
1

The Parallel Runtime

Though parallel computers run Linux kernels and
though compilation is largely routine, there are a few

aspects of parallel computers run-time of interest.
Communication will remain our main focus.

2

Project Posted

• Due 14 March 2005 at 12:00 Noon PST
• Specification are on the Web
• “Personally interesting” project is preferred

• Check in with an email outline of plan

• Turn in one sheet in each future lecture of
recent progress on project (pass tonight)

• Questions?

3

Compiling Parallel Programs
• Languages use a “single program, multiple data”

(SPMD) view ⇒⇒⇒⇒ the compiler produces 1 program
• Logically, ZPL executes 1 statement at a time, but

processors go at their own rates using “data
synchronization” -- when data’s present, keep going

for i := 1 to n do
[1..m,*] Col := >>[,k] A; -- Flood kth col of A
[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements
end;

bdcst col;
bdcst row;
compute;

bdcst col;
bdcst row;
compute; bdcst col;

recv row;
compute;

bdcst col;
recv row;
compute;

recv col;
recv row;
compute;

recv col;
recv row;
compute;

recv col;
bdcst row;
compute;

recv col;
bdcst row;
compute;

4

All Part Of One Code

The SPMD program form requires that both
‘sides’ of the communication are coded
together if/when 2-sided comm is used

if my_col(k) then bdcast(A[mylo1..myhi1,k])

else recv(Col[mylo1..myhi1. *]);

if my_row(k) then bdcast(B[k,mylo2..myhi2])

else recv(Row[* ,mylo2..myhi2]);

The actual form of ZPL’s communication is given belowThe actual form of ZPL’s communication is given below

5

Compiling ZPL Programs
• Because ZPL is high level, most optimizations have a

huge payoff
• Examples of important optimizations

rightedge := max<< Pts.x;--Find bounding box

topedge := max<< Pts.y;-- |

leftedge := min<< Pts.x;-- |

bottomedge := min<< Pts.y;-- V

converts to 1 Ladner/Fischer tree on 4-part data; the
last 3 communications are “free” [Derrick Weathersby]

Above := A@N + B@N + C@N;

combines all communication to north (and south)
neighbors

6

What Happens When A Program Runs

• One processor starts, gets the logical arrangement
from command line, sends it to others and they start

This differs slightly from machine to machine

• Each processor computes which region it owns
• Each processor sets up its scalars, routing tables and

data arrays ...
Fluff -- the temporary
storage used to hold
values transmitted for
@-communication --
it is inline to make
indexing transparent

Fluff -- the temporary
storage used to hold
values transmitted for
@-communication --
it is inline to make
indexing transparent Flood arrays --

minimum allocation

Flood arrays --
minimum allocation

7

The “Problem with Parallel Computers”
Parallel computers have (at least) one of three

communication mechanisms …
• Hardware shared memory

• Message passing library

• One-sided communication (shmem)

• Any compiler seeking portability needs to
target all three

• The standard solution is to generate message
passing code because Shared and Shmem
can both implement message passing

Unfortunately … this lowest common denominator
solution doesn’t exploit the hardware

Unfortunately … this lowest common denominator
solution doesn’t exploit the hardware

8

Message Passing
• Message passing is provided by a machine-

specific library, but there are standard APIs
– MPI -- Message passing interface
– PVM -- Parallel Virtual Machine

• Example operations
• Blocking send … send msg, proceed after it’s received

• Non-blocking send … send msg, continue execution
• Wait_for_ACK … wait for ack of non-blocking send

• Receive … get msg that has arrived, or wait for it

• Message passing is not for compilers; it’s for
programmers to use with C or Fortran,

9

A Compiler’s Problem w/ Message Passing

Programmers may use MP deftly, but compilers ?
• Overlapping Communication/Computation

– When exchanging data with neighbor: do it & wait
send_to(p+1, my_data1);
recv_from(p+1, his_data1);

– Programmers can know data not immediately needed
nb_send_to(p+1, my_data1);
compute(a, boodle);
recv_from(p+1, his_data1);
wait_for_ACK(p+1, my_data1);
my_data1 = his_data1 + some + other + values;

