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1. INTRODUCTION 

Shared memory provides convenient communication between processes in 
a tightly coupled multiprocessing system. Shared variables can be used for 
data sharing, information transfer between processes, and, in particular, for 
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coordination and synchronization. Constructs such as the semaphore introduced 
by Dijkstra [5], and the many variants that followed, provide convenient solutions 
to many synchronization problems involving arbitrary numbers of processes. 
These constructs are supported in hardware by machine instructions that atom- 
ically execute a Read-Modify-Write cycle. Such instructions exist on most 
modern CPUs. 

An atomic Read-Modify-Write operation only requires that it be semantically 
atomic, although it is often processed atomically also. The “serial bottleneck” 
created by this atomic processing, while acceptable for small-scale parallelism, 
can seriously impair the performance of a system with thousands of processors. 

Frequent accesses to a shared variable not only slow down those processes 
performing the access, but may cause the entire machine to thrash. Large-scale, 
shared-memory parallel processors are likely to use multistage packet-switched 
interconnection networks for processor-to-memory traffic. These networks pro- 
vide high bandwidth and short latency time when memory accesses are distributed 
randomly, but, if even a small percentage of the memory requests are directed to 
one specific spot, the network becomes congested and performance quickly 
degrades. A study of Pfister and Norton [20] shows that not only those processors 
attempting to access the same “hot spot” are delayed, but also the remaining 
processors (see also [16, 211). Although replication of data can often be used to 
circumvent the hot spot problem for read-only data, it cannot be used for 
synchronization variables. 

The performance degradation can be mitigated by a memory request “combin- 
ing” technique. Briefly, combining works as follows: When a “conflict” occurs 
within the network for the same switch output port for memory requests directed 
to the same location, a new combined request that represents the conflicting 
requests is created. Separate replies to the original requests are later created 
from the reply to the combined request. The logic for combining and uncombining 
memory references is distributed throughout the processor-to-memory intercon- 
nection network. 

It is worthwhile emphasizing that such simultaneous requests directed at the 
same memory cell are not random, rare events. When processed in an efficient 
manner, they can form the basis for a completely parallel, decentralized operating 
system as well as a building block for efficient parallel programming constructs. 

Indeed, such a combining mechanism was proposed for read requests in the 
CHoPP machine [26]. It was extended to handle write requests, as well as some 
types of Read-Modify-Write requests [22], and further generalized for associative 
Read-Modify-Write operations [9]. These ideas are used to implement concurrent 
reads, writes, and “Fetch-and-Adds” in the NYU Ultracomputer [8] and IBM 
RP3 [19] machines. 

It is relatively easy to argue on the correctness of serial computers. These are 
relatively simple systems, and there is a well-understood abstract model, hence 
clear correctness criteria. On the other hand, our intuition often fails when trying 
to reason correctly about complex, parallel systems. Thus it is important to 
precisely define correctness criteria for parallel systems and to formally argue 
that these criteria are fulfilled. Work on the semantics of concurrent processes 
(e.g., [13-E, 171) have recently supplied the formal framework for such activity. 
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Yet there have been very few applications of this formalism to the design and 
analysis of parallel computer architectures. 

We show in this paper that combining fulfills two important criteria: 

(1) Combining is a general technique that applies to arbitrary memory access 
operations, not just an ad hoc method to handle the NYU Ultracomputer 
operations. 

(2) This new interconnect mechanism does not change the properties of the 
memory system. 

These two issues are addressed rigorously. A new, very general formalism for 
read-modify-write (RMW) operations is given. A general definition is given of a 
correct machine implementation. A method for combining general RMW opera- 
tions is given and proven to be correct. Several families of memory access 
operations are analyzed using this general framework. These include familiar 
operations such as load, store, swap, test-and-set, fetch-and-add, and general 
data-level synchronization primitives (see [7]). It is well known that any associ- 
ative operation can be combined efficiently [9]. We show that other combinable 
families of operations include the four standard arithmetic operations, all 16 
Boolean functions, and synchronization methods such as full/empty bits. Imple- 
mentation issues concerning support of such primitives are considered. Finally, 
the combining mechanism is shown to be closely related to the parallel prefix 
computation problem [ 121. 

2. READ-MODIFY-WRITE 

We use a formalism similar to that developed by Lynch and Fisher [17]: A 
parallel computation consists of a set of processes that execute in parallel. Each 
of these processes is considered to be a sequential program augmented with the 
ability to access global, shared variables. We restrict our attention to shared- 
memory access techniques and assume standard operations for manipulation of 
local (or private) data. 

Instead of the usual load and store memory access operations of sequential 
processing, all accesses to shared variables are assumed to be Read-Mod++ Write 
(RMW) operations. The operation RMW(X, f ), where X is a shared variable 
and f is a mapping, is defined to be equivalent to the indivisible execution of the 
following function: 

function RMW(X, f) 
begin 

temp t X; 
x+ f(X); 
return(temp) 

end 

This operation yields, as its value, the old value of the variable X and also 
updates the value stored in X according to the updating transformation f. 

The usual load and store operations are particular cases of RMW operations: 
A loud from (the address of) variable X is equivalent to RMW(X, id), where id 
is the identity mapping (i.e., f(z) = x). A store of value u to variable X is 
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equivalent to RMW(X, I,), where I, is the mapping that has constant value u 
(i.e., f(x) = u); the returned value is ignored. In fact, an assignment of the form 
Y c RMW(X, Iy), where Y is a private variable and X is a shared variable, 
implements a swap operation: X and Y swap values. Note that the usual use of 
swap operations is to exchange values between a shared variable (the lock) and 
a private variable (the key) (see, e.g., [18], $9.5.41). 

The well-known test-and-set operations can also be implemented as an RMW 
operation. We have 

test-and-set(X) = RMW(X, I,,,,). 

