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Implementing Shared Memory

Implementing a single memory image operated upon 
by multiple processors is possible and efficient at small 

scales.  The SMP is a standard design. It’s also 
possible at large scales, but it’s less efficient.
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Shared Memory 
Shared memory was claimed to be a poor model 

because it is does not scale
– Many vendors have sold small shared memory 

machines
• Some like SMPs work well (but modeled better by RAM)  
• Some never worked -- KSR

• Some worked because of a technology opportunity -- slow 
processors with a “fast interconnect”

• Some work on small scale, but not beyond 64 processors 
and everyone tries to ignore that fact -- Origin-2000

– Many researchers have come up with great ideas, 
which we’ll look at
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Share Memory Image

• Previous models of shared memory have 
literally implemented a single memory unit 
where all data resides -- recall Ultracomputer

• Besides being a point of contention, a single 
memory doesn’t permit caching (though 
“read-only” caching is OK)

• The SMP turns the idea around and exploits 
caching to implement a shared memory
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Architecture of an SMP
• A symmetric multiprocessor (SMP) is a set of 

processor/cache pairs connected to a bus
• The bus is both good news and bad news

• The (memory) bus is a point at which all processors can 
“see” memory activity, and can know what is happening

• A bus is used “serially,” and becomes a “bottleneck,” 
limiting scaling

P0

Cache

P1

Cache

P2

Cache

P3

Cache

Memory

Bus
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Recall Cache Structure & Terms
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Recall Cache Writing Terminology

• Cache blocks (lines) contain several words
• When some word in the block is written, what 

happens? Two cases
“Write through” -- immediately update the memory
“Write back” -- wait to update memory until later 

(when the block is evicted from the cache ‘cause 
the space is needed)

• Cache writing without reading (write miss)
Write through cache can allocate or not, usu. Not
Write back cache can allocate or not, usu. Does
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Cache Coherence -- The Problem

• Processors can modify shared locations 
without other processors being aware of it 
unless special hardware is added

P1 reads a into its cache

P3

P1

P3

P1 reads a into its cache

P3

P1

P3

P1

4

P2 P3

4         Memory

a:

a:
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Cache Coherence -- The Problem

• Processors can modify shared locations 
without other processors being aware of it 
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1

P3

P1 reads a into its cache

P3 reads a into its cache

P1

P3

P1

4

P2 P3

4

4         Memory

a:

a:
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Cache Coherence -- The Problem

• Processors can modify shared locations 
without other processors being aware of it 
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes the result through to 
main memory leaving P3 
with stale data

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes the result through to 
main memory leaving P3 
with stale data

P3

P1

4 5

P2 P3

4

4 5          Memory

a:

a:
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Cache Coherence -- The Problem

• Processors can modify shared locations 
without other processors being aware of it 
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes the result through to 
main memory leaving P3 
with stale data

P3 rereads a … incoherent

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes the result through to 
main memory leaving P3 
with stale data

P3 rereads a … incoherent

P1

4 5

P2 P3

4

4 5          Memory

a:

a:
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Cache Coherency -- The Goal
A multiprocessor memory system is coherent if 

for every location there exists a serial order 
for the operations on that location consistent 
with the results of the execution such that 

• The subsequence of operations for any processor are in 
the order issued 

• The value returned by each read is the value written by 
the last write in serial order

p1i, p3j, p2k, p1i+1, p3j+1, ...p1i, p3j, p2k, p1i+1, p3j+1, ...

P1

4 5

P2 P3

4

4 5         Memory

a

aw:a r:a
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Write Serialization

• For fulfilling “seen by all processors” a bus is 
a perfect solution

Implied property of Cache Coherency:

Write Serialization … all writes to a location 
are seen in the same order by all processors

Implied property of Cache Coherency:

Write Serialization … all writes to a location 
are seen in the same order by all processors
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Snooping To Solve Coherency

• The cache controllers can “snoop” on the 
bus, meaning that they watch the events on 
the bus even if they do not issue them, noting 
any action relevant to cache lines they hold

• There are two possible actions when a 
location held by processor A is changed by 
processor B

• Invalidate -- mark the local copy as invalid

• Update -- make the same change B made

The unit of cache coherency is a cache line or blockThe unit of cache coherency is a cache line or block
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P3

Snooping
When the cache controller “snoops” it sees 

requests by its processor or bus activity by 
other processors

P1 P2

Memory

Activity from processor
Activity form others
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P3

