
1

Supercomputing with ZPL
and

Other Approaches

ZPL Classic is fine for base computations, but serious
scientific computations need more control. Also, we

summarize other popular parallel programming
languages

2

Sorting Solution from Homework

• Code for ranking sort of [1,1..n] S : integer;
[*,1..n] RowFlood := >>[1,1..n]S; --Replicate S as row

[1..n,*] ColFlood := >>[1..n,1]S#[Index2,Index1]; --Find ST, dup as col

[1,1..n] Rank := +<<[1..n,1..n](ColFlood <= RowFlood); --Compare,Add

3 1 4 5 9 2
3 1 0 1 1 1 0
1 1 1 1 1 1 1
4 0 0 1 1 1 0
5 0 0 0 1 1 0
9 0 0 0 0 1 0
2 1 0 1 1 1 1

3 1 4 5 9 2
3 1 4 5 9 2
3 1 4 5 9 2
3 1 4 5 9 2
3 1 4 5 9 2
3 1 4 5 9 2

3 3 3 3 3 3
1 1 1 1 1 1
4 4 4 4 4 4
5 5 5 5 5 5
9 9 9 9 9 9
2 2 2 2 2 2

3 1 4 5 6 2

3

Problem Space Promotion
• The ranking sort is an instance of a new

programming paradigm in ZPL
• Problem Space Promotion is to solve a D dimensional

problem in a dimension D’>D using floods to avoid
explicit creation of data structures

• Other PSPs mentioned so far: 3D MM

Input
A2

B2

C

[IstarK] A2 := A#[Index1,Index2];
[starJK] B2 := B#[Index2,Index1];
[IJstar] C := +<<[IJK](A2*B2);

4

PSP

• Explicit N-Body and other ‘all pairs’
computations work well

• PSP works well because ZPL floods are
space efficient

• The ops are the same, but the data motion is less and it
benefits from caching

5

Where We Are, and the Plan
• ZPL Classic + WYSIWYG is plenty powerful

for producing quality parallel solutions of
serious scientific computations

• Large applications--protein folding, galaxy
simulation, etc.--require control over data
placement and processor work assignment

• Complete ZPL has facilities for managing
those tasks … we look at

• Grids, Distributions

• Grid variables

• FFT example

6

Recall Free Variables
• Free variables contrast with scalar variables:

– Declarations
var x, y : integer; -- scalar declarations

free var fx, fy : integer; -- free variable declarations

– Semantics
• Scalar Vars--one copy on each processor, but they act like

one global variable (coherent)

• Free Vars--one copy on each processor, but they behave
independently (not coherent)

– Uses
Add globally: [R] x := +<<A; -- Global Reducation

Add locally: [R] fx += A; -- Accumulate local values

Add globally: x := +<<fx; -- Reduction extended to free

7

Local Computation with Free Variables

• What’s happening with the free variable?
free var freeSum : integer = 0;

[R] freeSum += A;

free var localMax : integer = MININTEGER;
[R] if A > localMax then

localMax := A;

end;

All elements of A covered by the region are
processed over that portion of the region local
to each processor … adding all the while

All elements of A covered by the region are
processed over that portion of the region local
to each processor … adding all the while

The shattered case; generally
assignment to scalars is illegal

The shattered case; generally
assignment to scalars is illegal

8

Sorting Columns: Return to Homework

In the observations of the homework, how could
we sort the columns? Start with vector of arrays

var Obs : [1..n] array [1..m] of float; -- Vector of arrays

free var ftemp : integer;

[1..n] for i := 1 to m-1 do -- Simple exchange sort
for j := 2 to m do

if Obs[i]>Obs[j] then

ftemp := Obs[i]; -- Free variable is needed

Obs[i] := Obs[j]; -- Indexed op always OK

Obs[j] := ftemp; -- Free variable is needed
end;

end;

end;