A more powerful RMW operation is the fetch-and-add synchronization primi- 
tive. It is defined by 

fetch-and-add(X, a) = RMW(X, +,), 

where +a is Curried addition, i.e., +,(x) = x + a. It corresponds to the indivisible 
execution of the following code. 

function fetch-and-add(X, a) 
begin 

temp t X; 
XcX+a; 
return( temp) 

end 

The replace-add operation was introduced many years ago [6]; it is identical 
to fetch-and-add, except that the updated value, rather than the old value, is 
returned. It was independently considered by Dijkstra [5] who rejected it, believ- 
ing it to be an inadequate tool for synchronization. It has nevertheless turned 
out to be a very useful synchronization primitive, and was essential in the 
development of efficient coordination code for the NYU Ultracomputer operating 
system [lo, 221. The change from replace-add to fetch-and-add [9] simplified the 
combining logic and paved the way to the general result given in this paper. 

Any memory access that consists of reading one shared memory location, 
performing an arbitrary local computation, and then updating the memory 
location can be expressed as an RMW operation of the above form. This is the 
general form for memory accesses assumed by Lynch and Fisher, and seems to 
encompass most, if not all, useful synchronization operations based on shared 
variables. Other examples of RMW operations will be presented in Section 5. 

The instruction set of most modern processors support such RMW operations. 
In the usual, “processor-side,” implementation of RMW operations the updating 
is done by the processor, and communication with memory uses a “load-store” 
extended cycle: 

-The processor issues a load; 
-the old value is returned from memory; 
-the processor computes an updated value; 
-the processor issues a store; and 

-the updated value is stored in memory. 
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Three messages are exchanged between processor and memory (four, if memory 
acknowledges each store); the memory itself is locked for the duration of this 
extended cycle, to prevent another access to the same location. (This is often 
achieved by locking the memory bus.) 

An alternative, “memory-side,” implementation is to have the update computed 
at the memory itself: 

-The processor issues an RMW request (containing opcode, address, and data); 

-the memory controller updates the content of the addressed location; and 
-the old value is returned from memory. 

Only two messages are exchanged between processor and memory; and memory 
is locked only during the execution of the update operation. 

The second implementation reduces the processor to memory traffic and avoids 
long memory locking; however, it requires a more complex memory controller 
that can execute locally “read-modify-write” cycles. Note that many memory 
controllers have this ability, in order to support a byte or half-word write: The 
full word is read, modified, and stored back. 

The second implementation method seems preferable in large shared-memory 
multiprocessors. It is used in the NYU Ultracomputer and IBM RP3 (which use 
combining), and in the BBN Butterfly [21] and University of Illinois Cedar [27] 
(which do not use combining).l We assume in the sequel that RMW operations 
are implemented using the second method. 

3. MEMORY MODELS 

3.1 The Uniprocessor Memory 

A computation on a uniprocessor system consists of the execution of a serial 
stream of instructions. The outcome of the computation is as if these instructions 
were executed sequentially in the order specified by the program; the execution 
of one instruction terminates before the execution of the next instruction starts. 
In practice the execution of successive instructions is often overlapped, in order 
to increase performance. This is especially important for memory accesses; 
pipelining of memory accesses can mask the (usually) high latency of memory, 
and balance memory throughput to processor speed. This overlapping should be 
invisible; the behavior of the computation is as if no overlapping occurred. 

A uniprocessor system consists of processor and memory. Processor and 
memory communicate by exchanging messages. For each memory access the 
processor sends a request message to memory and eventually receives back a 
reply message. (We assume each access generates a reply; this reply carries a 
value if the memory operation is a load or a read-modify-write; it carries an 
acknowledgment if the operation is a store.) The basic memory operation consists 
of receiving such a message, modifying the contents of memory if necessary, and 

1 Unfortunately, usual commercial processors do not have a machine instruction that executes an 
atomic “store-load” extended cycle. The NYU Ultracomputer, IBM RP3 machine, BBN Butterfly, et 
al. emulate it by using a store, followed by a load. 
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sending back a reply. This operation is executed atomically; the memory behaves 
as if the operations were executed serially, in some order. 

The processor respects obvious data dependencies in its interaction with 
memory; i.e., if it loads a value from memory then the operation using that value 
is not executed until the value is returned from memory. In addition some 
constraints are needed on the order in which memory operations occur. For 
example if the processor issues a store, followed by a load to the same location, 
then the store should take place first; otherwise the outcome would not be 
consistent with the assumption that instructions execute atomically, in the order 
specified by the program. 

The simplest constraint is to assume that memory is a FIFO server: 

(Ul) Memory accesses are executed in the order requests are submitted by the 
processor. 

This is the policy used in most memory systems. 
A weaker constraint is to assume that each memory location is a FIFO server: 

(U2) Memory accesses at each memory location are executed in the order the 
corresponding requests are issued by the processor. 

For example, if the memory consists of several separate modules, then each 
module can have its own queue of requests; requests going to distinct modules 
may be executed out of order. It is easy to see that this constraint is sufficient to 
prevent memory hazards. 

3.2 The Multiprocessor Memory 

A multiprocessor consists of several processors and a memory shared by all 
processors (each processor may also have its own private memory). Processor- 
to-memory communication and memory operations are as in the uniprocessor 
case. The usual model for such systems is provided by the sequential consistency 
principle [14] (see also [17]): 

Each instruction is executed atomically, and instructions within the serial 
stream of each processor are executed in the order specified by the program 
of this processor; i.e., the outcome of the computation is as if all the 
instructions were executed sequentially, in a sequence obtained by interleav- 
ing the sequential streams of instructions executed by each processor. 

This principle is about the visible behavior of the computation, not about the 
implementation. Obviously the execution of instructions by distinct processors 
is expected to take place concurrently. We also expect to have intraprocessor 
overlapping of operations and, in particular, pipelining of successive accesses by 
a processor to shared memory. The shared memory of a large multiprocessor has 
a relatively large latency (due to the complex interconnect mechanism, the need 
for arbitration, and possible conflicts). For large numbers of processors and 
memory modules, high bandwidth between processors and shared memory can 
be obtained only by such pipelining. 