– If a compiler fails at analysis, it must be conservative,
and use blocking sends

10

Look Under the Covers

To see the sensitivity of high-level operations to
the computer’s communication mechanism…
– Consider compiling code for

[1..n, 1..n-1] B := A@east;

– For three different communications approaches
• Message Passing

• Shared Memory

• One-sided communication

11

Under the Covers: Message Passing

B := A@east ...;

• Move edge elements of A, then local copy to B

• Message passing …
• Marshall the elements into a message

Send, Receive
• Demarshall

Pi memory

Pi memory

Packet to Send to Pi-1

Packet Recv’d from Pi+1

12

Under the Covers: Shared Memory
One coherent global memory manipulated

through “standard” load and store operations
(more on this later) with caching

B := A@east ...;

• In the model each processor writes directly into the
portion of B that it ‘owns,’ referencing elements of A

• No explicit ‘fluff’ regions, but synch needed
barrier_synch();

for (i=mylo1_B;i<myhi1_B;i++){

for (j=mylo2_B;j<myhi2_B;j++){
B[i][j]=A[i][j+1];

}

}

P1 P2

Barrier ensures all processors are done w/A, ready for BBarrier ensures all processors are done w/A, ready for B

$

13

Consequences of No Fluff

• A processor’s “responsibility” can straddle a
cache line

• When reading, get more data than needed,
missing benefits of caching

• False sharing -- writes to cache line will
invalidate lines in other processors even
though there is no actual collision on words

• Start on cache line boundaries or use fluff

14

Alternative Communication (Shmem)

• Message passing is “heavy weight” because it
requires both a send and acknowledgement

• A “lighter weight” approach is one-sided
communication, also known as shmem

• Two operations are supported --
get(P.loc,mine); -- read directly from loc of proc. P into mine
put(mine,P.loc,); -- store mine directly into loc of proc P

• Not shared memory since there is no memory
coherence -- the programmer is responsible
for keeping the memory sensible

15

Under the Covers: Shmem
• To implement “locally coherent” memory,

programmers use post() and wait() to set and
wait on data present, memory available events

B := A@east … ;
post(P-1, my_data_ready); -- say mine’s available

wait(P+1,his_data_ready); -- wait til neighbor’s ready

for (j=mylo1_B;j<myhi1_B;j++){

get(Pi+1.A[j][his_col],B[j][fluffCol]);

} -- directly fetch items and put in fluff column

One-sided communication is more efficient
because of less waiting and less network traffic

One-sided communication is gaining popularity One-sided communication is gaining popularity

16

Message Passing is the L.C.D.

• Clearly, message passing can be implemented
using shared memory and shmem
– But it must do unnecessary stuff and doesn’t exploit

“expensive” part of those machines

• Compilers targeting large computers use
message passing to avoid producing 3 back-
ends, 3 variations of optimizations, etc.

• How bad can it be?
+ MP still uses fast communication for transmission
-- MP will go through unnecessary copying, marshalling,

demarshalling, copying, handshaking, etc.

17

Comparison of T3E Communication Types

•

Equal amount
of data per proc

18

Compilation Challenge for Parallelism

All of these memory models exist on production
machines …

• Worried by this problem, the ZPL designers
modelled communication by an abstraction
called Ironman Communication

• Ironman abstracts a CTA communication as a
load, store

• Ironman is not biased for/against any comm
mechanism

Ironman is designed for
compilers, not programmers

Ironman is designed for
compilers, not programmers

19

Ironman Communication
• The Ironman abstraction says what is to be transferred

and when, but not how
• Key idea: 4 procedure calls mark the interval during

which communication can occur

DR(A) = destination location ready to receive data [D side]

SR(A) = source data is ready for transfer [S side]
DN(A) = destination data is now needed [D side]

SV(A) = source location is volatile (to be overwritten) [S side]

• Bound the interval of the source (S) and destination (D)
sides of the communication and let the hardware
implement the communication

