
1

Implementing Shared Memory

Implementing a single memory image operated upon
by multiple processors is possible and efficient at small

scales. The SMP is a standard design. It’s also
possible at large scales, but it’s less efficient.

2

Shared Memory
Shared memory was claimed to be a poor model

because it is does not scale
– Many vendors have sold small shared memory

machines
• Some like SMPs work well (but modeled better by RAM)
• Some never worked -- KSR

• Some worked because of a technology opportunity -- slow
processors with a “fast interconnect”

• Some work on small scale, but not beyond 64 processors
and everyone tries to ignore that fact -- Origin-2000

– Many researchers have come up with great ideas,
which we’ll look at

3

Share Memory Image

• Previous models of shared memory have
literally implemented a single memory unit
where all data resides -- recall Ultracomputer

• Besides being a point of contention, a single
memory doesn’t permit caching (though
“read-only” caching is OK)

• The SMP turns the idea around and exploits
caching to implement a shared memory

4

Architecture of an SMP
• A symmetric multiprocessor (SMP) is a set of

processor/cache pairs connected to a bus
• The bus is both good news and bad news

• The (memory) bus is a point at which all processors can
“see” memory activity, and can know what is happening

• A bus is used “serially,” and becomes a “bottleneck,”
limiting scaling

P0

Cache

P1

Cache

P2

Cache

P3

Cache

Memory

Bus

5

Recall Cache Structure & Terms

6

Recall Cache Writing Terminology

• Cache blocks (lines) contain several words
• When some word in the block is written, what

happens? Two cases
“Write through” -- immediately update the memory
“Write back” -- wait to update memory until later

(when the block is evicted from the cache ‘cause
the space is needed)

• Cache writing without reading (write miss)
Write through cache can allocate or not, usu. Not
Write back cache can allocate or not, usu. Does

7

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3

P1

P3

P1 reads a into its cache

P3

P1

P3

P1

4

P2 P3

4 Memory

a:

a:

8

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1

P3

P1 reads a into its cache

P3 reads a into its cache

P1

P3

P1

4

P2 P3

4

4 Memory

a:

a:

9

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3

P1

4 5

P2 P3

4

4 5 Memory

a:

a:

10

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3 rereads a … incoherent

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3 rereads a … incoherent

P1

4 5

P2 P3

4

4 5 Memory

a:

a:

11

Cache Coherency -- The Goal
A multiprocessor memory system is coherent if

for every location there exists a serial order
for the operations on that location consistent
with the results of the execution such that

• The subsequence of operations for any processor are in
the order issued

• The value returned by each read is the value written by
the last write in serial order

p1i, p3j, p2k, p1i+1, p3j+1, ...p1i, p3j, p2k, p1i+1, p3j+1, ...

P1

4 5

P2 P3

4

4 5 Memory

a

aw:a r:a

12

Write Serialization

• For fulfilling “seen by all processors” a bus is
a perfect solution

Implied property of Cache Coherency:

Write Serialization … all writes to a location
are seen in the same order by all processors

Implied property of Cache Coherency:

Write Serialization … all writes to a location
are seen in the same order by all processors

13

Snooping To Solve Coherency

• The cache controllers can “snoop” on the
bus, meaning that they watch the events on
the bus even if they do not issue them, noting
any action relevant to cache lines they hold

• There are two possible actions when a
location held by processor A is changed by
processor B

• Invalidate -- mark the local copy as invalid

• Update -- make the same change B made

The unit of cache coherency is a cache line or blockThe unit of cache coherency is a cache line or block

14

P3

Snooping
When the cache controller “snoops” it sees

requests by its processor or bus activity by
other processors

P1 P2

Memory

Activity from processor
Activity form others

15

P3

4

Snooping At Work I

By snooping the cache controller for processor
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location

P3

P1

4 5

P2

4 5 Memory

a:

a:

16

P3

4 5

Snooping At Work II

By snooping the cache controller for processor
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location or updates it

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location or updates it

P3

P1

4 5

P2

4 5 Memory

a:

a:

17

Write-through Protocol

• State diagrams show the protocol

PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--

States of a cache line
V is valid
I is invalid

Transactions
Reads (Rd) or Writes (Wr)
by processor or bus

Labeling A/B
If A is observed

Then transaction B is
generated

18

Applying the WT Protocol

• Consider the transactions PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--
P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory

