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The Parallel Runtime

Though parallel computers run Linux kernels and 
though compilation is largely routine, there are a few 

aspects of parallel computers run-time of interest.  
Communication will remain our main focus. 
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Project Posted

• Due 14 March 2005 at 12:00 Noon PST
• Specification are on the Web
• “Personally interesting” project is preferred

• Check in with an email outline of plan

• Turn in one sheet in each future lecture of 
recent progress on project (pass tonight)

• Questions?
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Compiling Parallel Programs
• Languages use a “single program, multiple data” 

(SPMD) view ⇒⇒⇒⇒ the compiler produces 1 program
• Logically, ZPL executes 1 statement at a time, but 

processors go at their own rates using “data 
synchronization” -- when data’s present, keep going

for i := 1 to n do
[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A
[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements
end;

bdcst col; 
bdcst row;
compute;

bdcst col; 
bdcst row;
compute; bdcst col; 

recv row;
compute;

bdcst col; 
recv row;
compute;

recv col; 
recv row;
compute;

recv col; 
recv row;
compute;

recv col; 
bdcst row;
compute;

recv col; 
bdcst row;
compute;
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All Part Of One Code

The SPMD program form requires that both 
‘sides’ of the communication are coded 
together if/when 2-sided comm is used

if my_col(k) then bdcast(A[mylo1..myhi1,k])

else recv(Col[mylo1..myhi1. * ]);

if my_row(k) then bdcast(B[k,mylo2..myhi2])

else recv(Row[ * ,mylo2..myhi2]);

The actual form of ZPL’s communication is given belowThe actual form of ZPL’s communication is given below
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Compiling ZPL Programs 
• Because ZPL is high level, most optimizations have a 

huge payoff 
• Examples of important optimizations

rightedge := max<< Pts.x;--Find bounding box

topedge := max<< Pts.y;-- |

leftedge := min<< Pts.x;-- |

bottomedge := min<< Pts.y;-- V

converts to 1 Ladner/Fischer tree on 4-part data; the 
last 3 communications are “free” [Derrick Weathersby]

Above := A@N + B@N + C@N;

combines all communication to north (and south) 
neighbors
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What Happens When A Program Runs

• One processor starts, gets the logical arrangement 
from command line, sends it to others and they start

This differs slightly from machine to machine

• Each processor computes which region it owns
• Each processor sets up its scalars, routing tables and 

data arrays ... 
Fluff -- the temporary 
storage used to hold  
values transmitted for 
@-communication --
it is inline to make 
indexing transparent 

Fluff -- the temporary 
storage used to hold  
values transmitted for 
@-communication --
it is inline to make 
indexing transparent Flood arrays --

minimum allocation 

Flood arrays --
minimum allocation 



7

The “Problem with Parallel Computers”
Parallel computers have (at least) one of three 

communication mechanisms …
• Hardware shared memory

• Message passing library

• One-sided communication (shmem)

• Any compiler seeking portability needs to 
target all three

• The standard solution is to generate message 
passing code because Shared and Shmem
can both implement message passing

Unfortunately … this lowest common denominator 
solution doesn’t exploit the hardware 

Unfortunately … this lowest common denominator 
solution doesn’t exploit the hardware 
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Message Passing
• Message passing is provided by a machine-

specific library, but there are standard APIs
– MPI -- Message passing interface
– PVM -- Parallel Virtual Machine

• Example operations
• Blocking send … send msg, proceed after it’s received 

• Non-blocking send … send msg, continue execution
• Wait_for_ACK … wait for ack of non-blocking send

• Receive … get msg that has arrived, or wait for it

• Message passing is not for compilers;  it’s for 
programmers to use with C or Fortran, 
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A Compiler’s Problem w/ Message Passing

Programmers may use MP deftly, but compilers ?
• Overlapping Communication/Computation

– When exchanging data with neighbor: do it & wait
send_to(p+1, my_data1);  
recv_from(p+1, his_data1);