Again, some constraints are required on the order memory operations are 
executed. The simplest such constraint is to assume that the memory subsystem 
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988. 



Efficient Synchronization of Multiprocessors with Shared Memory l 585 

is a FIFO server: 

(Ml) The memory receives a sequential stream of requests from the processors; 
this stream is obtained by merging the serial streams of requests generated 
by individual processors. (The relative order of requests generated by the 
same processor is preserved; the relative order of requests generated by 
distinct processors is not significant.) The requests are processed in the 
order they appear in this stream. 

This condition is sufficient to enforce sequential consistency [14]. However to 
do so requires a central memory controller, which may significantly limit memory 
bandwidth in a large scale parallel processor with hundreds of processors and 
memory modules. 

We can consider a weaker constraint, similar to the weaker constraint (U2) 
for the uniprocessor case: 

(M2) Each memory location receives a sequential stream of requests from 
processors; this stream is obtained by merging the serial streams of requests 
directed to that location by the individual processors. The requests are 
processed in the order they appear in the stream. 

A statement equivalent to this condition is that successive requests submitted 
by a processor to the same memory location are processed in their order of 
submission. 

To see where conditions (Ml) and (M2) differ, consider the parallel execution 
of the following two instruction streams (the example is due to Collier [2]). 

Processor 1 
(1) load A 
(2) load B 

Processor 2 
(3) store B t 1 
(4) store A t 1 

To fulfill condition (Ml), memory must behave as if accesses occur in one of the 
six orders in which (1) precedes (2) and (3) precedes (4): 

1234,1324,1342,3124,3142, or 3412 

Assume that initially A = B = 0. For the first order, the loads will return 0 for A 
and B, and, for the remaining orders, the loads will return 0 for A and 1 for B. 
On the other hand, to fulfill the weaker condition (M2), accesses may (for this 
example) occur in any order. If accesses occur in the order 4123, the loads 
will return a value of 1 for A and a value of 0 for B, an outcome that is not sequen- 
tially consistent. Thus condition (M2) is not sufficient to enforce sequential 
consistency. 

Nevertheless the memory subsystem of many shared memory parallel com- 
puters, in particular the NYU Ultracomputer and the IBM RP3 machine, only 
satisfy condition (M2). In order to enforce sequential consistency, these machines 
rely on stronger processor control of memory accesses: An operation may wait 
until some previous memory access occurred, even if it is not data dependent on 
this access. Such delays can be used to prevent hazards due to inter-dependencies, 
as illustrated in the previous example. For instance, the RP3 machine provides 
a fence instruction: The execution of a fence causes the processor to wait until 
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all of its outstanding references to shared memory have terminated. An incorrect 
execution can be prevented in the previous example by adding a fence between 
the two memory accesses in each of the serial streams. Compile time analysis of 
possible hazards can be used to determine where such fences are needed [24]. 
This results in minimal loss of interprocessor and intraprocessor concurrency in 
access to shared memory. 

We henceforth assume that a memory subsystem is correct if each memory 
operation is atomic and condition (M2) is fulfilled. A more detailed definition of 
M2 is: 

(M2.1) The behavior of the memory system is as if it executed a serial stream of 
atomic operations, each one consisting of accepting a processor request, 
processing that request, and returning a reply; 

(M2.2) each request that arrives at the memory system is eventually accepted; 
and 

(M2.3) successive requests sent by a processor to the same memory location are 
accepted in the order they enter the memory system. 

We do not encompass timing constraints in our definition of correctness; a 
practical system will also have constraints on the time it takes to access memory, 
and one would need to prove that these constraints are satisfied. 

A large, shared memory is constructed of several independent memory modules; 
an interconnection network is used to transfer requests from processors to 
memory and transfer back replies. Thus a memory system is actually composed 
of memory modules and an interconnection network. We must show that if both 
the memory modules and the interconnection network function correctly, then 
the memory system functions correctly. 

A memory module functions correctly if it fulfills (M2.1)~(M2.3). We say that 
the interconnection network functions correctly if it fulfills the following two 
conditions: 

(M2.4) Each message sent in the network eventually reaches its destination; and 

(M2.5) successive messages sent from the same source to the same destination 
arrive in the order they were sent. 

One can easily check that the following holds: 

LEMMA 3.1. Consider a memory system built of an interconnection network and 
independent memory modules. Assume that the interconnection network functions 
correctly (i.e., satisfies (M2.4) and (M2.5)), and that each memory module functions 
correctly (i.e., satisfies (M2.1)-(M2.3)). Then the memory system functions cor- 
rectly (i.e., satisfies (M2.1)~(M2.3)). 

4. COMBINING MECHANISM 

There have been many proposals for the architecture of parallel processors. The 
main issue is how to interconnect the processors so that they may communicate 
efficiently. While shared bus-type architectures are well suited for interconnect- 
ing dozens of processors and memory modules, multistaged interconnection 
networks appear to be required for larger-scaled parallel machines. We first 
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describe our assumptions concerning the interconnection network and then give 
a general technique for “combining” shared memory requests directed at a 
common location. We show that this implementation is correct in the sense 
defined in the previous section. 

4.1. Processor to Memory Connection 

We assume a multiprocessor memory system built of memory modules and an 
interconnection network, where both the memory modules and the network 
function correctly. For the sake of definiteness, we make the following additional 
assumptions: 

-The processors communicate with shared memory modules via a multistage 
interconnection network. The network is packet switched. 

-The network is “nonovertaking”: If message ml leaves some node before 
message m2 and they both arrive later at some other node, then they arrive in 
the correct order. Successive messages sent by a processor to the same desti- 
nation arrive at every node in their shared path in the order they were sent. 

