
Survey of Parallel Computation
CSE 524P

Larry Snyder

University of Washington, Seattle

Course Logistics

• Teaching Assistant: Douglas Low
• No Textbook
• Class web page is imminent
• Take lecture notes -- the slides will be online

sometime after lecture
• Occasional homework problems, including

programming in ZPL
• Modest Project during last 2-3 weeks

Please ask questions when they arisePlease ask questions when they arise

Topic Overview

Goal: To give a good idea of parallelism
– Concepts -- looking at problems with “parallel

eyes”
– Algorithms -- different resources to work with;

different goals
– Languages -- reduce control flow; increase

independence
– Hardware -- the challenge is communication, not

instruction execution
– Programming -- describe the computation without

saying it sequentially

Why study parallelism?
• For most user applications sequential

computers are fast enough
• For sophisticated scientific modeling,

engineering design, drug design, data mining,
etc. sequential computers are too slow

• Except for fundamental breakthroughs in
algorithms, parallelism is the only known
method for greater speed beyond baseline
sequential computation

Parallelism is interesting, too!Parallelism is interesting, too!

The Worlds Fastest Computers

• Check the site
www.netlib.org/benchmark/top500.html

• Question: what computation is used to
measure the world’s fastest computers?

Three levels of performance …

•Manufacturers claimed performance

•Benchmark measured performance

•Observed performance on interesting programs

Three levels of performance …

•Manufacturers claimed performance

•Benchmark measured performance

•Observed performance on interesting programs

Types of Parallelism

Parallelism is a standard technique in computer
science … think of examples

• Pipelining In Processor Design
– The next instruction is fetched before the current

instruction is completed
– In modern processors there can be 7-10 pipeline

stages or more, and usually many instructions are
being executed simultaneously

Pipelining is a powerful form of parallelismPipelining is a powerful form of parallelism

Types of Parallelism (continued)

• Overlapping computation and communication
– Web browsers construct the page and display it in

incomplete form while the images are being
downloaded

– Operating systems switch tasks while pages are
being fetched in response to a page fault

Overlapping comp/comm is a powerful technique Overlapping comp/comm is a powerful technique

Types of Parallelism (continued)

• Partition task into many independent
subproblems
– Factoring and Monte Carlo simulation can be

partitioned into many independent subproblems
– Solve each subproblem, report results to Master

task, which records results
– “Searching” problems can be especially

successful compared to sequential computers

P0

P1 P2
P3

Partitioning into
subproblems is a
powerful technique

Partitioning into
subproblems is a
powerful technique

Summary of Parallelism Types

• Most parallelism is a complex combination of
these and similar techniques …
– Algorithms are not easy to classify
– We will learn algorithms to illustrate these ideas
– In designing algorithms we seek scalable

parallelism ...

Scalable parallelism means that an algorithm is
designed so it can use “any” number of processors
Scalable parallelism means that an algorithm is
designed so it can use “any” number of processors

Non-Parallel Techniques

• Distributed computing, e.g. client/server
structure, is not usually parallel

• Divide-and-conquer is usually limited by
“sending and receiving” the data instances

• Techniques that assume nc processors for n
size problem

• Almost all techniques that focus on reducing
operation counts and building complex data
structures

A Sample Computation: Global Add

• Adding a sequence of numbers x1, x2, …, xn

• The standard sequential solution …

• The solution specifies an order of summation
that is not essential* to the task

sum = 0;

for (i=0; i<n; i++) {

sum += x[i+1];

}

sum = 0;

for (i=0; i<n; i++) {

sum += x[i+1];

}

* Ignore FP issues

An Alternative ...

• The “summation tree”
• Exploit associativity of addition …

– Number the processors 0 to n/2 - 1
– Processor Pi adds x2i+1 and x2(i+1)

Common Notation:

n is used for problem size

P is used for number of processors

Common Notation:

n is used for problem size

P is used for number of processors

Summation tree on 4 processors

x1 x3x2 x4 x5 x7x6 x8

s3,4s1,2 s5,6 s7,8

s1,4 s5,8

s1,8

P0 P1 P2 P3

P0 does
log2 n
adds

P0 does
log2 n
adds

Analysis ...