Each processor
does the
vectors it stores

Each processor
does the
vectors it stores

A vector of arrays may be a good
DS for this problem, but not always

A vector of arrays may be a good
DS for this problem, but not always

9

Grid Dimensions to the Rescue
• Grid dimensions (::) are “between” flood (*)

and range (..) and can the seen as extending
the free concept to flood

• Grid dimensions associate 1 value per
processor unlike flood with 1 value for all
processors

• For example
var A : [::, 1..n] integer; -- Place n elements on each proc

var A : [0..numLocales()-1,1..n] integer; -- Like above

One great use of grid dimensions is to control computation
over regular arrays declared with ranges

One great use of grid dimensions is to control computation
over regular arrays declared with ranges

10

Computing Over Grid Dimensions

Computing over grid dimensions lets a dimension
act as an array of arrays. Back to HW again

var Ob : [1..m,1..n] float;

free var ftemp, i, j : integer; -- Simple exchange sort

[::,1..n] for i := blockLocalLo(Ob,1) to blockLocalHi(Ob,1)-1 do
for j := blockLocalLo(Ob,1)+1 to blockLocalHi(Ob,1) do

if Ob[i]>Ob[j] then

ftemp := Ob[i]; -- Free variable is needed

Ob[i] := Ob[j];

Ob[j] := ftemp; -- Free variable is needed
end;

end;

end;

Range over the
column as with
vector of arrays;
no change of
structure

Range over the
column as with
vector of arrays;
no change of
structure

NB blockLocalLo is presently reglo(R, dim)
blockLocalHi is presently reghi(R, dim)

NB blockLocalLo is presently reglo(R, dim)
blockLocalHi is presently reghi(R, dim)

11

But our Original Formulation was 2x4
• The fine print: This use of grid dimensions is

local computation, implying that all the values
have to be on the same processor, but the
original grid configuration had multiple
processors in a column

• What to do when the different parts of the
computation want different proc arrangements?

⇒

ZPL allows processor allocations to be changed
… though this problem might not be worth it

ZPL allows processor allocations to be changed
… though this problem might not be worth it

12

ZPL’s Meta Concepts

Processor allocations (grids) and distributions
can be changed by programmer on-the-fly

• New concepts: grid and distribution

• There is a hierarchy of concepts
grid

distribution

region

array
The issue is managing
the data and work
allocations dynamically

The issue is managing
the data and work
allocations dynamically

13

Grids
A grid is an logical arrangement of processors

used as an abstraction for allocations
Declare

grid G1 = [1..2,1..p/2]; -- original proc grid

grid G2 = [1,1..p]; -- desired proc grid

which are arrangements we have and the one
we want

• The plan is to reallocate the array so that the
columns are on a single processor

0 1 2 3
4 5 6 7

0 1 2 3 4 5 6 7

We have to say how we want regions assigned We have to say how we want regions assigned

14

Distributions

Distributions say how a regions are distributed
across a grid

Declare
distribution D1 : G1 = [blk(1,m),blk(1..n)];

distribution D2 : G2 = [blk(1,m),blk(1..n)];

which allocates all array elements by blocks
in each dimension of the grids specified

D1 D2

Now we must assign the regions Now we must assign the regions

15

Regions ...

Regions as defined so far take the default
distribution, but distributions can be specified

Declare
region R1 : D1 = [1..m, 1..n];

R2 : D2 = [1..m, 1..n];

which distributes all of the indices as we need

R1 R2

16

Arrays
Arrays are specified in the usual way ...
Declare

var A : [R1] double;

B : [R2] double;

• All of this preparation is set up for assigning A
to B to reallocate the data:

[1..m,1..n] B := A#[Index1,Index2];

which requires the remap because there may
be communication and WYSIWYG needs to
expose that The set up is all declarations taking no

time, only thinking … restructuring is
conceptually trivial; it should also be easy

The set up is all declarations taking no
time, only thinking … restructuring is
conceptually trivial; it should also be easy

17

Grid, Distribution, Region, Array Hierarchy
All of the meta concepts are “first class,” meaning

they can be variables and manipulated by the
programmer … strong control

We set up syntax to declare variables
var G : grid <..,..> = [1,1..p]; -- 2D arrangement of procs

D : [G] distribution<block,block> = [blk(1,m),blk(1,n)];

R : [D] region = [1..m, 1..n];

A : [R] float;

Interesting technical problem: What happens to
the data when you reallocate the indices?