-A reply message is sent back on the same path followed by the request message. 

The last two conditions are trivially satisfied for multistage networks that have 
a unique path connecting each processor to each memory module. The last 
condition is easy to enforce in any network: As a message travels through the 
network, it can construct a header describing its path; this header is used to 
route the reply in the reverse direction [a]. These assumptions are also made in 
the NYU Ultracomputer [8] and IBM’s RP3 machine [19]. 

4.2 How to Combine Requests 

We assume that memory accesses are RMW operations. A memory request 
message has the form (id, addr, f), where id is an identifier that uniquely 
identifies the request, addr is a reference (address) to a memory location2, and f 
is (an encoding of) a mapping. Let @addr represent the value contained in 
location addr. When the message reaches memory, the value in location uddr is 
replaced by f (@uddr), and a message (id, @uddr) containing the original value 
in location uddr is returned. 

Suppose that a request message of the form ( idp, uddr, g) arrives at a switch 
containing a request message ( idI, addr, f ). These two messages have the same 
destination and thus conflict. We propose combining these two messages into a 
single message. This is done as follows: 

-The switch saves rdl, idz, and f and forwards the message ( idl, uddr, 
f 0 g), where f 0 g is (an encoding of) the composition3 off and g. 

-When a reply message ( idI, uul) to this composed request reaches the switch, 
the saved information is retrieved by matching the ids; a message (idI, uul) is 
forwarded as a reply to the first request ( idl, uddr, f), and a message ( id2, 
f (uul) ) is forwarded as a reply to the second request ( id2, uddr, g) . 

*The address may be part of the identifier. Thus, if each processor has at most one outstanding 
request to each address, then the processor number can be used as an identifier. 
3 We use f 0 g(x) to denote g(f(n)). 
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Assume that the combined request (I&, u&r, fog) is not further combined in 
the network. Then (z&, @addr) is returned as a reply, and the value @uddr is 
replaced in memory by g(f(@addr)). At the switch the reply (idI, @uddr) is 
forwarded (back) to the first request, and the reply (id,, f(@uddr)) is forwarded 
(back) to the second request. This is illustrated in Figure 1. The final effect is as 
if the first request was executed, returning the value @uddr and replacing it in 
memory with f(@xzddr), and then the second request was executed, returning the 
value f(@uddr) and replacing it with g(f(@addr)). Combining is transparent: 
The operations executed by the processors and the final memory content are the 
same as would occur without combining. 

4.3 Correctness of Combining Mechanism 

We now show that combining is correct: We consider a multiprocessor memory 
system consisting of a correct combining network and correct memory modules. 
We prove that the resulting memory system behaves correctly. To do so we show 
that the observable behavior of a combining memory system is a behavior that 
could be observed in a noncombining one. Note that the reverse is not necessarilly 
true: There are sequences of events that can occur in a noncombining memory 
system, but cannot occur in a combining one. (We follow what Lamport calls the 
“restrictive” approach to specification [X5].) 

In general, a combined request can be further combined. An inductive proof is 
needed to show that the final outcome is correct. 

Each memory request message in the network is associated with a sequence 
of memory request messages issued by processors. A memory request issued 
by a processor represents itself; if memory request A was obtained by com- 
bining B with C, where B represents requests bl, - - -, bi and C represents 
requests cl, - - -, cj, then we say A represents requests bl, . . . , bi, cl, . . . , cj. 

For each request traversing the network, there is a unique return message; in 
particular, each processor request is associated with a unique reply returned from 
memory. More formally, for each request message (icE, f, uddr) that arrives at a 
switch there is a unique reply message (id, ual) that eventually returns to the 
switch from memory. This is easy to prove by induction. 

We assume that the arrival order required for individual messages is preserved 
for combined messages: if al and a2 are two successive request messages sent by 
a processor to the same memory location, and some node receives two combined 
messages, one representing al and the second representing u2, then the message 
representing al arrives first. This condition is trivially satisfied for networks with 
unique paths. 

LEMMA 4.1. Consider a combining memory system. Let A = (id, addr, f ) be 
a memory request message, representing requests aI = ( idI, addr, fi), - . - , 
a,, = (id,,, addr, fn). Let al be the reply message associated with ai, i.e., the reply 
message ( idi, val) received by the processor that issued ai. Then 

(2) The values returned by all of the al are the same as would be returned if the 
memory accesses associated with requests al, . . . , a,, were executed consecu- 
tively in memory. 
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(3) If request A reaches memory without being combined, the value stored at 
location addr after execution of request A is the same as the final value stored 
at location addr after consecutively executing the memory accesses associated 
witha,, . . ..a.. 

PROOF. The lemma is proven by induction on the number of requests repre- 
sented by a memory access message. It is trivial for a message that represents 
one request. Next assume that the lemma is true for messages representing 
less than n requests, and assume that A is obtained by combining B and C, 
where B represents r requests and C represents n - r requests (1 5 r < n). 
Let B = ( idB, addr, g) and C = ( idc, addr, h), so that A = (id’, addr, g 0 h). 
Then message A generates a reply (idB, val), which will also be the reply to 
request B; request C generates the reply ( idc, g(va1)). If A reaches memory then 
val = @addr and the new value in memory is h(g(@addr)). 

Let b, = (ibt, addr, gl), . . +, b, = (id!, addr, gr) be the sequence of requests 
B represents; similarly, let cl = (id;, addr, hI), . . ., c,-, = (id’,-,, addr, h,-,) be 
the sequence of requests C represents. Let bf and cf be the reply messages asso- 
ciated with the respective requests. By the inductive assertion, g = gl 0 . . . 0 g, 
and h = hI 0 ‘. . 0 h,-,; the messages bf return the values val, g,(val), . . ., 
g,-,(. . . (g,(val)). . .); the messages cl return the values g(val), hI(g(val)), 
. . . , h,-,-l(. . . (hl(g(val))) . . . ). It follows that the values returned, and the new 
memory value when A reaches memory, are as if the memory accesses associated 
with bl, . . ., b,, cl, . . ., c,-, were successively executed in this order. This proves 
the lemma. Cl 

THEOREM 4.2. A combining multiprocessor memory system is correct. 