P3 sees the action and
invalidates the location

P2 reads a into its cache

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory

P3 sees the action and
invalidates the location

P2 reads a into its cache

P1 : I --> V
PrRd/BusRd
P3 : I --> V
PrRd/BusRd
P1 : V --> V
PrWr/BusWr
P3 : V --> I
BusWr/--
P2 : I --> V
PrRd/BusRd

19

Partial Order On Memory Operations

Write bus transactions define a global sequence
of events; between writes processors can read
… any total order produced by interleaving

R

R

R

R

R

R

R

R

W R

R

R R

R

R

R

W

20

Memory Consistency

• What should it mean for processors to see a
consistent view of memory?

• Write serialization is too weak because it only
requires ordering with respect to individual
locations, but there are other ways of binding
values together P0 : [a, flag initially 0]

a := 1;

flag := 1;

P1 :

while(flag != 1)do; -- spin

print (a);

P0 : [a, flag initially 0]

a := 1;

flag := 1;

P1 :

while(flag != 1)do; -- spin

print (a);

Write Serial. requires
only that the 0 --> 1
transition of a be seen
eventually by P1

21

Basic Write-back Snoopy Cache Design
• Write-back protocols are more complex than

write-through because modified data remains
in the cache

• Introduce more cache states to handle that
• Modified, or dirty, the value differs from memory

• Exclusive, no other cache has this location

• Consider an MSI protocol with three states:
• Modified -- data is correct locally, different from memory

• Shared (Valid) -- data at this location is correct

• Invalid -- data at this location not correct

22

MSI Protocol

• Rdx means that the
cache holds a
modified value of
the location and
asks for exclusive
permission to read

• Reply means put
the value on the bus
for another
processor to read

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Conceptually: Manage dirty value within caches

23

MSI Protocol In Action

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc Data

Action P1 P2 P3 Bus From

P1:r a S - - BRd Mem

P3:r a S - S BRd Mem

P1:w a M - I BRdx

P3:r a S - S BRd P1

P2:r a S S S BRd Mem

Proc Data

Action P1 P2 P3 Bus From

P1:r a S - - BRd Mem

P3:r a S - S BRd Mem

P1:w a M - I BRdx

P3:r a S - S BRd P1

P2:r a S S S BRd Mem

24

Critique of MSI
Bad: 2 bus ops to load
and update a value even
without any sharing

Add Exclusive State, opposite of Shared: Illinois

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc Data

Action P0 Pi Bus From

P0:r a S - BRd Mem

P0:w a M - BRdx

Proc Data

Action P0 Pi Bus From

P0:r a S - BRd Mem

P0:w a M - BRdx

25

Improvements
• The MSI protocol is the most primitive of all
• The main improvement is to add an Exclusive

state
• Illinois protocol, Berkeley protocol, Dragon,…

• The bus is great for small numbers of
processors, but what do we do to get many
processors and shared memory?

26

Break

27

Now--Implement Shared Mem w/o Bus
• The computers implementing shared memory

without a central bus are called “distributed
shared memory” (DSM) machines

• The subclass is the CC-NUMA machines, for
cache coherent non-uniform memory access

• On an access-fault by the processor
• Find out information about the state of the cache block in

other machines

• Determine the exact location of copies, if necessary
• Communicate with other machines to implement the

shared memory protocol

28

“Distributed” Applies to Memory
• DSM computers have a CTA architecture with

additional hardware to maintain coherency
• Collectively, the controllers make the memory

look shared

P0

Cache

P1

Cache

P2

Cache

P3

Cache

$$
$

M
em $$

$
M

em $$
$

M
em $$

$
M

em

Control Control Control Control

Interconnection Network

29

Directory Based Cache-coherence

Since broadcasting the memory references is
impractical -- that’s what buses do -- a
directory-based scheme is an alternative

• A directory is a data structure giving the state
of each cache block in the machine

P0

$ Mem

Directory
Controller

D
ire

ct
or

y

P1

$ Mem

Directory
Controller

D
ire

ct
or

y

Interconnection Network

30

How Does It Work?
• Using the directory it is possible to maintain

cache coherency in a DSM, but its complex
(and time consuming)