<== Destructive assignment, data lost

<=# Preserving assignment, data save by index

18

Restructuring Distribution

• For example ...
Recall

distribution D2 : G2 = [blk(1,m),blk(1,n)]; -- B’s distribution

D3 : G2 = [blk(1,m),blk(1,2*n]; -- New dist

D2 D3

The first n elements are allocated to
the left half of the processors in D3

The first n elements are allocated to
the left half of the processors in D3

19

Change A Region’s Distribution
var G : grid <..,..> = [1,1..p];

D : [G] distribution = [block,block]; --generic allocation

D1 : [G] distribution = [blk(1,m),blk(1,n)];-- std allocation
D2 : [G] distribution = [blk(1,m),blk(1,2*n)]; -- left alloc

R : [D] region = [1..m,1..n]; -- R covers procs

A,B : [R] integer; -- Actual arrays

D <== D1; -- Bind an initial allocation

…

D <=# D2; -- Shift array elements to left

R <== [1..m,1..2*n]; -- Change region, flush data

Change distribution, flush data, fastChange distribution, flush data, fast

Change distribution, save data, need commChange distribution, save data, need comm

20

Abstractions Give New Algorithms
• 2D FFT is a standard scientific building block
• Solution: 1D FFT on rows, transpose, 1D FFT

on columns (now rows); allocate so “butterfly”
is local

21

ZPL Abstractions Give New Algorithms
• 2D FFT is a standard scientific building block
• Solution: 1D FFT on rows, transpose, 1D FFT

on columns (now rows); allocate so “butterfly”
is local

• Alternative: 1D FFT on rows, change the grid
from vertical to horizontal, 1D FFT on columns

Faster!Faster!

22

ZPL Summary
• We’ve taught perhaps 85% of the language
• Good News

• Global view allows high level solution; clean programs

• CTA + WYSIWYG let you know what’s going on

• Fast programs can be written quickly; portable everywhere

• Bad News
• The language may be intuitive (or not), but it is different

• Think of solutions by manipulating arrays, not step-at-a-
time implementations … different algorithms are relevant

• ZPL is not yet vendor supported … open source means
you fix your own bugs

• ZPL is a creative response to parallel prog’g

23

Parallel Language

There have been easily 100 parallel languages
proposed, but what’s the point? Will anyone
adopt a new language even if it’s wondrous?

Issues:
• Learning Curve … if it really helps it won’t look like C++

• Software investment … there are millions of lines of code

• Existing codes are trusted … validation is a serious concern

• User community … discipline scientists have little deep
knowledge about computing; crude use of MATLAB is limit
so who does the programming?

<Discuss>

24

Break

• 10 minutes

25

Sample Sort Logic
Bucketize” means send data to processor

where it will probably end up

26

Sample Sort in ZPL
“cut” is an alternative block distribution given by

vector of integers, the highest item alloc’t’ed

27

Schematic of Constants and Variables
Set up structures to prepare for redistribution

28

Compute How to Redistribute
Distributions change at “bucketize” time by cuts

29

Finish Up
The final “scooch” is simply a distribution change

30

If You’re Not Using ZPL, Then What?
• Practical parallel programming is done in

• Message passing libraries (MPI, PVM) for cluster
machines and large parallel processors (CTA cases)

• OpenMP library for shared memory SMP type
multiprocessors

• Combination, because large machines are becoming
collections of SMPs

• Very rarely, a proper parallel language

• Libraries augment a scalar language or
possibly Fortran 90/95/…

• Libraries are parallel assembly languages …
programmers create their own abstractions

31

Message Passing

• Two libraries dominate...
• PVM (Parallel Virtual Machine) Oak Ridge National Lab

• MPI (Message Passing Interface) Consortium

• Libraries provide mainly communication
routines but there’s other stuff

• Initialization and process spawning

• Synchronization, timers, etc.

