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The Performance Model of ZPL

In the same way the von Neumann machine explains 
the performance of languages like C, the CTA explains 

the performance of ZPL.  But to “understand” the 
explanation, programmers must be taught how the 

features of the language run on the abstract machine.

2

One Solution to Game of Life ...
program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n];
direction  N = [-1, 0]; NE = [-1, 1]; 

E = [ 0, 1]; SE = [ 1, 1];
S = [ 1, 0]; SW = [ 1,-1];
W = [ 0,-1]; NW = [-1,-1];

var   Ncount : [R] byte; 
TW : [R] boolean;

procedure Life();
[R] begin

TW := (Index1 * Index2) % 2; -- Make some data
repeat
Ncount := (TW@^N + TW@^NE + TW@^E + TW@^SE 

+ TW@^S + TW@^SW + TW@^W + TW@^NW);
TW := (Ncount=2 & TW) | (Ncount=3 & !TW);

until false;
end;

end;
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Drainage

• Given an nxn array A, “plot” the drainage map 
from the highest to the lowest point, if it exists

• Declarations …

program drainage;
config var n : integer = 50; 
region     R = [1..n,1..n];
direction no = [-1, 0]; ne = [-1, 1];

ea = [ 0, 1]; se = [ 1, 1];
so = [ 1, 0]; sw = [ 1,-1];
we = [ 0,-1]; nw = [-1,-1];

var A : [R] integer;
Tu,Td,Up,Dn : [R] Boolean;
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Drainage (continued)
procedure drainage();
[R] begin 

Up := 0; Dn := 0; 
read(A);
Up := A=(min<<A);
Dn := A=(max<<A);
repeat

Tu := Up; Td := Dn;
Dn := Dn | (A<=A@no & Dn@no) | (A<=Ane & Dn@ne)

| (A<=A@ea & Dn@ea) | (A<=Ase & Dn@se)
| (A<=A@so & Dn@so) | (A<=Asw & Dn@sw)
| (A<=A@we & Dn@we) | (A<=Anw & Dn@nw);

Up := Up | (A>=A@no & Up@no) | (A>=Ane & Up@ne)
| (A>=A@ea & Up@ea) | (A>=Ase & Up@se)
| (A>=A@so & Up@so) | (A>=Asw & Up@sw)
| (A>=A@we & Up@we) | (A>=Anw & Up@nw);

until ! |<<((Tu != Up) | (Td != Dn));
write(Up&Dn);
end;

Moving upMoving up

Moving downMoving down

Boundaries 
not included
Boundaries 
not included
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User Defined Reductions

Reduction -- combining elements with an 
associative operator in a tree computation -- is 
a powerful paradigm, but the operators (+, *, 
max, min, &, | ) are limited, so allow users to 
define their own operators

• Examples --
– Find the largest n elements
– Find the largest element and its index (maxi, mini...)
– Find the value closest to 4
– ...
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Three Components

• Reduction op<<A has three parts:
– Initialization … first step is initial_val op A[1]

– Local Combine … intermed_val op A[i]

– Global Combine … intermed_val op intermed_val

• Users define all three (overloaded with the 
same name) using standard procedure syntax

∅ ⊗ 3 ⊗ 1 ⊗ 4 ⊗ 1 ∅ ⊗ 5 ⊗ 9 ⊗ 2 ⊗ 6

InitializationInitialization Local Local P1 result⊗P2 result

Global Global 
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Largest Two Elements
max<<A finds the largest … find the largest two

type bestn = array[1..2] of double;type bestn = array[1..2] of double;

procedure max2(var big2 : bestn);
var i : integer;
begin  for i := 1 to 2 do

big2[i] := MINDOUBLE; 
end;

end;

procedure max2(var big2 : bestn);
var i : integer;
begin  for i := 1 to 2 do

big2[i] := MINDOUBLE; 
end;

end; procedure max2(nextval : double; var big2 : bestn);
var i : integer, temp : double;
begin  for i := 1 to 2 do 

if nextval > big2[i]then
temp    := big2[i];
big2[i] := nextval;
nextval := temp;