• Should consider time, processors, comm, etc.
• Time : operation depth

= log2 n
• Processors :

P = n/2
• Space: P temp cells
• Comm = P-1 sends

x1 x3x2 x4 x5 x7x6 x8

s3,4s1,2 s5,6 s7,8

s1,4 s5,8

s1,8

P0 P1 P2 P3

How would solution scale?
Problems are (almost) always much larger than

the available processors, so scaling concerns
solving problem w/ fewer processors

x1 x3x2 x4 x5 x7x6 x8

s3,4s1,2 s5,6 s7,8

s1,4 s5,8

s1,8

P0 P1

x1 x3x2 x4 x5 x7x6 x8

s1,4 s5,8

s1,8

P0 P1

Recognize internal structure in the algorithm
rather than “simulate” full processor solution
Recognize internal structure in the algorithm
rather than “simulate” full processor solution

Simulate Internal

Prefix Sum
Add the prefixes of a sequence of n numbers,

x1, x2, …, xn. That is, yk = Σi≤k xi

x1 = 3 x2 = 1 x3 = 4 x4 = 1 x5 = 5 x6 = 9
y1 = 3 = 3
y2 = 3+1 = 4
y3 = 3+1+4 = 8
y4 = 3+1+4+1 = 9
y5 = 3+1+4+1+5 = 14
y6 = 3+1+4+1+5+9 = 23

A Problem with Parallelism ...

• Each yi seems to depend on computing the
previous item -- it looks very sequential

• An important challenge in parallel
computation is to discover how to solve
problems when it appears that a “sequential
solution is necessary”

One (Not So Good) Solution

• One solution is to apply the summation tree to
compute each yi in parallel …

• This is a “reduce to previous solution” approach
– Time would be maximum depth, I.e. log2 n
– Processor requirements would be
1+1+2+2+3+3+ … +n/2+n/2
= n/2(n/2+1) = O(n2)

x1 x3x2 x4 x5 x6

s3,4s1,2 s5,6

s1,4 s5,6

s1,8

P0 P1 P2

The yk
solution
for k = 6

The yk
solution
for k = 6

Ladner Fischer [1980] Better Solution
• Parallel Prefix algorithm uses idea like “carry

propagation” to reduce work
• In first half of algorithm, each processor adds

as in “global sum” technique, but it also
passes to its parent the sum of its left subtree

• In second half of algorithm, each processor
– receives sum of items to its left
– forwards that to its left subtree
– adds in the sum of its left subtree
– sends result to its right subtree

• Every processor i gets data to produce yi

Parallel Prefix

s3,4

c3

P0 P1 P2 P3

s1,2

c1

s5,6

c5

s7,8

c7

s1,4

c1,2

s5,8

c5,6

c... c1,4

s1,8

c1,4

c1,2 c1,4 c1,6c...

y1 y1,2

x1 x3x2 x4 x5 x7x6 x8

y1,3 y1,4 y1,5 y1,6 y1,7 y1,8

Pi does
binary add,
receives
sum of
items to its
left, fwds to
left subtree,
adds sum
of left
subtree,
sends to
root of right
subtree

Pi does
binary add,
receives
sum of
items to its
left, fwds to
left subtree,
adds sum
of left
subtree,
sends to
root of right
subtree

Analysis

• What resources does the algorithm use?
• Time = 2 log2 n
• Processors P = n/2
• Space = P memory cells for local sums
• Communications 2 (P-1) sends

The Ladner-Fischer algorithm
requires twice as much time as
tournament global sum

The Ladner-Fischer algorithm
requires twice as much time as
tournament global sum

A Bonus ...

• Ladner - Fischer can solve a larger problem
in “same” time! [Works for other algorithms]
– Suppose there are Plog2 P values, stored log2 P

per processor
– Ask each processor to add the log2 P items locally,

and then solve the problem as stated
– On completion, compute the prefix for each of the

log2 P elements

Though the problem is log2 P
times larger, the execution time
is roughly three times as long

Though the problem is log2 P
times larger, the execution time
is roughly three times as long

Citation

R. E. Ladner and M. J. Fischer
Parallel Prefix Computation
Journal of the ACM 27(4):831-838

Break Question
• What is the “best” parallel matrix

multiplication?
• Problem: For nxn arrays A and B, compute

their product C=AB. That is, crs = Σ1≤≤≤≤k≤≤≤≤n arkbks

• Assume the A and B arrays are (initially)
stored in the parallel processors as blocks,
strips or panels (your choice)

Break Problem (continued)

• Goal: My goal is for you to think about how to
solve this problem, and to understand what
makes it difficult

