
1

1

Summary of Parallel Computation

We have learned a substantial amount about parallel
computation. Today, we summarize the main conclusions.

2

But, first latency tolerance

2

3

Latency -- Just Do Something Else

In theory memory a delay of λλλλ is not a show
stopper; simply switch to other work while
waiting for a memory value to be returned

Requires (in theory) P log P threads, but it’s
actually λλλλP, and grows however λ λ λ λ grows

Threads are often abundant, but it is difficult
always to have λλλλP threads, e.g. at decision
points

4

Hardware Implementations

• The idea of switching to execute instructions
from another thread when memory latency
stalls processor has been around a long time

• Early Honeywell machines used related ideas
• Denelcor HEP (~1982) designed by Burton Smith had 8

threads “in the air” at once
• The 1990s saw several efforts to build such machines

• We will study two designs
• Alewife from Anant Agarwal’s group at MIT
• The Tera Computer from Burton Smith

3

5

The Hardware Solutions
• Focus on keeping 1 processor busy in the

presence of long latencies to shared memory,
but expect to use many such processors

• Use multithreading
• Requires no special software as long as the compiler can

produce more threads than processors
• Handles both predictable and unpredictable situations
• Handles long latencies even as they grow
• Doesn’t affect the memory consistency model, i.e. shared

variables must be locked or use other mechanism

utilization = work_time
work_time+switching+idle

6

Two Techniques for Multi-threading

• Blocked multithreading [Alewife] is like
timesharing … continue to execute until the
thread is blocked, then switch

• Has lower hardware impact
• Good single thread performance

• Interleaved multithreading [Tera] switches
execution on threads on each cycle

• Lower logical switching penalty
• Greater impact on hardware design

• Keeping multiple contexts is essential

4

7

Four Threads Using Blocked Approach
• Threads make memory reference every few

instructions
A

B

C

D

x x x x x x x x

x x x x x x x x x x

x x x
Memory Latency

i i

i i

8

Utilization of Blocked Approach

• Total instruction times: 45

• Total work instructions: 24

• Total switch time: 21

• Total wait time: 0

• Utilization = 24/45 = 53%

x x x x x x x x

x x x x x x x x x x

x x xi i

5

9

Benefits of Available Threads
• For the blocked approach the availability of

ready threads improves utilization

Number of threads

1 2 3 4 5 6 ...

P
ro

ce
ss

or
 U

til
iz

ai
to

n 1.0

0.8

0.6

0.4

0.2

Switching time is
overhead that is not
recovered

Switching time is
overhead that is not
recovered

10

Six Threads With Interleaved Approach

A

B

C

D

E

F

x xx Utilization is 24/27
or 89%
Utilization is 24/27
or 89%

6

11

Basics of Tera Design

• Instructions are [arithmetic, control, memory]
or [arithmetic, arithmetic, memory]

• Ready instructions issue on each tick, but
there is a 16 tick minimum issue delay for
consecutive instructions from a thread

T
Converts
latency
from 15
ticks to 69
… U = 7%

Converts
latency
from 15
ticks to 69
… U = 7%

12

Six Threads Revisited (Tera Design)

A

B

C

D

E

F Utilization is
23/70 or 33%
Utilization is
23/70 or 33%

i i

i

7

13

More On Tera II

• Since there is a 16 instruction minimum issue
delay, it takes 16 threads to execute
sequentially without latency hiding

• Each (memory) instruction has a 3 bit tag
telling how many instructions forward are
independent of this memory reference (in this
thread)

• Average memory latency without contention
is 70 cycles

14

More On Tera III

• Each processor has 128 full contexts

• Synchronization latency can even be covered

• When everything works, the Tera should
approximate a PRAM

Think of the Bulk Synchronous model with
completely decentralized supersteps
Think of the Bulk Synchronous model with
completely decentralized supersteps

8

15

Summary

16

Our Original Goal

Goal: To give a good idea of parallelism
– Concepts -- look at problems with “parallel eyes”
– Algorithms -- different resources to work with
– Programming -- describe the computation without

saying it sequentially
– Languages -- reduce control flow; increase

independence
– Architecture -- HW support to share memory not?
– Hardware -- the challenge is communication, not

instruction execution

Start with HW, and review (pop) to Concepts ... Start with HW, and review (pop) to Concepts ...