PROOF. The previous lemma clearly implies the theorem: Indeed, let M1, . . . , 
M,,, be the successive memory request messages that are processed at a particular 
memory location. Replace each such message by the sequence of memory requests 
it represents. Let RI, . . . , R, be the resulting sequence. Let R and R’ be successive 
requests sent by the same processor. If these requests were not combined (i.e., 
are not represented by a unique message MJ, then the message representing R 
reached memory before the message representing R’, it follows that R occurs 
before R’ in the sequence RI, . . . , R,. If R and R’ are represented by a unique 
message Mk, then a message representing R was combined at some switch with 
a message representing R’ to obtain a new message M. The message representing 
R arrived first at that switch; hence R occurs before R’ in the sequence of requests 
represented by M. It follows that R occurs before R’ in the sequence R, , . . . , R,. 

The final value of the memory location is as if the requests RI, . . . , R, were 
processed in that order; for each request Ri there is some reply message Ai that 
eventually returns to the processor (Ri and Ai have the same id ); and the value 
of Ai is as the value that would be obtained from processing request Ri after 
requests RI, . . ., Ri-1 were processed. 0 

Note that successive requests sent by a processor to the same memory location 
may be combined; the result is still correct. 
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5. APPLICATIONS 

Suppose one intends to combine RMW requests with mappings from some family 
$ of transformations. Composition can generate any mapping in the semigroup 
T spanned by5 +. We need to have an encoding for the mappings in h in which 

(1) The computer representations of mappings from T have reasonable size; 

(2) the encoding off 0 g can be easily computed from the encoding off and the 
encoding of g; and 

(3) f(a) can be easily computed from the computer representations off and a. 

We say that @ is tractable if it fulfills these conditions. 
We can formalize the notion of “tractable”: Assume memory accesses involve 

memory words of fixed size w; then 3 is a semigroup of mappings in 2”, for 
each w. The semigroup 9 is “tractable” if there is an encoding of i into bits, 
4: 5 + (0, l]*, such that 

(1) 14(f) 1 = O(w) (the encoding of a mapping requires a constant number of 
words); 

(2) The computation of 4( f 0 g) from 4(f) and 4(g), and the computation off (a) 
from $(f) and a are in the class NC; i.e., they can be computed by circuits of 
small size and depth, where small means size w’(l) and depth log”“‘w. 

These conditions are trivially satisfied in all cases we consider. 

5.1 Loads, Stores, and Swaps 

We now show how to combine loads, stores, and swaps. Initially, we only 
show how to combine loads and swaps, since a store is simply a swap where the 
value returned is ignored. Recall that a load from variable X is equivalent to 
RMW(X, id), where id is the identity mapping, and a swap of value local variable 
Y with shared variable X is equivalent to Y t RMW(X, Iy), where Iy is the 
mapping that has constant value Y. The set of mappings (I”) U (id) is a semigroup, 
and composition is easily computed. A mapping from this semigroup is repre- 
sented by one computer word and one opcode bit. The composition yields the 
expected results: 

-A load followed by a load combine into a load. 
-A load followed by a swap combine into a swap (the value fetched is returned 

to the load). 

-A swap followed by a load combine into a swap (the value being stored is 
returned to the load). 

-A swap followed by a swap combine into a swap of the second value. 

One need not transmit the value returned by a store request, as it is of no 
interest; an acknowledgment suffices. One can avoid returning values by distin- 
guishing between stores and swaps. Then, with the possible exception of an extra 

’ A semigroup is a set closed under an associative operation, which in this case is map composition. 
’ The set 5 spanned by @ is the smallest set containing @ closed under composition. 
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tag bit, combining never generates extra traffic; often it will decrease it signifi- 
cantly. The following 3 X 3 table shows how to combine loads, stores, and swaps. 

load store swap 
load load swap swap 
store store store store 
swap swap swap swap 

Note that, in general, the order of combined requests is arbitrary and can be 
reversed. This can be used to decrease network traffic further. For example, if 
the network always chooses to effect a store before a load whenever two such 
requests are combined, then the store never needs to return a value. The same 
optimization applies when combining stores and swaps. The following 3 x 3 table 
shows how to combine loads, stores, and swaps, if the order of requests can be 
reversed. An * means the order of the operations is reversed. 

load store swap 

;;;; mj 

Note, however, that reversing operations is clearly wrong when successive 
requests of the same processor are combined. 

The situation of a store combined with a load suggests another slight improve- 
ment in performance: Satisfy the load immediately. That is, the store would be 
forwarded to the memory module and its value will also be immediately returned, 
back to the processors that issued the load. However this optimization is incorrect; 
the load request may be satisfied before the store occurred in memory, leading to 
incorrect results. Consider, for example the following computation. 

Processor 1 Processor 2 Processor 3 
(1) A c 1 (2) a t A (4) b +- B + 1 

(3) B t a (5) A t b 

Assume that the memory works correctly, and that processors respect data 
dependencies. Assume that initially A = B = 0. Then the execution of this code 
cannot end with b = 2 and A = 1: The memory access in (2) must occur before 
the access in (3), and the access in (4) must occur before the access in (5); if 
b = 2 then the memory accesses to A and B occurred in the order 12345, and the 
last store done by instruction (5) assigns the value 2 to A. On the other hand, if 
the suggested optimization occurs, it may happen that memory is accessed in the 
order 23451, but nevertheless the load in (2) returns the value 1 stored by (1). In 
such a case we end with b = 2 and A = 1. Note that the incorrect execution may 
occur even if processors do not overlap successive memory accesses. 