SD

20

Inserting Communication
• At each communication, the sequence of four

procedure calls is inserted in SPMD code

C := …A@…;
A := …D*E…;
B := A@east;
DReady(A);
SReady(A);
DNeeded(A);
SVolatle(A);
for(){B…:=A…}
A := C;
D := …A…;

Communication

21

Ironman Example

Notice the two roles a PE plays in the four calls

A := …D…
DR(Pi+1,A);
SR(Pi,A);
Comm

DN(Pi+1,A);
SV(Pi,A);
A := C;

A := …D…;
DR(Pi,A);
SR(Pi-1,A);

Comm
DN(Pi,A);
SV(Pi-1,A);
A := C;

Destination location readyDestination location ready

Source data is readySource data is ready

Destination data neededDestination data needed

Source location volatileSource location volatile

Communication occurs
inside the intervals

Communication occurs
inside the intervals

A of Pi+1A of Pi Blue indicates one commBlue indicates one comm

Pi
Pi Pi+1

Pi+1

22

Ironman Calls

• Every compiled ZPL program uses Ironman
calls, but they can have different bindings

Destination readyDestination ready

Source readySource ready

Destination neededDestination needed

Source volatileSource volatile

Paragon
--

csend

crecv

--

Paragon
--

csend

crecv

--

MPI Asych
mpi_irecv

mpi_isend

mpi_wait

mpi_wait

MPI Asych
mpi_irecv

mpi_isend

mpi_wait

mpi_wait

Cray
post_ready

{wait_ready
shmem_put
post_done}
wait_done

--

Cray
post_ready

{wait_ready
shmem_put
post_done}
wait_done

--

One compile, multiple bindingsOne compile, multiple bindings

23

Optimizing Ironman
Push calls as far apart as possible, expanding the

interval for the communication; skew in time

C := …A@…;
DReady(A);
A := …D*E…;
SReady(A);
B := A@east;

Comm
DNeeded(A);
for(){B…:=A…}
SVolatile(A);
A := C;

Remember: “Source” is
the array itself,
“Destination” is the fluff

Remember: “Source” is
the array itself,
“Destination” is the fluff

24

Ironman Advantages

• Ironman neutralizes different communication
models -- avoiding one-size fits all message
passing

• Ironman allows the best communication
model to be used for the platform

• Extensive optimizations are possible by
moving DR, SR calls earlier, and DN, SV calls
later … thus reducing wait time and allowing
processors to drift in time

25

Break

• 10 Minutes

26

Non-shared Memory

Building shared memory in hardware is difficult, as
we see next time, and its programming
advantages are limited

Leave it out; focus on speed and scaling
• Three machines

– nCUBE, an early hypercube architecture -- ‘80s
– CM-5, architecture that’s “ultimately scalable” -- ’90s
– XT3 Cray’s and it’s antecedents T3D, T3E -- ‘00s

• Each machine tries to do some aspect of
communication well

27

Focus on 3 Properties of Communication
• Network Interface--how does it connect with

the processor element’s other parts?
• Network topology--how many hops separate

each pair of processors; fewer the better
• Bisection Bandwidth--how many bits can be

sent across the bisection of the graph in unit
time?
– Bisection: minimum edge separation of the

topology into two equal sets of nodes
– Generally BB = edges*width*clockrate
– This is theoretically best

28

nCUBE/2 A ‘Classic’ Multiprocessor

• The nCUBE/2 was a hypercube architecture
• Per node channel capacity grows as log2 P

0 Cube0 Cube 1 Cube1 Cube

2 Cube2 Cube 3 Cube3 Cube

4 Cube4 Cube
Each node has a
d bit address To
route, “correct”
the bits

Each node has a
d bit address To
route, “correct”
the bits

29

“Correcting The Bit”

• At a node of address x, when packet destined
for address y comes in
– If all bits match … packet has arrived
– Otherwise, x XOR y, pick a position, i, where there

is a mismatch, and send packet out that channel

011001 011011001001

010001 011101

111001 011000

30

Schematic of nCube Node

Communication Integrated into PE architecture

31

nCUBE/2 Physical Arrangement

• A single card performed all of the operations,
allowing it to be very economical