• To illustrate, we work through the protocols to
maintain memory coherency

• Concepts
– Events: A read or write access fault
– Cache fields accesses for local data, controller

fields these for remotely allocated data
– Proc/Proc communication is by packets through

the interconnection network

31

Terminology
• Node, a processor, cache and memory
• Home node, node whose main memory has

the block allocated
• Dirty node, a node with a modified value
• Owner, node holding a valid copy, usually the

home or dirty node
• Exclusive node, holds only valid cached copy
• Requesting node, (local) node asking for the

block

32

Sample Directory Scheme

• Local node has access fault
• Sends request to home node for directory

information
• Read -- directory tells which node has the valid data and the

data is requested

• Write -- directory tells nodes with copies ... Invalidation or
update requests are sent

• Acknowledgments are returned
• Processor waits for all ACKs before completion

Notice that many transactions can be “in
the air” at once, leading to possible races
Notice that many transactions can be “in
the air” at once, leading to possible races

33

A Directory Entry
• Directory entries don’t usually keep cache state
• Use a P-length bit-vector to tell in which

processors the block is present … presence bit
• Clean/dirty bit implies exactly 1 presence bit on
• Sufficient?

• Determine who has valid copy for read-miss

• Determine who has copies to be invalidated

Dirty

P0

P1

P2

1

P3

P4

1

P5

P6

P7

Presence Bits

34

A Closer Look (Read) I
• Postulate 1 processor per node, 1 level cache,

local MSI protocol
• On a read access fault at Px, the local

directory controller determines if block is
locally/remotely allocated

• If local, it delivers data
• If remote it finds the home … by high order bits probably

• Controller sends request to home node for blk
• Home controller looks up directory entry for blk

• Dirty bit OFF, controller finds blk in memory, sends reply,
sets xth presence bit ON

35

A Closer Look (Read) II

• Dirty bit ON -- controller sends reply to Px of
the processor ID of Py, the owner

• Px requests data from owner Py

• Owner Py controller, sets state to “shared,”
forwards data to Px and sends data to home

• At home, data is updated, dirty bit is turned
OFF and the xth presence bit is set ON and
yth presence bit remains ON

This is basically the protocol for the LLNL
S-1 multicomputer from the late ‘70s

This is basically the protocol for the LLNL
S-1 multicomputer from the late ‘70s

36

A Closer Look (Write) I
On a write access fault at Px, the local directory controller

checks if the block is locally/remotely allocated; if
remote it finds the home

• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

– Dirty bit OFF, the home has a clean copy
• Home node sends data to Px w/presence vector
• Home controller clears directory, sets xth bit ON and sets dirty bit

ON
• Px controller sends invalidation request to all nodes listed in the

presence vector

37

A Closer Look (Write) II
• Px controller awaits ACKs from all those nodes

• Px controller delivers blk to cache in dirty state

– Dirty bit is ON
• Home notifies owner Py of Px’s write request

• Py controller invalidates its blk, sends data to Px

• Home clears yth presence bit, turns xth bit ON and dirty bit
stays ON

– On writeback, home stores data, clears both
presence and dirty bits

38

P1

$

Ctlr

a:4
01000

P2

$

Ctlr

P3

$

Ctlr

Detailed Example
• Consider the example similar to before
• The assumptions are …

• a is globally allocated

• a has it’s home at P1

• P0 previously read a

P1 reads a into its cache

P3 reads a into its cache

P3 changes a to 5

{P2 reads a into its cache

P2 writes a in its cache}

P1 reads a into its cache

P3 reads a into its cache

P3 changes a to 5

{P2 reads a into its cache

P2 writes a in its cache}

P0

a:V:4

Ctlr

Interconnection Network

39

P1 Reads a Into Cache
• The local directory controller determines if block is

locally/remotely allocated
• If remote it finds the home … by high order bits probably

• Controller asks home node for blk: No-op
• Home controller looks up directory entry for blk

• Dirty bit OFF, controller finds blk in memory, sends reply,
sets xth presence bit ON

P1

a:V:4

Ctlr

a:4
01100

P2

$

Ctlr

P3

$

Ctlr

P0

a:V:4

Ctlr

Interconnection Network

In the special case
that a processor
references it’s own
globally allocated data
no communication is
required, only manage
the presence bits