4

Snooping At Work I

By snooping the cache controller for processor 
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location

P3

P1

4 5

P2

4 5          Memory

a:

a:
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P3

4 5

Snooping At Work II

By snooping the cache controller for processor 
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location or updates it

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location or updates it

P3

P1

4 5

P2

4 5          Memory

a:

a:
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Write-through Protocol

• State diagrams show the protocol

PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--

States of a cache line
V is valid
I is invalid

Transactions
Reads (Rd) or Writes (Wr) 
by processor or bus

Labeling A/B
If A is observed

Then transaction B is 
generated
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Applying the WT Protocol

• Consider the transactions PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--
P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory

P3 sees the action and 
invalidates the location 

P2 reads a into its cache

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory

P3 sees the action and 
invalidates the location 

P2 reads a into its cache

P1 : I --> V  
PrRd/BusRd
P3 : I --> V  
PrRd/BusRd
P1 : V --> V 
PrWr/BusWr
P3 : V --> I   
BusWr/--
P2 :  I --> V  
PrRd/BusRd
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Partial Order On Memory Operations

Write bus transactions define a global sequence 
of events; between writes processors can read 
… any total order produced by interleaving

R
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W R
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R R

R

R
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Memory Consistency

• What should it mean for processors to see a 
consistent view of memory?

• Write serialization is too weak because it only 
requires ordering with respect to individual 
locations, but there are other ways of binding 
values together P0 : [a, flag initially 0]

a     := 1;

flag  := 1;

P1 :

while(flag != 1)do; -- spin

print (a); 

P0 : [a, flag initially 0]

a     := 1;

flag  := 1;

P1 :

while(flag != 1)do; -- spin

print (a); 

Write Serial. requires 
only that the 0 --> 1 
transition of a be seen 
eventually by P1
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Basic Write-back Snoopy Cache Design
• Write-back protocols are more complex than 

write-through because modified data remains 
in the cache

• Introduce more cache states to handle that
• Modified, or dirty, the value differs from memory

• Exclusive, no other cache has this location

• Consider an MSI protocol with three states:
• Modified -- data is correct locally, different from memory

• Shared  (Valid)  -- data at this location is correct

• Invalid -- data at this location not correct
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MSI Protocol

• Rdx means that the 
cache holds a 
modified value of 
the location and 
asks for exclusive 
permission to read

• Reply means put 
the value on the bus 
for another 
processor to read

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Conceptually: Manage dirty value within caches
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MSI Protocol In Action 

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc                Data

Action P1 P2 P3 Bus From

P1:r a  S  - - BRd Mem

P3:r a  S  - S BRd Mem

P1:w a  M  - I BRdx

P3:r a  S  - S BRd P1

P2:r a  S  S  S BRd Mem

Proc                Data

Action P1 P2 P3 Bus From

P1:r a  S  - - BRd Mem

P3:r a  S  - S BRd Mem

P1:w a  M  - I BRdx

P3:r a  S  - S BRd P1

P2:r a  S  S  S BRd Mem



24

Critique of MSI
Bad: 2 bus ops to load
and update a value even 
without any sharing

Add Exclusive State, opposite of Shared: Illinois

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc             Data

Action P0 Pi Bus From

P0:r a  S  - BRd Mem

P0:w a  M  - BRdx

Proc             Data

Action P0 Pi Bus From

P0:r a  S  - BRd Mem

P0:w a  M  - BRdx
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Improvements
• The MSI protocol is the most primitive of all
• The main improvement is to add an Exclusive 

state
• Illinois protocol, Berkeley protocol, Dragon,…

• The bus is great for small numbers of 
processors, but what do we do to get many 
processors and shared memory?



26

Break
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Now--Implement Shared Mem w/o Bus
• The computers implementing shared memory 

without a central bus are called “distributed 
shared memory” (DSM) machines 

• The subclass is the CC-NUMA machines, for 
cache coherent non-uniform memory access

• On an access-fault by the processor
• Find out information about the state of the cache block in 

other machines

• Determine the exact location of copies, if necessary
• Communicate with other machines to implement the 

shared memory protocol
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“Distributed” Applies to Memory
• DSM computers have a CTA architecture with 

additional hardware to maintain coherency
• Collectively, the controllers make the memory 

look shared

P0

Cache

P1

Cache

P2

Cache

P3

Cache

$$
$

M
em $$

$
M

em $$
$

M
em $$

$
M

em

Control Control Control Control

Interconnection Network
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Directory Based Cache-coherence