It is always possible to add load, store, and swap operations to a family 
of RMW operations, and combine them all, without greatly increasing the com- 
plexity of the system. More formally, if 4i is a semigroup of mappings, 
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then Q! U (I”) U (id] is a semigroup too. We have 

fo id = id * f = f, 
foIv=Iv, and 

I” o f = If(“). 
Thus, if @ is tractable, then + U (I”) U (id) is tractable. 

Our discussion has assumed that loads, stores, and swaps always affect an 
entire memory cell (word of memory). If we assume a word-addressable machine, 
say with four byte words, then combination of store operations that affect only 
bytes or half-words will require introducing store operations that affect any 
subset of bytes in a word. At a higher level, if one combines atomic stores that 
affect components of a structured variable then one needs to support stores 
that affect an arbitrary subset of the components of this variable. 

5.2 Associative Operations 

Let B be an associative operation. Then fetch-an&(X, a) is equivalent to 
RMW(X, B,), where B,(x) = x&z. The function fetch-m&8(X, a) corresponds to 
the indivisible execution of the following code. 

function fetch-and-8(X, a) 
begin 

temp + X; 
X c XOa; 
return(temp) 

end 

A fetch-and-8(X, a) followed by fetch-and-0(X, b) can combine into fetch-and- 
0(X, aeb), since 

& ’ eb(d = eb@w) 
= (xea)eb 
= xe(db) 
= &Sb(d 

(since e is associative) 

Thus the semigroup {&) is tractable whenever 0 can be computed by a small 
circuit. 

Perhaps the most important fetch-and-0 primitive for large-scale shared mem- 
ory machines is the fetch-and-add, which was discussed earlier. The mapping 
can be represented by one computer word (the addend). Two other potentially 
useful fetch-and-8 primitives are fetch-and-OR, where OR is Boolean addition, 
and fetch-and-min. Fetch-and-OR(X, 1) is the test-and-set operation. Fetch-and- 
min is useful for allocation with priorities. 

5.3 Boolean Operations 

The 16 Boolean operations can also be combined, despite the fact that some of 
them are not even associative operations. Moreover each of the operations can 
be applied to bit vectors, of one word size. We will first consider the unary 
Boolean operations. 
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Let + be the set of four Boolean functions on one variable, 0, 1, x, and ji. The 
associated RMW operations are test-and-clear, test-and-set, load, and test-and- 
complement. The four functions in Cp can be represented by two bits, and can be 
composed using the following 4 x 4 table. 

load clear set camp 
load load clear set camp 
clear clear clear set set 
set set clear set clear 
camp camp clear set load 

The function compositions can be computed in hardware with few gates. Thus + 
is a tractable semigroup. 

As a result all 16 operations fetch-and-o, where B is a binary Boolean operation, 
can be combined. The reason is that the value of the second variable is fixed to 
a constant (0 or 1) when a request is issued, and every Boolean operation on two 
variables with one of the variables fixed is equivalent to some Boolean operation 
on one variable. For example, fetch-and-AND(X, a) is a load when a = 1, and is 
a test-and-clear when a = 0. 

This result can be extended to Boolean operations on bit vectors. Mappings 
on bit vectors of length n are represented by 2n bits. Such operations are useful 
to support multiple locking. 

5.4 Arithmetic Operations 

Let 9 be the set of arithmetic operations addition, subtraction, multiplication, 
and division. We also put into !P the reverses of the two noncommutative 
operations: Reverse subtraction of a and b is b - a, and reverse division of a and 
b is b/a. We wish to support and combine all the operations of the form fetch- 
and+, where $ E \k. In order to do that, we need to support and combine the 
operations RMW(X, $3, where 9 E \k, and &JX) = X$a. The semigroup spanned 
by the set of mappings {fi=: $ E \k) consists of the Moebius functions. These are 
the functions of the form 

ax + b 
x+- 

cx+d’ 

where a, b, c, and d are constants, and either c # 0 or d # 0. 
We represent the function 

ax + b 
x+- 

cx + d 

by the 2 X 2 matrix of coefficients. 

If fA is the Moebius function represented by the matrix A, then 

fs o fA = fAB. 
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Thus a function is represented by four coefficients, and two functions are 
composed by multiplying two 2 x 2 matrices. 

We can now efficiently support all assignments of the form x t xec, where ~9 
is an arbitrary arithmetic operation, and c is a constant or a private variable. 
These assignments will be executed atomically, while still being combined in the 
network. Such assignments form a large part of the machine code in typical 
applications. 

If one wishes to support only addition and multiplication, then it is sufficient 
to consider functions of the form 

which can be represented using only two coefficients. Combining two such 
mappings requires two multiplications and one addition. 

Hardware arithmetic operations are not associative. Use of the associativity 
law may change occurrences of overflows in integer arithmetic, and may change 
occurrences of overflows, underflows, and rounding errors in floating-point 
arithmetic. As our combining mechanism relies on associativity, the arithmetic 
might not produce the same results as would the serial order of the operations. 
Furthermore the transformations used are not numerically stable when division 
occurs; they are numerically stable when divisions are left out. In that respect, 
our combining mechanism suffers from the same shortcomings as compiler 
optimization techniques that use transformations based on algebraic identities. 

It is possible to obtain an accurate combining mechanism for fixed-point 
operations, not including division, by adding one extra bit to the intermediate 
values, thereby increasing the range by a factor of two. If an overflow occurs in 
that increased range then an overflow would have occurred in the serial execution 
of the operations in the restricted range. A similar technique of using guard bits 
will keep rounding errors under control when floating-point operations not 
involving division are combined. 

5.5 Full-Empty Bits 

Accesses to shared variables can be synchronized using memory tags. For exam- 
ple, the HEP computer uses a full-empty bit at each shared memory word [25]. 
These bits can be used to synchronize accesses in a producer consumer fashion. 
Writing may be conditional on the location being empty; a successful write sets 
the (full-empty) bit. Reading may be conditional on the location being full; a 
successful read may clear the (full-empty) bit. 