• But adding to the system is impossible …
new boards are needed, and new
communication -- not so scalable

Memory
Processor
and Comm

Memory

Memory

Memory

Memory

Memory

32

Connection Machine - 5

• Thinking Machines Inc.’s MIMD machine
[Caution: CM-1 and CM-2 are SIMD]

• Goal: Create an architecture that could scale
arbitrarily, e.g. 64K processors

• Nodes are standard proc/fpu/mem/NIC
• Scaling came in “powers of 2” using fat tree
• Special hardware performed ‘reductions’
• “Programmed I/O” meant PE was split

between comp and comm duties

33

Schematic

• Channel to MMU narrow

34

CM-5 A “Thinking Machine”

• CM-5 Used a fat tree design

PM PM PM PM PM PM PM PM

To handle more
traffic at higher
levels, add more
channels and
switching capacity

To handle more
traffic at higher
levels, add more
channels and
switching capacity

35

Cray T3D and T3E, Predecessors of XT3
Assume a shared address space -- all

processors see the same addresses, but not
the contents

• One-sided communication is implemented
using shmem-get and shmem-put

• Result is a non-coherent shared memory

The T3s are three
dimensional torus
topologies, i.e. a
3D mesh w/wraps

The T3s are three
dimensional torus
topologies, i.e. a
3D mesh w/wraps

36

Cray T3

Conceptualize a pseudo-processor and a
pseudo-memory implementing get/put

37

T3D

• Shmem-get and -put eliminate synchronization
for the processor, though communication
subsystem must
– Get/Put Are Asymmetric

• There is a short sequence of instructions to
initiate a transfer and then ~100 cycles

• A separate network implements global
synchronization operations like (eureka), like
CTA’s controller network

38

T3E
• Greater simplification over T3D by using E-registers

to abstract pseudo-memory, pseudo-processors
• Gets/Puts instructions move data between global

addresses and E-registers
• Read/Modify/Write also possible with E-regs
• Loading Data

• Put processor address portion in E-register
• Issue get with a mem-mapped store

• Actual transfer made from remote processor E-register
• Load from E-register gets data

• Twice the speed of T3D

39

Recent Language Design

Co-Array Fortran
• Developed within Cray (originally F--) by Numrich&Reed

• Motivated to use T3D/T3E’s shmem facilities

• Add’s a processor “co-dimension” to the arrays of F95
REAL, DIMENSION (N) [*] :: X,Y !Declare 2 size n vectors

X(:) = Y(:) [PE] !If PE is same on all images, copy Y to X

• Also has a few collective operations, synch. primitives

• CAF provides a clean way to manage (shmem)
communication in a “local view” language … machine
model is CTA

• Cray supports CAF

(left over from last week)

40

MM in CoArray Fortran

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo
enddo

(left over from last week)

41

Reduction
subroutine globalSum(x)
real(kind=8),dimension[0:*] :: x
real(kind=8) :: work
integer n,bit,i, mypal,dim,me, m
dim = log2_images()
if(dim .eq. 0) return
m = 2**dim
bit = 1
me = this_image(x)
do i=1,dim

mypal=xor(me,bit)
bit=shiftl(bit,1)
call sync_all()
work = x[mypal]
call sync_all()
x=x+work

enddo
end subroutine globalSum

011001
xor 000001

011000

42

XT3 -- Next Generation Scalable Machine
The T3D, T3E are old --most are retired
• Cray’s latest entry is the XT3

Glossy Literature Says It All:

“Purpose-built to meet the special needs of
capability class HPC applications, each
feature and function is designed for larger
problems, faster solutions, and a greater
return on investment.”