9

17

Routing
• Chaos routing is effective because “non-

minimal” adaptivity can by-pass congestion
– Light traffic, randomize routes over a regular,

symmetric, consistent networks, avoids creating
hot spots; no point where packets can get “stuck”

– Moderate traffic, wait in a node for a route to clear,
this is better than “hot potato” which must route

– Heavy traffic and faults, deroute in the wrong
direction to move around the problem

Higher throughput, lower latency, higher load-
carrying capacity than other routers
Higher throughput, lower latency, higher load-
carrying capacity than other routers

18

Chaos Routing (continued)
• Deadlock is not possible because of packet

exchange protocol

• Probabilistically livelock-free,
– As good or better than deterministically livelock-

free in practice
– Solves difficult (but rare) problem for adaptive

routers by randomizing, and gambling

• Chaos is not perfect; not good with wormhole
– Inefficient for long messages; use two nets or pick

a variable length packet with large-ish maximum

10

19

Networks
• Full cross-bar is not practical

• Direct and Indirect Networks are alternatives
– Indirect, e.g. Ω-network

• Has only “long” paths of O(log P), no nearest neighbor
• Multiple references to a location can collide, so try

combining at the switches
• In fact, exploit combining with Fetch&Add -- it’s better for

shared memory than Test&Set because it “schedules”
• Both Fetch&Adds and Load/Stores can be combined
• Combining requires “smart” switches that slow net
• Analysis shows combining opportunities are rare; hot

spots due to colliding references to different locations is
the problem

F&A + combine is smart but flawed F&A + combine is smart but flawed

20

Networks (continued)
• Direct Networks

– Short, nearest neighbor paths are available
– Adaptive routing techniques are available
– Much more asynchronous; NIC is extra processor
– Different load properties for different architectures

• Non-shared memory, network carries little overhead
• Shared memory, network carries coherency protocol

messages, which can be “proportional to the sharing”

– n-ary, d-cubes are realistic topologies
• Torus is better because of symmetry
• Fat trees also work; hypercube has “log P node degree”

Direct (regular) networks are only choice Direct (regular) networks are only choice

11

21

Architecture
Main architecture decision: hardware support

for shared memory or not?
– Non-shared memory architectures are successful

• Simpler designs, means faster designs
• Leave memory management to software/programmer
• A single address space is easy and useful
• “Proper HW support for shared memory” is still unknown

and getting less realistic as technology improves
• Avoid message passing and its copy/marshal overhead
• One-sided communication (shmem) is very efficient

because it reduces communication’s synchronization
• Shmem allows “strided communication” with pipelining

Single address space, 1-sided communication is bestSingle address space, 1-sided communication is best

22

Architecture (continued)
• Shared memory

– Technically very difficult -- and therefore slow -- to
keep memory coherent

– DSM can be implemented by a directory scheme
• Record sharers/dirty features for each cache line
• Directory can double the memory requirements of

machines, though some simplifications are possible
• Follow distributed version of coherency protocol because

no bus for defining “timing sequence”; use mem location
• Homework showed: Even limited sharing can cause

much traffic
• Invalidations, acknowledgements increase with sharing

DSM best when not used, i.e. manage mem yourselfDSM best when not used, i.e. manage mem yourself

12

23

Architecture (continued)
• Symmetric-multiprocessors (SMPs) are an

effective way to share memory on a small
scale

• Cache controllers snoop memory bus
• The bus becomes the “time sequencing” point of the

system, where modification order is defined
• Various protocols speed performance with greater

complexity
• “DSM Homework sharing” would be reasonably efficient

on SMP … cost only about ‘2x’ over non-share
• Bus is serially used, limiting generalization to small #s

SMP is a standard architecture SMP is a standard architecture

24

Languages
• Shared memory is difficult to use (races,

synch); not efficiently implemented; not realistic

• Message passing with sequential language (C |
Fortran) + (MPI | PVM) is current standard
– Least common denominator -- runs everywhere
– A huge amount of work (6x code explosion)
– Only the API is standard; semantics vary, making

any program implementation-specific; limit porta’ty
– Message passing is costly on architectures with