Since broadcasting the memory references is 
impractical -- that’s what buses do -- a 
directory-based scheme is an alternative

• A directory is a data structure giving the state 
of each cache block in the machine

P0

$ Mem

Directory
Controller

D
ire

ct
or

y

P1

$ Mem

Directory
Controller

D
ire

ct
or

y

Interconnection Network
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How Does It Work?
• Using the directory it is possible to maintain 

cache coherency in a DSM, but its complex 
(and time consuming)

• To illustrate, we work through the protocols to 
maintain memory coherency

• Concepts
– Events: A read or write access fault
– Cache fields accesses for local data, controller 

fields these for remotely allocated data
– Proc/Proc communication is by packets through 

the interconnection network
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Terminology
• Node, a processor, cache and memory 
• Home node, node whose main memory has 

the block allocated
• Dirty node, a node with a modified value
• Owner, node holding a valid copy, usually the 

home or dirty node
• Exclusive node, holds only valid cached copy
• Requesting node, (local) node asking for the 

block
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Sample Directory Scheme

• Local node has access fault
• Sends request to home node for directory 

information
• Read -- directory tells which node has the valid data and the 

data is requested

• Write -- directory tells nodes with copies ... Invalidation or 
update requests are sent

• Acknowledgments are returned
• Processor waits for all ACKs before completion

Notice that many transactions can be “in 
the air” at once, leading to possible races
Notice that many transactions can be “in 
the air” at once, leading to possible races
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A Directory Entry
• Directory entries don’t usually keep cache state
• Use a P-length bit-vector to tell in which 

processors the block is present … presence bit
• Clean/dirty bit implies exactly 1 presence bit on
• Sufficient?

• Determine who has valid copy for read-miss

• Determine who has copies to be invalidated

Dirty

P0

P1

P2

1

P3

P4

1

P5

P6

P7

Presence Bits
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A Closer Look (Read) I
• Postulate 1 processor per node, 1 level cache, 

local MSI protocol
• On a read access fault at Px, the local 

directory controller determines if block is 
locally/remotely allocated

• If local, it delivers data
• If remote it finds the home … by high order bits probably

• Controller sends request to home node for blk
• Home controller looks up directory entry for blk

• Dirty bit OFF, controller finds blk in memory, sends reply, 
sets xth presence bit ON
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A Closer Look (Read) II

• Dirty bit ON -- controller sends reply to Px of 
the processor ID of Py, the owner

• Px requests data from owner Py

• Owner Py controller, sets state to “shared,” 
forwards data to Px and sends data to home

• At home, data is updated, dirty bit is turned 
OFF and the xth presence bit is set ON and 
yth presence bit remains ON

This is basically the protocol for the LLNL 
S-1 multicomputer from the late ‘70s

This is basically the protocol for the LLNL 
S-1 multicomputer from the late ‘70s
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A Closer Look (Write) I
On a write access fault at Px, the local directory controller 

checks if the block is locally/remotely allocated; if 
remote it finds the home

• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

– Dirty bit OFF, the home has a clean copy
• Home node sends data to Px w/presence vector
• Home controller clears directory, sets xth bit ON and sets dirty bit 

ON
• Px controller sends invalidation request to all nodes listed in the 

presence vector
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A Closer Look (Write) II
• Px controller awaits ACKs from all those nodes

• Px controller delivers blk to cache in dirty state

– Dirty bit is ON
• Home notifies owner Py of Px’s write request

• Py controller invalidates its blk, sends data to Px

• Home clears yth presence bit, turns xth bit ON and dirty bit 
stays ON

– On writeback, home stores data, clears both 
presence and dirty bits
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P1

$

Ctlr

a:4
01000

P2

$

Ctlr

P3

$

Ctlr

Detailed Example
• Consider the example similar to before
• The assumptions are …

• a is globally allocated

• a has it’s home at P1

• P0 previously read a

P1 reads a into its cache

P3 reads a into its cache

P3 changes a to 5 

{P2 reads a into its cache

P2 writes a in its cache}

P1 reads a into its cache

P3 reads a into its cache

P3 changes a to 5 

{P2 reads a into its cache

P2 writes a in its cache}

P0

a:V:4

Ctlr

Interconnection Network
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P1 Reads a Into Cache
• The local directory controller determines if block is 

locally/remotely allocated
• If remote it finds the home … by high order bits probably

• Controller asks home node for blk: No-op
• Home controller looks up directory entry for blk