A load operation has the same effect in memory as the corresponding condi- 
tional load operation. We may therefore assume that load operations are always 
executed unconditionally: A processor can check the value of the full-empty bit 
returned by the load operation to determine if it was successful. A conditional 
store operation that fails returns a negative acknowledgment; the processor may 
resend it later. 

In order to implement this synchronization mechanism, consider the four 
memory access operations (which are defined formally below) that form the basis 
of those in tagged memory architectures: load, load-and-clear, store-and-set, and 
store-if-clear-and-set. 
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Let the pair (X, flag) represent the variable X and its associated full-empty 
bit flag. Temporarily assume that stores are actually implemented as swaps, i.e., 
they return the old value. In order to implement the operation set as RMW 
operations, one needs four types of mappings. 

(1) The identity mapping for loud: (X, f2ag) + (X, flag). 
(2) The mapping for load-and-clear: (X, flag) + (X, 0). 
(3) The mapping for store-and-set: (X, flag) + (u, 1). 
(4) The mapping for store-if-clear-and-set: 

(X, flag) --* 
-i 

I; ‘1’) if flag = 0 
, if flag=1 

To close this set of mappings under composition, two more mappings must be 
included: 

(5) The mapping (X, flag) + (u, 0) is a store-and-clear. It implements a store- 
and-set followed by a load-and-clear. 

(6) The mapping 

(X9 flag) --, { I> ;, if flag=0 
9 if flag=1 

is a store-if-clear-and-clear. It implements a store-if-clear-and-set followed 
by a load-and-clear. 

These requests can now be combined. The combining logic is simple. Each of 
the six types of operations can be encoded by a short opcode, an address, and 
optionally a data word. 

A store request carries one data value. A reply to a request needs to carry a 
data value only if the request is a load or a combined store that contains a simple 
load operation. If these store operations are handled specially, then the number 
of data values transmitted through a combining network will never exceed the 
number that would have been transmitted in an uncombining network. 

There is a problem if the operation set includes a standard store operation, 
i.e., one that does not change the full-empty bit. If a store followed by a store-if- 
clear-and-set are to combine, it cannot be determined a priori whether the 
conditional store will actually succeed. One solution is to forward both store 
values. A better solution is simply to reverse the order of the requests (to be the 
store-if-clear-and-set followed by the store). These can be forwarded as a store- 
and-set operation. 

Reversing the order does not always help. For example, if the operations store- 
if-clear and store-if-set are combined, both store values have to be forwarded. As 
we will see in the next section in a much more general context, even if we include 
all types of full-empty operations, no request will ever have to carry more than 
two store values. 

We assumed in this section a busy-waiting model for synchronization: An 
operation that fails returns a negative acknowledgment; the processor may retry 
later. An alternative mechanism is to queue a request at memory until it is 
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executable. This decreases the network traffic. However, unless some time-out 
mechanism is available at the memory controller, the hardware may deadlock. 

Assume the two operations load-and-clear-if-set and store-and-set-if-clear are 
used to access memory in a queueing system. Memory accesses at a location are 
executed in a sequence of alternating loads and stores. Thus, a set of i load and 
j stores can be combined into 1 i - j 1 + 1 operations: Stores are combined with 
loads, with the excess of loads or stores staying uncombined. While combining is 
not guaranteed to reduce traffic in the worst case, one can expect it will do so in 
the average case. 

5.6 Data-Level Synchronization 

One can have more than two possible states (full and empty), and operations 
other than read and write on data. In a general data-level synchronization scheme, 
we have a semigroup @ of mappings representing the RMW operations that can 
be executed, and a set S of states. Each variable is tagged by its state. The 
execution of an operation on a variable is conditional on its being in a suitable 
state; the operation also changes the variable’s state. 

This mechanism can be represented by an automaton A = (a, S, 6)) where 
6: S X @ + S is the state transition function. Assume that variable X is in 
state s, and an RMW(X, f) operation is issued. If 6(s, f) = f (i.e., undefined) 
the operation fails, and a negative acknowledgment is returned. Otherwise, 
RMW(X, f) is executed, and the new state of X is set to 6(s, f). Define the 
mapping f ’ by 

f ‘Lx 4 = ( f w, G, f 1) if 6(s, f ) # E 
(X, s) otherwise 

Then the execution of the operation RMW(X, f) under the control of the 
automaton A is equivalent to the execution of the operation RMW((X, s), f’). 

Consider now the case where the operations executed are stores and loads. The 
basic operations are then 

-load (X, V, 6): Load from X if state s is in V and change state to 6(s). 
-store (X, u, V, 6): Store the value v into X if state s is in V and change state 

to 6(s). 

For uniformity, we represent a load by the tuple (X, Q, V, 6), where the special 
value Q represents the fact that no store is executed. A combined request then 
has the form (X, (vl, V,, aI), . . ., (vk, Vk &)), where the Vj are disjoint sets of 
states. The meaning of this operation is: If state s E Vi and s 4 S,, - e . , Si-1 then 
store vi (or store nothing if vi = Q) and change to state ai( If s is not in any Vi, 
then the operation fails. 

A combined operation that represents k atomic store operations carries at most 
k store values. Also a combined operation never carries more than 1 S 1 store 
values, where 1 S 1 is the number of states of the controlling automaton A. This 
is in general the best possible bound: If there is an operation store-if-state = s 
for each state s of A, then a combined store may have to carry a distinct store 
value for each state. This is tractable when the number of states is small, such 
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as when a full-empty bit is used, it is not tractable when the number of states is 
large. For example, the synchronization primitives defined by Zhu and Yew [29] 
for the Cedar machine at the University of Illinois and by Pier and Gajski [7] 
use full word tags. With m bit tags, there are 2” possible states, and 2” is the 
best possible uniform bound on the number of store values in a combined request. 