“good” communication, e.g. 1-sided, SMP

Use msg passing if you must; but there’s a better way Use msg passing if you must; but there’s a better way

13

25

Languages (continued)
• ZPL 1st (and still only) parallel language with

performance model (WYSIWYG)
– Designed from first principles to help programmers
– No explicit concurrency, communication, or synch.
– Programmer is insulated from details, but it is

possible to write efficient solutions with WYSIWYG
– Compiler is heavily optimized, both seq. and para.
– The communication abstraction is Ironman -- four

procedures that mark sender’s/receiver’s active
regions -- uses native communication of machine

ZPL is convenient and efficient ZPL is convenient and efficient

26

Languages (continued)
• ZPL’s performance model

– Allows programmers “to keep their distance” from
the implementing hardware -- portable!

– Relies on abstract machine -- CTA
• CTA gives key structural information, memory reference

time, processors, characteristics of interconnection net
• CTA gives parallel costs; vN defines sequential costs
• Give ZPL’s runtime model, work & data allocation
• Describe costs of ZPL’s constructs in CTA terms

– No absolute performance possible, but relative is
good enough for quality programming -- performs!

The most significant idea of this class The most significant idea of this class

14

27

Programming
Everyone thinks shared memory is the natural

parallel extension of sequential computing:
“Ignore memory reference time like vN model,
and let HW give the flat memory illusion”

• Memory reference time is key to good algs:
– Find maximum is the example

• Best ignore-memory-time (PRAM) is Valiant O(log log P)
• Best consider-memory-time (CTA) is tournament O(log P)
• (Actual?) implementation of Valiant’s alg O(log P loglog P)
• Actual implementation of tournament O(log P)

PRAM hides a critical cost => it’s hard to get results PRAM hides a critical cost => it’s hard to get results

28

Programming (continued)
• The CTA replaces the PRAM as a realistic,

but still abstract model of parallel computation
– CTA models all existing hardware, but is “far

enough away” to be independent of all
– CTA is concerned with a few features, processors,

non-local memory reference time, λ, interconnect,
which has unspecified topology, low degree

– Practicing programmers writing message passing
code are in effect using the CTA

– CTA is key to expressing costs of HLL like vN

A machine model separates SW & HW development A machine model separates SW & HW development

15

29

Concepts
• The powerful parallel computation ideas are:

– Pipelining, perform some operations and then pass
the task along for completion by other units

– Overlap, perform communication & computation
simultaneously since they need separate resources

– Partition, form independent (as possible) tasks and
assign separate processors to each

– Most parallel algorithms use a combination of these
• Languages should support these concepts
• ZPL does overlap and partitioning for all computations up to

available resources, and has abstraction for pipelining

More abstractly: Decompose into independent parts More abstractly: Decompose into independent parts

30

Concepts (continued)
• Matrix multiplication -- the most studied

parallel algorithm
– Many solutions; van de Geijn,Watts SUMMA best

• Uses broadcast communication of rows/columns
• Restructures the problem to “use data completely”
• Efficiently uses temporary space
• Most natural and convenient (and efficient) ZPL program
• Other algs show ‘problem space promotion’ technique

Problem space promotion is a parallel programming
technique in which a problem with d dimensional data
d is logically solved in a higher dimension, usually d+1

Problem space promotion is a parallel programming
technique in which a problem with d dimensional data
d is logically solved in a higher dimension, usually d+1

Avoid iterationAvoid iteration

16

31

Concepts (continued)
• Summary for successful parallel computation

– Rather than using a shared memory abstraction,
use the CTA model; it reflects costs accurately

– Use ZPL for programming to get convenience,
speed and portability; use MP as last resort

– Be suspicious of claims like the “problems” with
shared memory have been solved by new machine

– When choosing architecture, prefer support for
global addressing, 1-sided communication, point-to-
point network, (randomizing) non-minimal adaptive
routing, SMP nodes

The perfect parallel machine has yet to be built The perfect parallel machine has yet to be built

32

Summary’s Summary

• This has been an enjoyable class to teach.

• Good luck with the remainder of your MS
degree.

