gives key structural information, memory reference 

time, processors, characteristics of interconnection net

• CTA gives parallel costs; vN defines sequential costs

• Give ZPL’s runtime model, work & data allocation

• Describe costs of ZPL’s constructs in CTA terms

– No absolute performance possible, but relative is 
good enough for quality programming -- performs!

The most significant idea of this class  The most significant idea of this class  
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Programming
Everyone thinks shared memory is the natural 

parallel extension of sequential computing: 
“Ignore memory reference time like vN model, 
and let HW give the flat memory illusion”

• Memory reference time is key to good algs:
– Find maximum is the example

• Best ignore-memory-time (PRAM) is Valiant O(log log P)

• Best consider-memory-time (CTA) is tournament O(log P)

• (Actual?) implementation of Valiant’s alg O(log P loglog P)

• Actual implementation of tournament O(log P)

PRAM hides a critical cost => it’s hard to get results  PRAM hides a critical cost => it’s hard to get results  
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Programming (continued)
• The CTA replaces the PRAM as a realistic, 

but still abstract model of parallel computation
– CTA models all existing hardware, but is “far 

enough away” to be independent of all
– CTA is concerned with a few features, processors, 

non-local memory reference time, λ, interconnect, 
which has unspecified topology, low degree

– Practicing programmers writing message passing 
code are in effect using the CTA

– CTA is key to expressing costs of HLL like vN

A machine model separates SW & HW development  A machine model separates SW & HW development  
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Concepts
• The powerful parallel computation ideas are:

– Pipelining, perform some operations and then pass 
the task along for completion by other units

– Overlap, perform communication & computation 
simultaneously since they need separate resources

– Partition, form independent (as possible) tasks and 
assign separate processors to each

– Most parallel algorithms use a combination of these
• Languages should support these concepts

• ZPL does overlap and partitioning for all computations up to 
available resources, and has abstraction for pipelining

More abstractly: Decompose into independent parts  More abstractly: Decompose into independent parts  
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Concepts (continued)
• Matrix multiplication -- the most studied 

parallel algorithm
– Many solutions; van de Geijn,Watts SUMMA best

• Uses broadcast communication of rows/columns

• Restructures the problem to “use data completely”
• Efficiently uses temporary space

• Most natural and convenient (and efficient) ZPL program

• Other algs show ‘problem space promotion’ technique

Problem space promotion is a parallel programming 
technique in which a problem with d dimensional data 
d is logically solved in a higher dimension, usually d+1

Problem space promotion is a parallel programming 
technique in which a problem with d dimensional data 
d is logically solved in a higher dimension, usually d+1

Avoid iterationAvoid iteration
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Concepts (continued)
• Summary for successful parallel computation

– Rather than using a shared memory abstraction, 
use the CTA model; it reflects costs accurately

– Use ZPL for programming to get convenience, 
speed and portability; use MP as last resort

– Be suspicious of claims like the “problems” with 
shared memory have been solved by new machine

– When choosing architecture, prefer support for 
global addressing, 1-sided communication, point-to-
point network, (randomizing) non-minimal adaptive 
routing, SMP nodes

The perfect parallel machine has yet to be built  The perfect parallel machine has yet to be built  
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Summary’s Summary

• This has been a very enjoyable class to teach
• Good luck with the remainder of your MS 

degree