– Programmers can know data not immediately needed
nb_send_to(p+1, my_data1);
compute(a, boodle);
recv_from(p+1, his_data1); 
wait_for_ACK(p+1, my_data1);
my_data1 = his_data1 + some + other + values;

– If a compiler fails at analysis, it must be conservative, 
and use blocking sends
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Look Under the Covers

To see the sensitivity of high-level operations to 
the computer’s communication mechanism…
– Consider compiling code for 

[1..n, 1..n-1] B := A@east;

– For three different communications approaches
• Message Passing

• Shared Memory

• One-sided communication
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Under the Covers: Message Passing

B := A@east ...;

• Move edge elements of A, then local copy to B

• Message passing …
• Marshall the elements into a message

Send, Receive
• Demarshall

Pi memory

Pi memory

Packet to Send to Pi-1

Packet Recv’d from Pi+1
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Under the Covers: Shared Memory
One coherent global memory manipulated 

through “standard” load and store operations 
(more on this later) with caching

B := A@east ...;

• In the model each processor writes directly into the 
portion of B that it ‘owns,’ referencing elements of A

• No explicit ‘fluff’ regions, but synch needed
barrier_synch(); 

for (i=mylo1_B;i<myhi1_B;i++){

for (j=mylo2_B;j<myhi2_B;j++){
B[i][j]=A[i][j+1];

}

}

P1 P2

Barrier ensures all processors are done w/A, ready for BBarrier ensures all processors are done w/A, ready for B

$
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Consequences of No Fluff

• A processor’s “responsibility” can straddle a 
cache line

• When reading, get more data than needed, 
missing benefits of caching

• False sharing -- writes to cache line will 
invalidate lines in other processors even 
though there is no actual collision on words

• Start on cache line boundaries or use fluff
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Alternative Communication (Shmem)

• Message passing is “heavy weight” because it 
requires both a send and acknowledgement

• A “lighter weight” approach is one-sided 
communication, also known as shmem

• Two operations are supported --
get(P.loc,mine);  -- read directly from loc of proc. P into mine
put(mine,P.loc,);  -- store mine directly into loc of proc P

• Not shared memory since there is no memory 
coherence -- the programmer is responsible 
for keeping the memory sensible 
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Under the Covers: Shmem
• To implement “locally coherent” memory, 

programmers use post() and wait() to set and 
wait on data present, memory available events

B := A@east … ;
post(P-1, my_data_ready); -- say mine’s available

wait(P+1,his_data_ready); -- wait til neighbor’s ready

for (j=mylo1_B;j<myhi1_B;j++){

get(Pi+1.A[j][his_col],B[j][fluffCol]);

} -- directly fetch items and put in fluff column

One-sided communication is more efficient 
because of less waiting and less network traffic

One-sided communication is gaining popularity One-sided communication is gaining popularity 
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Message Passing is the L.C.D.

• Clearly, message passing can be implemented 
using shared memory and shmem
– But it must do unnecessary stuff and doesn’t exploit 

“expensive” part of those machines 

• Compilers targeting large computers use 
message passing to avoid producing 3 back-
ends, 3 variations of optimizations, etc.

• How bad can it be?
+ MP still uses fast communication for transmission
-- MP will go through unnecessary copying, marshalling, 

demarshalling, copying, handshaking, etc.
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Comparison of T3E Communication Types

•

Equal amount 
of data per proc
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Compilation Challenge for Parallelism

All of these memory models exist on production 
machines …

• Worried by this problem, the ZPL designers 
modelled communication by an abstraction 
called Ironman Communication

• Ironman abstracts a CTA communication as a 
load, store

• Ironman is not biased for/against any comm
mechanism

Ironman is designed for 
compilers, not programmers

Ironman is designed for 
compilers, not programmers
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Ironman Communication
• The Ironman abstraction says what is to be transferred 

and when, but not how
• Key idea: 4 procedure calls mark the interval during 

which communication can occur

DR(A) = destination location ready to receive data [D side]

SR(A) = source data is ready for transfer  [S side]
DN(A) = destination data is now needed   [D side]

SV(A) = source location is volatile (to be overwritten) [S side]