In the special case
that a processor
references it’s own
globally allocated data
no communication is
required, only manage
the presence bits

40

P3 Reads a Into Cache
• The local directory controller determines if block is

locally/remotely allocated
• If remote it finds the home … by high order bits probably

• Controller asks home node for blk: Message to P1

• Home controller looks up directory entry for blk
• Dirty bit OFF, controller finds blk in memory, sends

message to P3, sets xth presence bit ON

P1

a:V:4

Controller

a:4
01101

P2

$

Controller

P3

a:V:4

Controller

P0

a:V:4

Controller

Interconnection Network

Msg: P3 to P1, Read a

Msg: P1 to P3, Here’s a

Msg: P3 to P1, Read a

Msg: P1 to P3, Here’s a

41

P3 Writes a Changing It To 5 Part I
• On a write access fault at Px, local controller checks

and finds it remote; finds the home
• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

– Dirty bit OFF, the home has a clean copy
• Home node sends data to Px w/presence vector
• Home controller clears directory, sets xth bit and dirty ON
• Px controller sends invalidation request to all nodes listed

P1

a:V:4

Controller

a:4
10001

P2

$

Controller

P3
Stalled

a:V:4

Controller

P0

a:V:4

Controller

Interconnection Network

Msg: P3 to P1, Write a

Msg: P1 to P3, a:01101

Msg: P3 to P0, Invalid a

Msg: P3 to P1, Invalid a

Msg: P3 to P1, Write a

Msg: P1 to P3, a:01101

Msg: P3 to P0, Invalid a

Msg: P3 to P1, Invalid a

42

P3 Writes a Changing It To 5 Part II
• Processor continues to be stalled

• Px controller awaits ACKs from all those nodes

• Px controller delivers blk to cache in dirty state

• Total messages when clean copy exists: ToHome,
FromHome, (Invalidate, ACK)*s

P1

a:I:4

Controller

a:4
10001

P2

$

Controller

P3

a:M:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P0 to P3, ACK

Msg: P1 to P3, ACK

Msg: P0 to P3, ACK

Msg: P1 to P3, ACK

43

P2 Reads a Into Cache
Dirty bit ON -- home controller sends reply to Px of the

processor ID of Py, the owner; Px asks Py for data
• Owner Py controller, sets state to “shared,” forwards

data to Px and sends data to home
• At home, data is updated, dirty bit is turned OFF and

the xth presence bit is set ON and yth presence bit
remains ON

P1

a:I:4

Controller

a:5
00011

P2

a:V:5

Controller

P3

a:V:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P2 to P1, Read a

Msg: P1 to P2, P3 has it

Msg: P2 to P3, Read a

Msg: P3 to P2, Here’s a

Msg: P3 to P1, Here’s a

Msg: P2 to P1, Read a

Msg: P1 to P2, P3 has it

Msg: P2 to P3, Read a

Msg: P3 to P2, Here’s a

Msg: P3 to P1, Here’s a

44

Instead Let P2’s Request Be Write 6

• That is … this action replaces the previous slide
• Dirty bit is ON

• Home notifies owner Py of Px’s write request

• Py controller invalidates its block, sends data to Px

• Home clears yth presence bit, turns xth bit ON and dirty bit
stays ON

P1

a:I:4

Controller

a:4
10010

P2

a:M:6

Controller

P3

a:I:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P2 to P1, Write a

Msg: P1 to P3, P2 asking

Msg: P3 to P2, Here’s a

Msg: P2 to P1, Write a

Msg: P1 to P3, P2 asking

Msg: P3 to P2, Here’s a

45

Summarizing The Example

• The controller sends out a series messages
to keep the writes to the memory locations
coherent

• The scheme differs from the bus solution in
that all processors get the information at the
same time using the bus, but at different
times using the network

• The number of messages is potentially large
if there are many sharers

46

Alternative Directory Schemes

• The “bit vector directory” is storage-costly
• Consider improvements to Mblk*P cost

– Increase block size, cluster processors

– Just keep list of Processor IDs of sharers
• Need overflow scheme
• Five slots probably suffice

– Link the shared items together
• Home keeps the head of list
• List is doubly-linked

• New sharer adds self to head of list
• Obvious protocol suffices, but watch for races