• Matrix Multiplication is the most studied
parallel computation, and there have been
many answers to this problem

• Everyone should try to solve it
– With an unlimited number of processors

• If you’re successful, try to solve it
– With a limited number of processors P < n

Break

Plan For Discussing MM

• Matrix Multiplication -- easiest solution
• A systolic solution
• A row/column solution + improvements

– More work per “step”
– More communication at a time
– Improve locality
– Overlap communication with computation
– Reorient computation

• Discover “best practical” MM
• Review Role of Computation Model

Recall Matrix Multiplication (MM) Definition

• For n ×××× n arrays A and B, compute C = AB

where crs = Σ1≤k ≤ n arkbks

s

r

+××××
1

1

××××
2

2

××××
3

3

××××
n

n

+ + ... +=

A BC

Features of MM Computation
• Multiplications are independent, additions can

each use global sum tree

x
1

1

x
2

2

x
3

3

x
n

n

...

=

...
+ +

+

O(n) processors for
each result element
implies O(n3) total

O(n) processors for
each result element
implies O(n3) total

time is log2 ntime is log2 n

Evaluation of Most Parallel MM

Good properties
– Extremely parallel … shows limit of concurrency
– Very fast -- log2 n is a good bound … faster?

Bad properties
– Ignores memory structure and reference collisions
– Ignores data motion and communication
– Under-uses processors -- half of the processors

do only 1 operation

Unrealistically parallelUnrealistically parallel

Where Is The Data?
• Global shared memory is one possibility
• How should it work?

P1P0 P3P2 P5P4 P7P6

A BC

Memory

PRAMPRAM

Parallel Random-Access Machine (PRAM)
• Any number of processors, including nc

• Any processor can reference any memory in
“unit time,” that is, with no delay

• Memory collisions must be solved
– Reference Collisions -- many processors are

allowed to read the same location at one time
– Write Collisions -- what happens when many

processors write to the same memory location?
• Allowed, but must all write the same value
• Allowed, but value from highest indexed processor wins

• Allowed, but a random value wins

• Prohibited PRAM well studiedPRAM well studied

Where Else Could The Data Be?

• Local Memory Distributed Among Processors
• Alternative to Global Shared Memory

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Send/Receive make data motion cost explicitSend/Receive make data motion cost explicit

Alternative Organizations

• Parallelism is perfect for VLSI circuit
implementations since many processors
could be fabricated on a chip or wafer

• Planar constraints are significant, however

• Reading an n ×××× n array takes n time steps
• Data motion is critical to a successful

algorithm

Cannon’s Algorithm (Kung/Leiserson)
c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step
at a time

Elements arriving at a place are
multiplied, added in

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step
at a time

Elements arriving at a place are
multiplied, added in

⇑⇑⇑⇑

⇐⇐⇐⇐

Motion of Cannon’s Algorithm

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a42 a43 a44

b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41

c43 = c43 + a41b13

⇑⇑⇑⇑

⇐⇐⇐⇐

Second steps ...

c43 = c43 + a42b23
c33 = c33 + a31b13
c42 = c42 + a41b12

Second steps ...

c43 = c43 + a42b23
c33 = c33 + a31b13
c42 = c42 + a41b12

Analysis of Cannon’s Algorithm

• Pipelined algorithm that computes as it goes
Systolic

• For n ×××× n result, 2n-1 steps to fill pipeline, 2n-
1 steps to empty it

• Computation, communication are balanced
• Suitable for signal processing -- Cannon’s

reason for developing it -- where there is a
pipeline of MMs

Processors And Memories

Realistically, parallel computers must be made
from commodity parts, which means that the
processors will be RISC machines with large
caches, large memories, support for VM, etc.
– One idea is to use a RISC design as a base and

modify it -- it didn’t work
– From scratch processors are never fast enough
– Best plan -- try to use the RISC as it was designed

to be used

Send Larger Units of Information
• Communication is often pipelined ...
• Send a whole row -- or as much as fits into a

packet -- in one operation

A BCP0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp

Use Processors More Effectively

Assign t rows and the corresponding t columns
to each processor so it can compute a t × t
subarray

A BC

Each element requires n iterations

Modern pipelined processors
benefit from large block of work

Each element requires n iterations

Modern pipelined processors
benefit from large block of work

Computing t × t block

• What is the logic for computing a t × t block?