• Bound the interval of the source (S) and destination (D) 
sides of the communication and let the hardware 
implement the communication

SD
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Inserting Communication
• At each communication, the sequence of four 

procedure calls is inserted in SPMD code

C := …A@…;
A := …D*E…;
B := A@east;
DReady(A);
SReady(A);
DNeeded(A);
SVolatle(A);
for(){B…:=A…}
A := C;
D := …A…;

Communication
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Ironman Example

Notice the two roles a PE plays in the four calls

A := …D…
DR(Pi+1,A);
SR(Pi,A);
Comm

DN(Pi+1,A);
SV(Pi,A);
A := C;

A := …D…;
DR(Pi,A);
SR(Pi-1,A);

Comm
DN(Pi,A);
SV(Pi-1,A);
A := C;

Destination location readyDestination location ready

Source data is readySource data is ready

Destination data neededDestination data needed

Source location volatileSource location volatile

Communication occurs 
inside the intervals

Communication occurs 
inside the intervals

A of Pi+1A of Pi Blue indicates one commBlue indicates one comm

Pi
Pi Pi+1

Pi+1
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Ironman Calls

• Every compiled ZPL program uses Ironman
calls, but they can have different bindings

Destination readyDestination ready

Source readySource ready

Destination neededDestination needed

Source volatileSource volatile

Paragon
--

csend

crecv

--

Paragon
--

csend

crecv

--

MPI Asych
mpi_irecv

mpi_isend

mpi_wait

mpi_wait

MPI Asych
mpi_irecv

mpi_isend

mpi_wait

mpi_wait

Cray 
post_ready

{wait_ready 
shmem_put
post_done} 
wait_done

--

Cray 
post_ready

{wait_ready 
shmem_put
post_done} 
wait_done

--

One compile, multiple bindingsOne compile, multiple bindings
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Optimizing Ironman
Push calls as far apart as possible, expanding the 

interval for the communication; skew in time

C := …A@…;
DReady(A);
A := …D*E…;
SReady(A);
B := A@east;

Comm
DNeeded(A);
for(){B…:=A…}
SVolatile(A);
A := C;

Remember: “Source” is 
the array itself, 
“Destination” is the fluff

Remember: “Source” is 
the array itself, 
“Destination” is the fluff
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Ironman Advantages

• Ironman neutralizes different communication 
models -- avoiding one-size fits all message 
passing

• Ironman allows the best communication 
model to be used for the platform

• Extensive optimizations are possible by 
moving DR, SR calls earlier, and DN, SV calls 
later … thus reducing wait time and allowing 
processors to drift in time
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Break

• 10 Minutes
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Non-shared Memory

Building shared memory in hardware is difficult, as 
we see next time, and its programming 
advantages are limited

Leave it out; focus on speed and scaling
• Three machines

– nCUBE, an early hypercube architecture -- ‘80s
– CM-5, architecture that’s “ultimately scalable” -- ’90s
– XT3 Cray’s and it’s antecedents T3D, T3E -- ‘00s

• Each machine tries to do some aspect of 
communication well



27

Focus on 3 Properties of Communication
• Network Interface--how does it connect with 

the processor element’s other parts?
• Network topology--how many hops separate 

each pair of processors; fewer the better
• Bisection Bandwidth--how many bits can be 

sent across the bisection of the graph in unit 
time?
– Bisection: minimum edge separation of the 

topology into two equal sets of nodes
– Generally BB = edges*width*clockrate
– This is theoretically best
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nCUBE/2  A ‘Classic’ Multiprocessor

• The nCUBE/2 was a hypercube architecture
• Per node channel capacity grows as log2 P

0 Cube0 Cube 1 Cube1 Cube

2 Cube2 Cube 3 Cube3 Cube

4 Cube4 Cube
Each node has a 
d bit address To 
route, “correct” 
the bits 

Each node has a 
d bit address To 
route, “correct” 
the bits 
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“Correcting The Bit”

• At a node of address x, when packet destined 
for address y comes in
– If all bits match … packet has arrived
– Otherwise, x XOR y, pick a position, i, where there 

is a mismatch, and send packet out that channel

011001 011011001001

010001 011101

111001 011000
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Schematic of nCube Node