47

Assessment

• An obvious difference between directory and
bus solutions is that for directories, the
invalidate request grows as the number of
processors that are sharing

• Directories take memory
• 1 bit per block per processor + c

• If a block is B bytes, 8B processors imply 100%
overhead to store the directory

48

Performance Data

• To see how much sharing takes place and how many
invalidations must be sent, experiments were run

• Summarizing the data
• Usually there are few shares
• The mode is 1 other processor(s) sharing ~ 60
• The “tail” of the distribution stretches out for some applications

• Remote activity increases as the number of
processors

• Larger block sizes increase traffic because of false
sharing, 32 is good

49

Higher Level Optimization
• Organizing nodes as SMPs with one coherent

memory and one directory controller can improve
performance since one processor might fetch data
that the next processor wants … it is already present

• The main liability is that the controller resource and
probably its channel into the network are shared

P0

Cache

Directory
Controller

D
ire

ct
or

y

P2

Cache

Interconnection Network

P1

Cache

P3

Cache

50

Serialization
• The bus defines the ordering on writes in SMPs
• For directory systems, memory (home) does
• If home always has value, FIFO would work

– Consider a block in modified state and two nodes requesting
exclusive access in an invalidation protocol: The requests
reach home in one order, but they could reach the owner in
a different order; which order prevails?

• Fix: Add “busy state” indicating transaction in flight

51

Four Solutions To Ensure Serialization

• Buffer at home -- keep request at home, service
in order … lower concurrency, overflow

• Buffer at requesters with linked list; follow Py

• NACK and retry -- when directory is busy, just
“return to sender”

• Forward to dirty node -- serialize at home for
clean, serialize at owner otherwise

52

Coherency != Memory Consistency
Assume A and B initially 0

P0

$ Mem

Directory
Controller

P2

$ Mem

Directory
Controller

Interconnection Network

P1

$ Mem

Directory
Controller

A=1; while (A==0)do;
B=1; while (B==0)do;

print A;

A=1; B=1;

A=1;
Delay

Print 0Print 0

53

Sequential Consistency

• Sequential Consistency--it’s what sequential
programs see--is a very strict form of memory
consistency

• A MP is sequentially consistent if the result of
any execution is the same as some
sequential order and operations of each
processor are in program order

A=1; while (A==0)do;
B=1; while (B==0)do;

print A;

54

Relaxed Consistency Models
• Since sequential consistency is so strict,

alternative schemes allow reordering of reads
and writes to improve performance

• total store ordering (TSO)

• partial store ordering (PSO)

• relaxed memory ordering (RMO)

• processor consistency (PC)
• weak ordering (WO)

• release consistency (RC)

• Many are difficult to use in practice

55

Relaxing Write-to-Read Program Order

• While a write miss is in the write buffer and
not yet visible to other processors, the
processor can issue and complete reads that
hit in its cache or even a single read that
misses in its cache. TSO and PSO allow this.

• This matches intuition often …

• This code works as expected

P0 P1 P0 P1
A=1; while (Flag==0)do; A=1; print B;
Flag=1; print A; B=1; print A;

56

Less Intuitive

• Some programs don’t work as expected

We expect to get one of the following:
• A=0, B=1
• A=1, B=0
• A=1, B=1

• But not A=0, B=0 … but TSO would permit it
• Solution: Insert a memory barrier after write

P0 P1
A=1; B=1;
print B; print A;

57

Origin 2000
• Intellectual descendant of Stanford DASH
• Two processors per node
• Caches use MESI protocol
• Directory has 7 states:

– Stable: unowned, shared, exclusive (cl/dirty in $)
– Busy: Processor not ready to handle new requests to block,

read, readex, uncached

• Generally O2000 follows protocols discussed
• Proves basic ideas actually apply
• Shows that simplifying assumptions must be revisited to get a

system built and deployed

58

Summary

• Shared memory support is much more difficult when
there is no bus

• A directory scheme achieves the same result, but the
protocol requires a substantial number of messages,
proportional to the amount of sharing

• Coherency applies to individual locations
• Consistent memory requires additional software or

hardware to assure that updates or invalidations are
complete

59

Citation

David Culler and J.P. Singh
Parallel Computer Architecture
Morgan Kaufmann, 1999