Memory accesses controlled by a regular automaton can be used to support 
simple path expressions [l]. Path expressions are used to synchronize access to 
shared objects. For each such object there is a set of possible operations on it. 
A regular expression over the alphabet consisting of these operations defines the 
language of legal sequences of operation applications on each object. 

A deterministic automaton corresponding to the path expression is built. Each 
object is represented by a variable in memory, to which access is protected by 
this automaton. Each execution of a protected operation is preceded by an access 
to that variable that performs the corresponding automaton transition. Then the 
executions of the operations are sequenced according to the path expression. The 
mechanism suggested in this section allows an efficient implementation of such 
a system. 

6. RMW AND PARALLEL PREFIX 

This section shows the relationship between the combining mechanism presented 
in this paper with a well-known computational problem, prefix computation. The 
combining logic turns out to be an asynchronous version of a well-known parallel 
synchronous algorithm. This sheds further light on performance aspects of 
combining. 

Consider successive execution of the operations RMW(X, f,), . . ., RMW(X, 
f,J. These operations return the values X, f*(X), . . ., fnml(. - -(fi(X)) - - .); the 
valuef,(.. .(fi(X)) - - . ) is stored in memory. Thus execution of these operations 
amounts to the computation of X, fi(X), . . . , fn(. . . ( fi(X)) . . .) or, equivalently, 
to the computation of Ix, Ix 0 fi, . . . , Ix 0 fi 0 . . . 0 f,,. This is a particular 
instance of the prefix computation problem [12]: Given x1, . . . , xn compute x1, 
x:xz, . . ..x. **’ *x,, where the operation * is an arbitrary associative operation. 
In our case, * is map composition. 

Prefix computation when solved in parallel is known as parallel prefix. The 
memory access mechanism proposed in this paper provides, in fact, a parallel 
solution to the prefix computation problem. The computations are performed on 
the nodes of a tree in the interconnection network that connects the processors 
to one memory module. In a multistage network, in which processors have at 
most one outstanding request to each memory location, this is a physical tree, 
which is a subgraph of the network. In other cases this is a virtual tree that is 
embedded in the interconnection network graph. 

The problem solved by the combining network differs from parallel prefix in 
that the order of the elements combined (with the exception of the first) is 
arbitrary. By ordering the operations correctly, one obtains a distributed, asyn- 
chronous network that solves the parallel prefix problem. 

The computation is performed on a network of processes connected as a (not 
necessarily complete) binary tree with n leaves. The inputs are stored at the 
n leaves of a binary tree, which corresponds to the processors of the parallel 
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computer. The root of the tree has one parent, called superoot; it corresponds to 
the memory module that contains the variable accessed; the internal nodes of 
the tree correspond to the combining switches in the processor to memory 
interconnection network. We describe below in CSP notation [II] the different 
types of processes. 

Leaf Process 
[Leaf:: val; 

parent ! val; 
parent ? val 

1 
Internal Node Process 
[Node:: lval, rval, pval; 

left-child ? lval; 
right-child ? rval; 
parent ! lval*rval; 
parent ? pval; 
left-child ! pval; 
right-child ! pval*lval 

1 
Superoot Process 
[Superoot:: val; 

child ? val; 
child ! id 

1 
Let v&i be the initial value at the ith leaf. At the end of the computation the 

value at the ith leaf equals to val:’ - - - *v&1; the value at the superoot equals to 
val? - - - *val,. 

If the tree is complete, then the operations performed by this tree are exactly 
the same operations performed by the Ladner-Fisher parallel prefix network 
[ 121. The global clock synchronization used by their algorithm is replaced by 
local dataflow synchronization. Each internal node performs two multiplications, 
of which rlgnl are trivial. Thus, 2n - 2 - rlgnl nontrivial multiplications are 
done. The algorithm can be implemented to run in 2Ilgnl - 2 multiplication 
cycles, when globally synchronized. 

7. CONCLUSION 

This paper provides a formal method for reasoning about the correctness of 
parallel computer architectures. It applies it to a concrete problem, arising in the 
design of machines such as the NYU Ultracomputer and the IBM RP3. Formal 
tools have been widely used to reason about concurrent software and communi- 
cation protocols. On the other hand, there are few, if any, applications to parallel 
computer architectures. We hope our work will encourage a more rigorous 
approach to the definition of parallel architectures. 

The paper provides the theoretical underpinnings of the combining mechanism 
used by the NYU Ultracomputer and RP3. It presents a general formulation of 
RMW operations and of combining for these operations. On the other hand, we 
have not discussed implementations of the combining logic. An implementation 
of an efficient switch that supports combining of fetch-and-add requests is 
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described in [3, 41. This design has been realized in custom VLSI at NYU. The 
same scheme can be used for other RMW operations. This realization, while 
reasonably fast, requires significant amounts of supplementary hardware (over 
that required for packet switching). Note that one can use combining logic that 
detects only part of the combinable pairs. Memory accesses are correctly per- 
formed even with partial combining, or no combining at all. Thus different cost- 
performance trade-offs are possible. 

Combining or partial combining can be used on a wide variety of interconnec- 
tion networks. The only major restriction is that requests must return via the 
same route (although in the reverse direction). Thus the mechanisms described 
in this paper can be easily adopted for use by direct connection machines, such 
as the cosmic cube [25], where the processors themselves act like network 
switches and the local memories at each node are all viewed as part of a 
distributed, shared memory. Combining can also be used on machines where 
multiple processors are connected to a shared memory by a bus. The shared 
memory is often heavily interleaved; thus it achieves high, but uneven, through- 
put. A FIFO buffer is often used to decouple memory from the shared bus. 
Combining in this queue will improve the memory throughput by reducing 
conflicting accesses to the same memory bank. 
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