for (r=0; r < t; r++){
for (s=0; s < t; s++){

c[r][s] = 0.0;
for (k=0; k < n; k++){

c[r][s] += a[r][k]*b[k][s];
}

}
}

Loop is easy to analyze and “unroll”
Branch prediction should work well
This code may be near “optimal”

Loop is easy to analyze and “unroll”
Branch prediction should work well
This code may be near “optimal”

Locality Can Be Improved
• Improve cache behavior by “blocking”

A BC

for (p=0; p < n; p=p+t){ //block count
for (r=0; r < t; r++){

for (s=0; s < t; s++){
for (k=0; k < t; k++){

c[r][s] += a[p+r][p+k]*b[p+k][p+s];
}

}
}

)

Sweeter caching

Locality Can Be Improved More

• Change from the row-times-column view...
A BC

b11 b12

a11

a21

a11b11

a21b11

a11b12

a21b12

Switch Orientation -- By
using a column of A and
a row of B compute all of
the “1” terms of the dot
product, i.e. use 2t inputs
to produce t2 first terms

Switch Orientation -- By
using a column of A and
a row of B compute all of
the “1” terms of the dot
product, i.e. use 2t inputs
to produce t2 first terms

Communication Is Important
• So far the algorithm is “send-then-compute”
• Try overlapping and computing
• Use broadcast communication

BCPa Pb

Pe Pf

Pi Pj

Pm Pn

Pc Pd

Pg Ph

Pk Pl

Po Pp

Pa Pb

Pe Pf

Pi Pj

Pm Pn

Pc Pd

Pg Ph

Pk Pl

Po Pp

+x
1

1

x
2

2

x
3

3

x
k

k

+ +...=

APa Pb

Pe Pf

Pi Pj

Pm Pn

Pc Pd

Pg Ph

Pk Pl

Po Pp

Communication Pattern

• Architectures differ, but row and column
broadcasts are often fast

• Transfer only the segment of row stored
locally to the processors in the column
– For 1 block Puv is a sender
– For P1/2-1 blocks Puv is a receiver
– Space required is only 4t elements -- 2t for

the segments being processed and 2t for the
segments arriving

Pd

Ph

Pl

Pp

van de Geijn and Watts’ SUMMA
• Scalable Universal MM Algorithm
• Claimed to be the best practical algorithm
• Uses overlap, pipelining, decomposition …

Initialize C, blocking all arrays the same
broadcast (segment of) 1st A column to processors in row

broadcast (segment of) 1st B row to processors in column

for i = 2 through n
broadcast (segment of) next A column to all processors in row
broadcast (segment of) next B row to all processors in column

compute i-1 term in dot product for all elements of block

compute last term for all elements of block

Use Groups of Rows and Columns

• For large machines both communication and
processing capabilities can usually be helped
by processing more than a single row and
column
– Sending more values amortizes start-up costs
– Pipelines and caching favor large sequences of

uninterrupted instructions

• Combine all of ideas of today!

What’s Important?
• Maximizing number of processors used
• Minimizing execution time
• Minimizing the amount of work performed
• Reducing size of memory footprint
• Maximizing (minimizing) degree of data sharing
• Reducing data motion (interprocessor comm.)
• Maximizing synchroneity or asynchroneity
• Guaranteeing portability among platforms
• Balancing work load across processors
• Maximizing programming convenience
• Avoiding races, deadlocks, guaranteeing determinacy
• Better software engineering: robust, maintain, debugging

Knowing The Parallel Computer
Was it difficult to design a MM algorithm without

a clear idea of how the processors interact
with the memory?

• To be effective, programmers and algorithm
designers must know the characteristics of
the computer that will run their algorithms
– Call this the machine model
– We forget the importance of the machine model

because the sequential model -- von Neumann --
is in our bones … we never think about it

– Parallelism needs a different model from vN

Next Week ...

We discuss the best parallel machine model for
programming parallel machines …

Will it be the PRAM?
Will it be VLSI?
Will it be distributed memory machine with

RISC processors?

Citations

• L. F. Cannon [1969] A Cellular Computer to
Implement the Kalman Filter Algorithm, PhD
Thesis, Montana State University

• H. T. Kung & C. E. Leiserson, Systolic Arrays,
in Carver Mead and Lynn Conway,
Introduction to VLSI, Addison-Wesley, 1980

• Robert van de Geijn & Jerrell Watts (to
appear). "SUMMA: Scalable Universal Matrix
Multiplication Algorithm," Concurrency:
Practice and Experience, 1998