• Dirty bit OFF, controller finds blk in memory, sends reply, 
sets xth presence bit ON

P1

a:V:4

Ctlr

a:4
01100

P2

$

Ctlr

P3

$

Ctlr

P0

a:V:4

Ctlr

Interconnection Network

In the special case 
that a processor 
references it’s own 
globally allocated data 
no communication is 
required, only manage 
the presence bits

In the special case 
that a processor 
references it’s own 
globally allocated data 
no communication is 
required, only manage 
the presence bits
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P3 Reads a Into Cache
• The local directory controller determines if block is 

locally/remotely allocated
• If remote it finds the home … by high order bits probably

• Controller asks home node for blk: Message to P1

• Home controller looks up directory entry for blk
• Dirty bit OFF, controller finds blk in memory, sends 

message to P3, sets xth presence bit ON

P1

a:V:4

Controller

a:4
01101

P2

$

Controller

P3

a:V:4

Controller

P0

a:V:4

Controller

Interconnection Network

Msg: P3 to P1, Read a

Msg: P1 to P3, Here’s a

Msg: P3 to P1, Read a

Msg: P1 to P3, Here’s a
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P3 Writes a Changing It To 5 Part I
• On a write access fault at Px, local controller checks 

and finds it remote; finds the home
• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

– Dirty bit OFF, the home has a clean copy
• Home node sends data to Px w/presence vector
• Home controller clears directory, sets xth bit and dirty ON
• Px controller sends invalidation request to all nodes listed

P1

a:V:4

Controller

a:4
10001

P2

$

Controller

P3
Stalled

a:V:4

Controller

P0

a:V:4

Controller

Interconnection Network

Msg: P3 to P1, Write a

Msg: P1 to P3, a:01101

Msg: P3 to P0, Invalid a

Msg: P3 to P1, Invalid a

Msg: P3 to P1, Write a

Msg: P1 to P3, a:01101

Msg: P3 to P0, Invalid a

Msg: P3 to P1, Invalid a
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P3 Writes a Changing It To 5 Part II
• Processor continues to be stalled

• Px controller awaits ACKs from all those nodes

• Px controller delivers blk to cache in dirty state

• Total messages when clean copy exists: ToHome, 
FromHome, (Invalidate, ACK)*s

P1

a:I:4

Controller

a:4
10001

P2

$

Controller

P3

a:M:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P0 to P3, ACK

Msg: P1 to P3, ACK

Msg: P0 to P3, ACK

Msg: P1 to P3, ACK
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P2 Reads a Into Cache
Dirty bit ON -- home controller sends reply to Px of the 

processor ID of Py, the owner; Px asks Py for data
• Owner Py controller, sets state to “shared,” forwards 

data to Px and sends data to home
• At home, data is updated, dirty bit is turned OFF and 

the xth presence bit is set ON and yth presence bit 
remains ON

P1

a:I:4

Controller

a:5
00011

P2

a:V:5

Controller

P3

a:V:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P2 to P1, Read a

Msg: P1 to P2, P3 has it

Msg: P2 to P3, Read a

Msg: P3 to P2, Here’s a

Msg: P3 to P1, Here’s a

Msg: P2 to P1, Read a

Msg: P1 to P2, P3 has it

Msg: P2 to P3, Read a

Msg: P3 to P2, Here’s a

Msg: P3 to P1, Here’s a
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Instead Let P2’s Request Be Write 6

• That is … this action replaces the previous slide
• Dirty bit is ON

• Home notifies owner Py of Px’s write request

• Py controller invalidates its block, sends data to Px

• Home clears yth presence bit, turns xth bit ON and dirty bit 
stays ON

P1

a:I:4

Controller

a:4
10010

P2

a:M:6

Controller

P3

a:I:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P2 to P1, Write a

Msg: P1 to P3, P2 asking

Msg: P3 to P2, Here’s a

Msg: P2 to P1, Write a

Msg: P1 to P3, P2 asking

Msg: P3 to P2, Here’s a
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Summarizing The Example

• The controller sends out a series messages 
to keep the writes to the memory locations 
coherent 

• The scheme differs from the bus solution in 
that all processors get the information at the 
same time using the bus, but at different 
times using the network

• The number of messages is potentially large 
if there are many sharers
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Alternative Directory Schemes

• The “bit vector directory” is storage-costly
• Consider improvements to Mblk*P cost