• Collective Communication, i.e. reduction, broadcast

• Libraries are widely available, vendor provided,
so they are “portable”

32

MM in MPI -- 1
MPI_Status status;
main(int argc, char **argv) {
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize, /* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rows, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine rows sent to each

worker */
i, j, k, /* misc */
count;

double a[NRA][NCA], /* matrix A to be multiplied */
b[NCA][NCB], /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

A “master--slave” solutionA “master--slave” solution

33

MM in MPI -- 2
intsize = sizeof(int);
dbsize = sizeof(double);

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
numworkers = numtasks-1;

/**************************** master task ************************************/
if (taskid == MASTER) {
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)
b[i][j]= i*j;

NRB? Wouldn’t ‘Index1’ be better?

34

MM in MPI -- 3
/* send matrix data to the worker tasks */
averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;
for (dest=1; dest<=numworkers; dest++) {
rows = (dest <= extra) ? averow+1 : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
count = rows*NCA;
MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
count = NCA*NCB;
MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

offset = offset + rows;
}

35

MM in MPI -- 4
/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {
source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD,&status);

}
/**************************** worker task ************************************/
if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCA;
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

36

MM in MPI -- 5
count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)
c[i][k] = c[i][k] + a[i][j] * b[j][k];

}

mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

} /* end of worker */

Actual Multiply

91 “Net” Lines91 “Net” Lines

37

Level of Work

Lines of code is a
questionable metric for
productivity, but ...

38

OpenMP
• OpenMP is a standard API for threading on

shared memory multiprocessors … suitable
for SMPs

• Strong vendor support with applications
seeming to be commercial rather scientific

• Standard scientific libraries are available
• OpenMP used for threading with MPI on hybrid machines

39

Languages
• Parallel language design has been a popular

indoor sport for decades … most academic, few
seriously implemented

• HPF (High Performance Fortran)
• Most visible effort of the last decade

• Well funded, strongly backed by vendors, community
developed with substantial consensus

• Extended Fortran 90 (companion Rice version extended
F77) by adding compiler directives to orchestrate ||ism

• Several compilers implemented (most of) initial design, both
academic and commercial

• Many applications efforts at U’s, labs (Japanese successful)
• Global language like ZPL

40

MM in HPF
PROGRAM ABmult

IMPLICIT NONE
INTEGER, PARAMETER :: N = 100
INTEGER, DIMENSION (N,N) :: A, B, C
INTEGER :: i, j

!HPF$ PROCESSORS square(2,2)
!HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO square :: C
!HPF$ ALIGN A(i,*) WITH C(i,j)
! replicate copies of row A(i,*)
! onto processors which compute C(i,j)

!HPF$ ALIGN B(*,j) WITH C(i,j)
! replicate copies of column B(*,j))
! onto processors which compute C(i,j)

DO i = 1, N
DO j = 1, N

! All the work is local due to ALIGNs
C(i,j) = DOT_PRODUCT(A(i,:), B(:,j))

END DO
END DO

END

41

And The Verdict Is ...

HPF efforts ended in US; some still overseas
• Why did a concerted effort not succeed?

– Funding, community & vendor interest not issues
– Answers are necessarily opinion, mine are …

• Can a language be designed by a committee?

• HPF chose not to adopt an abstract machine model
• Directives were taken as “suggestions” to the compiler

∴∴∴∴Programmers were unable to know what was happening

– Debate continues …

• Undaunted, feds are funding 3 new efforts

42

Another Recent Effort ...