Communication Integrated into PE architecture
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nCUBE/2 Physical Arrangement

• A single card performed all of the operations, 
allowing it to be very economical

• But adding to the system is impossible … 
new boards are needed, and new 
communication -- not so scalable

Memory
Processor 
and Comm

Memory

Memory

Memory

Memory

Memory
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Connection Machine - 5

• Thinking Machines Inc.’s MIMD machine 
[Caution: CM-1 and CM-2 are SIMD]

• Goal: Create an architecture that could scale 
arbitrarily, e.g. 64K processors

• Nodes are standard  proc/fpu/mem/NIC
• Scaling came in “powers of 2” using fat tree 
• Special hardware performed ‘reductions’
• “Programmed I/O” meant PE was split 

between comp and comm duties
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Schematic

• Channel to MMU narrow



34

CM-5 A “Thinking Machine”

• CM-5 Used a fat tree design

PM PM PM PM PM PM PM PM

To handle more 
traffic at higher 
levels, add more 
channels and 
switching capacity 

To handle more 
traffic at higher 
levels, add more 
channels and 
switching capacity 
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Cray T3D and T3E, Predecessors of XT3
Assume a shared address space -- all 

processors see the same addresses, but not 
the contents

• One-sided communication is implemented 
using shmem-get and shmem-put

• Result is a non-coherent shared memory

The T3s are three 
dimensional torus
topologies, i.e. a 
3D mesh w/wraps

The T3s are three 
dimensional torus
topologies, i.e. a 
3D mesh w/wraps
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Cray T3

Conceptualize a pseudo-processor and a 
pseudo-memory implementing get/put
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T3D 

• Shmem-get and -put eliminate synchronization 
for the processor, though communication 
subsystem must
– Get/Put Are Asymmetric

• There is a short sequence of instructions to 
initiate a transfer and then ~100 cycles

• A separate network implements global 
synchronization operations like (eureka), like 
CTA’s controller network



38

T3E
• Greater simplification over T3D by using E-registers 

to abstract pseudo-memory, pseudo-processors
• Gets/Puts instructions move data between global 

addresses and E-registers
• Read/Modify/Write also possible with E-regs
• Loading Data

• Put processor address portion in E-register
• Issue get with a mem-mapped store

• Actual transfer made from remote processor E-register
• Load from E-register gets data

• Twice the speed of T3D
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Recent Language Design

Co-Array Fortran
• Developed within Cray (originally F--) by Numrich&Reed

• Motivated to use T3D/T3E’s shmem facilities

• Add’s a processor “co-dimension” to the arrays of F95
REAL, DIMENSION (N) [*] :: X,Y   !Declare 2 size n vectors 

X(:) = Y(:) [PE]      !If PE is same on all images, copy Y to X 

• Also has a few collective operations, synch. primitives

• CAF provides a clean way to manage (shmem) 
communication in a “local view” language … machine 
model is CTA

• Cray supports CAF

(left over from last week)
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MM in CoArray Fortran

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo
enddo

(left over from last week)
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Reduction
subroutine globalSum(x)
real(kind=8),dimension[0:*] :: x
real(kind=8) :: work
integer n,bit,i, mypal,dim,me, m
dim = log2_images()
if(dim .eq. 0) return
m = 2**dim
bit = 1
me = this_image(x)
do i=1,dim

mypal=xor(me,bit)
bit=shiftl(bit,1)
call sync_all()
work = x[mypal]
call sync_all()
x=x+work

enddo
end subroutine globalSum

011001
xor 000001

011000
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XT3 -- Next Generation Scalable Machine
The T3D, T3E are old --most are retired
• Cray’s latest entry is the XT3

Glossy Literature Says It All:

“Purpose-built to meet the special needs of 
capability class HPC applications, each 
feature and function is designed for larger 
problems, faster solutions, and a greater 
return on investment.”
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XT3 Data Sheet