– Increase block size, cluster processors

– Just keep list of Processor IDs of sharers
• Need overflow scheme
• Five slots probably suffice

– Link the shared items together
• Home keeps the head of list
• List is doubly-linked

• New sharer adds self to head of list
• Obvious protocol suffices, but watch for races
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Assessment

• An obvious difference between directory and 
bus solutions is that for directories, the 
invalidate request grows as the number of 
processors that are sharing

• Directories take memory
• 1 bit per block per processor + c

• If a block is B bytes, 8B processors imply 100% 
overhead to store the directory
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Performance Data

• To see how much sharing takes place and how many 
invalidations must be sent, experiments were run

• Summarizing the data
• Usually there are few shares
• The mode is 1 other processor(s) sharing ~ 60
• The “tail” of the distribution stretches out for some applications

• Remote activity increases as the number of 
processors

• Larger block sizes increase traffic because of false 
sharing, 32 is good
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Higher Level Optimization
• Organizing nodes as SMPs with one coherent 

memory and one directory controller can improve 
performance since one processor might fetch data 
that the next processor wants … it is already present

• The main liability is that the controller resource and 
probably its channel into the network are shared

P0

Cache

Directory
Controller

D
ire

ct
or

y

P2

Cache

Interconnection Network

P1

Cache

P3

Cache
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Serialization
• The bus defines the ordering on writes in SMPs
• For directory systems, memory (home) does
• If home always has value, FIFO would work

– Consider a block in modified state and two nodes requesting 
exclusive access in an invalidation protocol: The requests 
reach home in one order, but they could reach the owner in 
a different order; which order prevails?

• Fix: Add “busy state” indicating transaction in flight
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Four Solutions To Ensure Serialization

• Buffer at home -- keep request at home, service 
in order … lower concurrency, overflow

• Buffer at requesters with linked list; follow Py

• NACK and retry -- when directory is busy, just 
“return to sender”

• Forward to dirty node -- serialize at home for 
clean, serialize at owner otherwise
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Coherency !=  Memory Consistency
Assume A and B initially 0

P0

$ Mem

Directory
Controller

P2

$ Mem

Directory
Controller

Interconnection Network

P1

$ Mem

Directory
Controller

A=1; while (A==0)do;
B=1; while (B==0)do; 

print A;

A=1; B=1;

A=1;
Delay

Print 0Print 0



53

Sequential Consistency

• Sequential Consistency--it’s what sequential 
programs see--is a very strict form of memory 
consistency

• A MP is sequentially consistent if the result of 
any execution is the same as some 
sequential order and operations of each 
processor are in program order

A=1; while (A==0)do;
B=1; while (B==0)do; 

print A;
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Relaxed Consistency Models
• Since sequential consistency is so strict, 

alternative schemes allow reordering of reads 
and writes to improve performance

• total store ordering (TSO)

• partial store ordering (PSO)

• relaxed memory ordering (RMO)

• processor consistency (PC)
• weak ordering (WO)

• release consistency (RC)

• Many are difficult to use in practice
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Relaxing Write-to-Read Program Order

• While a write miss is in the write buffer and 
not yet visible to other processors, the 
processor can issue and complete reads that 
hit in its cache or even a single read that 
misses in its cache. TSO and PSO allow this.

• This matches intuition often …

• This code works as expected

P0 P1 P0 P1
A=1; while (Flag==0)do; A=1; print B;
Flag=1; print A; B=1; print A;
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Less Intuitive 

• Some programs don’t work as expected

We expect to get one of the following:
• A=0, B=1
• A=1, B=0
• A=1, B=1

• But not A=0, B=0 … but TSO would permit it
• Solution: Insert a memory barrier after write

P0 P1
A=1; B=1;
print B; print A;
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Origin 2000
• Intellectual descendant of Stanford DASH
• Two processors per node
• Caches use MESI protocol
• Directory has 7 states:

– Stable: unowned, shared, exclusive (cl/dirty in $)
– Busy: Processor not ready to handle new requests to block, 

read, readex, uncached

• Generally O2000 follows protocols discussed 
• Proves basic ideas actually apply
• Shows that simplifying assumptions must be revisited to get a 

system built and deployed
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Summary

• Shared memory support is much more difficult when 
there is no bus

• A directory scheme achieves the same result, but the 
protocol requires a substantial number of messages, 
proportional to the amount of sharing

• Coherency applies to individual locations
• Consistent memory requires additional software or 

hardware to assure that updates or invalidations are 
complete 
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