Co-Array Fortran
• Developed within Cray (originally F--) by Numrich&Reed

• Motivated to use T3D/T3E’s shmem facilities

• Add’s a processor “co-dimension” to the arrays of F95
REAL, DIMENSION (N) [*] :: X,Y !Declare 2 size n vectors

X(:) = Y(:) [PE] !If PE is same on all images, copy Y to X

• Also has a few collective operations, synch. primitives

• CAF provides a clean way to manage (shmem)
communication in a “local view” language … machine
model is CTA

• Cray supports CAF

43

MM in CoArray Fortran

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]

enddo
enddo

44

Global Address Space (GAS) Languages
• Global shared memory’s difficulties motivated

global address space language … coherence
controlled by programmer through local view

• UPC (Universal Parallel C) Center for CS, MD

• Titanium (a Java Dialect) Berkeley

• Co-Array Fortran

• Titanium’s “single” is opposite of ZPL’s “free”
and defaults are opposite

• Whereas ZPL prohibits comm in shattered
control (recall shattered @) GAS languages
encourage it as the main mechanism

45

Summary on Languages
• There’s a bunch of other languages that have

been implemented, but they are mostly of
academic interest (like ZPL)

• Programmers with large problems to solve
are reduced to writing message passing code

• Libraries exist that package communication
for moving arrays around as a unit--saves
work but all the rest of the programming (and
the optimizations) require low level scalar
programming

46

Built-in Constants
extern constant PROCESSORS : integer; -- number of processors
extern prototype numLocales() : integer;
extern free prototype localeID() : integer;
extern prototype GRIDPROCS(grd : grid; dim : integer) : integer; -- grid query functions
extern prototype GRIDPROC(grd : grid; dim : integer) : integer;
extern prototype blk(lo, hi : integer) : integer; -- built-in distributions
extern prototype cut(a : generic) : integer;
extern free prototype reglo(reg : region; dim : integer) : integer; -- region query functions
extern free prototype reghi(reg : region; dim : integer) : integer;
extern prototype _ARR_REG(inout a : genericensemble) : region; -- Regions, Grids
extern prototype _ARR_DIST(inout a : genericensemble) : distribution; -- Distributions
extern prototype _ARR_GRD(inout a : genericensemble) : grid;
extern prototype _REG_DIST(inout r : region) : distribution;
extern prototype _REG_GRD(inout r : region) : grid;
extern prototype _DIST_GRD(d : distribution) : grid;
extern prototype open(s1, s2 : string) : file; -- file i/o
extern prototype eof(f: file) : integer;
extern prototype close(inout f : file) : integer;
extern prototype bind_write_func(inout e : genericensemble; f : generic) : integer;
extern prototype bind_read_func(inout e : genericensemble; f : generic) : integer;
extern prototype unbind_write_func(inout e : genericensemble) : integer;
extern prototype unbind_read_func(inout e : genericensemble) : integer;
extern type timer = opaque; -- built-in timers
extern prototype ClearTimer(inout t : timer);
extern prototype StartTimer(free inout t : timer; sync : boolean);
extern prototype StopTimer(free inout t : timer);
extern free prototype ReadTimer(free inout t : timer) : double;

47

Citations

B. Chamberlain, E Lewis, L. Snyder, “Problem
Space Promotion,” Proc. of International
Conference on Supercomputing

S. Deitz, B. Chamberlain, L. Snyder, “Abstractions
for Dynamic Data Distributions,” IEEE
Workshop on High-level Parallel Programming
Models and Supportive Environments, 2004

Parallel Computing Languages for example ...
http://www.cs.rit.edu/~ncs/parallel.html#languages

48

Project Parameters
[The project’s not yet completely written out, but

will be posted on the Web this week.]
– Due date: 14 March 2005
– Required: Write and experiment with a substantial

ZPL program; write a short (1-3 pages) report on
results such as WYSIWYG analysis, speedup, etc.

– A few (2-4) problem domains will be described
with a basic computation, and suggested
extensions [you can pick your own, but check 1st]

– Get code running on cluster, measure base
computation and enhancements; cycle to improve