Configurations
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XT3 Architecture Cartoon
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XT3 Uses 3D Torus Interconnect
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Data Sheet 
CPU 64-bit AMD Opteron 100 series processors; up to 96 per cabinet 
Cache 64K L1 I cache, 64K L1 D cache, 1 MB L2 cache per processor 
FLOPS 460 GFLOPS per cabinet (96 processors @ 2.4 GHz) 
Main Memory 1-8 GB Registered ECC SDRAM per processor
Memory Bandwidth 6.4 GB/s per processor
Interconnect 1 Cray SeaStar routing and communications ASIC per Opteron

6 switch ports per Cray SeaStar chip, 7.6 GB/s each   
(45.6 GB/s switching capacity per Cray SeaStar chip) 
3 dimensional torus interconnect 3 microsecond MPI latency between PEs

External I/O 2 independent 64-bit 133 MHz PCI-X buses per service PE 
Gigabit Ethernet PCI-X card (copper and optical) 
Dual-Port 2 GB/s Fibre Channel Host Bus Adapter (optical) 

10 Gigabit Ethernet card (Optical) 
Disk 4 and 8 port Fibre Channel RAID controllers 

Configurable Fibre Channel RAID drive sets File System Lustre File System 
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Data Sheet 
CPU 64-bit AMD Opteron 100 series processors; up to 96 per cabinet 
Cache 64K L1 I cache, 64K L1 D cache, 1 MB L2 cache per processor 
FLOPS 460 GFLOPS per cabinet (96 processors @ 2.4 GHz) 
Main Memory 1-8 GB Registered ECC SDRAM per processor
Memory Bandwidth 6.4 GB/s per processor
Interconnect 1 Cray SeaStar routing and communications ASIC per Opteron

6 switch ports per Cray SeaStar chip, 7.6 GB/s each   
(45.6 GB/s switching capacity per Cray SeaStar chip) 
3 dimensional torus interconnect 3 microsecond MPI latency between PEs

External I/O 2 independent 64-bit 133 MHz PCI-X buses per service PE 
Gigabit Ethernet PCI-X card (copper and optical) 
Dual-Port 2 GB/s Fibre Channel Host Bus Adapter (optical) 

10 Gigabit Ethernet card (Optical) 
Disk 4 and 8 port Fibre Channel RAID controllers 

Configurable Fibre Channel RAID drive sets File System Lustre File System 

Estimate λ for XT3:

3µ latency, 2.4 GHz clock imply 
7.2 KHz per communication x IPC

Estimate λ for XT3:

3µ latency, 2.4 GHz clock imply 
7.2 KHz per communication x IPC
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Clusters (a\k\a Beowulf Clusters)

Clusters are “home 
made” parallel 
computers using 
commodity parts 
and simple 
engineering

Beowulf Hardware 
Node Hardware 

Rates, Latencies and Bandwidths  
Microbenchmarking Tools
Lmbench Results 
Netperf Results 
CPU Results 

Conclusions 
Network Hardware 

Basic Networking 101 
Networking Concepts 
TCP/IP 

Ethernet 
10 Mbps Ethernet 
100 Mbps Ethernet 
1000 Mbps Ethernet 

The Dolphin Serial Channel Interconnect
Myrinet

http://www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book/index.html

Robert G Brown
Engineering a Beowulf Style Cluster

Robert G Brown
Engineering a Beowulf Style Cluster
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Northshore Cluster

• Northshore is 
• 32 Pentium 4 PEs (some may be down)

• 2.4 GHz

• 1GB memory
• GigaBit Ethernet Interconnect

• 60 more processors to be added soon
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Summary
• Non-Shared memory computers scale
• Communication design is important

• NIC’s relationship to other parts
• Network topology
• Bisection bandwidth

• The “rap” on Non-Shared memory machines is 
that the work of orchestrating communication is 
explicit in software

∴Spend design $ on network and processor  
performance not on memory sharing 

The response is, “Yes, but it 
doesn’t have to be explicit in the 
code the programmer writes”

The response is, “Yes, but it 
doesn’t have to be explicit in the 
code the programmer writes”
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