43

XT3 Data Sheet

Configurations

44

XT3 Architecture Cartoon

45

XT3 Uses 3D Torus Interconnect

46

Data Sheet
CPU 64-bit AMD Opteron 100 series processors; up to 96 per cabinet
Cache 64K L1 I cache, 64K L1 D cache, 1 MB L2 cache per processor
FLOPS 460 GFLOPS per cabinet (96 processors @ 2.4 GHz)
Main Memory 1-8 GB Registered ECC SDRAM per processor
Memory Bandwidth 6.4 GB/s per processor
Interconnect 1 Cray SeaStar routing and communications ASIC per Opteron

6 switch ports per Cray SeaStar chip, 7.6 GB/s each
(45.6 GB/s switching capacity per Cray SeaStar chip)
3 dimensional torus interconnect 3 microsecond MPI latency between PEs

External I/O 2 independent 64-bit 133 MHz PCI-X buses per service PE
Gigabit Ethernet PCI-X card (copper and optical)
Dual-Port 2 GB/s Fibre Channel Host Bus Adapter (optical)

10 Gigabit Ethernet card (Optical)
Disk 4 and 8 port Fibre Channel RAID controllers

Configurable Fibre Channel RAID drive sets File System Lustre File System

47

Data Sheet
CPU 64-bit AMD Opteron 100 series processors; up to 96 per cabinet
Cache 64K L1 I cache, 64K L1 D cache, 1 MB L2 cache per processor
FLOPS 460 GFLOPS per cabinet (96 processors @ 2.4 GHz)
Main Memory 1-8 GB Registered ECC SDRAM per processor
Memory Bandwidth 6.4 GB/s per processor
Interconnect 1 Cray SeaStar routing and communications ASIC per Opteron

6 switch ports per Cray SeaStar chip, 7.6 GB/s each
(45.6 GB/s switching capacity per Cray SeaStar chip)
3 dimensional torus interconnect 3 microsecond MPI latency between PEs

External I/O 2 independent 64-bit 133 MHz PCI-X buses per service PE
Gigabit Ethernet PCI-X card (copper and optical)
Dual-Port 2 GB/s Fibre Channel Host Bus Adapter (optical)

10 Gigabit Ethernet card (Optical)
Disk 4 and 8 port Fibre Channel RAID controllers

Configurable Fibre Channel RAID drive sets File System Lustre File System

Estimate λ for XT3:

3µ latency, 2.4 GHz clock imply
7.2 KHz per communication x IPC

Estimate λ for XT3:

3µ latency, 2.4 GHz clock imply
7.2 KHz per communication x IPC

48

Clusters (a\k\a Beowulf Clusters)

Clusters are “home
made” parallel
computers using
commodity parts
and simple
engineering

Beowulf Hardware
Node Hardware

Rates, Latencies and Bandwidths
Microbenchmarking Tools
Lmbench Results
Netperf Results
CPU Results

Conclusions
Network Hardware

Basic Networking 101
Networking Concepts
TCP/IP

Ethernet
10 Mbps Ethernet
100 Mbps Ethernet
1000 Mbps Ethernet

The Dolphin Serial Channel Interconnect
Myrinet

http://www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book/index.html

Robert G Brown
Engineering a Beowulf Style Cluster

Robert G Brown
Engineering a Beowulf Style Cluster

49

Northshore Cluster

• Northshore is
• 32 Pentium 4 PEs (some may be down)

• 2.4 GHz

• 1GB memory
• GigaBit Ethernet Interconnect

• 60 more processors to be added soon

50

Summary
• Non-Shared memory computers scale
• Communication design is important

• NIC’s relationship to other parts
• Network topology
• Bisection bandwidth

• The “rap” on Non-Shared memory machines is
that the work of orchestrating communication is
explicit in software

∴Spend design $ on network and processor
performance not on memory sharing

The response is, “Yes, but it
doesn’t have to be explicit in the
code the programmer writes”

The response is, “Yes, but it
doesn’t have to be explicit in the
code the programmer writes”

51

Citations

Bradford L. Chamberlain, Sung-Eun Choi,
and Lawrence Snyder. A compiler
abstraction for machine independent
parallel communication generation. In
Proceedings of the Workshop on Languages
and Compilers for Parallel Computing, 1997

R.W. Numrich and J.K. Reid, “Co-Array Fortran for
Parallel Programming”, ACM Fortran Forum, 17(2):1-
31, 1998