end;
end;

end;

procedure max2(nextval : double; var big2 : bestn);
var i : integer, temp : double;
begin  for i := 1 to 2 do 

if nextval > big2[i]then
temp    := big2[i];
big2[i] := nextval;
nextval := temp;

end;
end;

end; procedure max2(var big2l, big2r : bestn);
var i : integer, temp : double;
begin   for i := 1 to 2 do

max2(big2l[i],big2r);
end;

end;

procedure max2(var big2l, big2r : bestn);
var i : integer, temp : double;
begin   for i := 1 to 2 do

max2(big2l[i],big2r);
end;

end;

InitializationInitialization

Local CombiningLocal Combining

Global CombiningGlobal Combining
… max2<< A ...… max2<< A ...
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Permute

ZPL’s permute operation allows data to be 
moved around arbitrarily 

• Old syntax New syntax

A:=<##[I1, I2] B; A:=B#[I1,I2]; Gather

A:=>##[I1, I2] B; A#[I1,I2]:=B; Scatter

The lists in brackets are arrays of indices s.t. the 
i,jth element comes from /goes to I1[i,j],I2[i,j]

Referring to the new syntax, the intuitive idea is 
that the simple array is enumerated, and the  
#-array is referenced from the given indices
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Permute (continued)

• To transpose an array, simply write
[1..n,1..n] A:=A#[Index2, Index1];

[1..3,1..3] A := A#[       ,       ]

• To reverse … [1..n] V := V#[n-Index1+1]

• The use of “computable” subscripts is 
common and leads to optimizations

1 1 1
2 2 2
3 3 3

1 2 3
1 2 3
1 2 3
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Permute (continued)

• 1-to-1 applications of # (permutations) can be 
programmed using either gather or scatter

• When the indices are not all different, the 
behavior differs
– [1..n] V := V#[n];  -- assign every element V[n]

– [1..n] V#[n] := V;  -- unpredictable

In recent months permute has been upgraded
• Syntax
• Combining

• Rank change
• Serious Optimizations
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ZPL’s got lots more ...

“Core ZPL” has been presented, but there is 
more

• Hierarchical arrays
• Pipelining (scan)

• Sparse Arrays
• Local processing & control (unrestricted)
• (Will have) Task parallelism
• (Will have) Irregular data structures
• (Will have) User controlled load balancing

… and greater unification

ZPL code is generally 
faster than the custom 
message-passing 
programs written by 
professionals

ZPL code is generally 
faster than the custom 
message-passing 
programs written by 
professionals
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ZPL Built On The CTA

• Recall that ZPL uses the CTA as its 
underlying machine model … like C uses vN

• CTA explains cost of the language’s operations (How?)
• CTA provides a model for designing the compiler and the 

run-time system 

• The CTA
• P processors
• λ >>1 latency to 

nonlocal memory
• Unspecified 

interconnect 
Interconnection Network

...vN vN vN vN vN vN

C
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The Task ...

How is ZPL’s performance model given?
• Specify how

• processors are allocated to computation

• regions (and arrays) are allocated in memory
• rules of operation for primitive ZPL facilities including 

costs for computation and communication

• Assure that all of the source language 
features are explained

• Explain the interactions with optimizations 
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Assigning Work To Processors
• Two views for data parallel computation, .e.g. 

A := B+C@east as found in ZPL’s dense arrays

• Virtual Processors: Each processor is allocated the work 
of scalar data values, that is, think of a situation where 
there are as many processors as array elements

• Variable Points Per Processor: Each processor is 
allocated from 1 to n values, but usually many

– 1 element is virtual processor case
– n elements is the sequential case
– Algorithms with this feature are scalable 
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Assigning Work (continued)

• Many claim the two models are equivalent, 
since virtual can be emulated

• They’re not equivalent because ...
– Emulation misses the advantages of long instruction 

sequences 
• pipelining
• caching
• prefetch

– Virtual misses significant costs of local shifting: 
V:=V@right
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ZPL Assumes Many Points Per Processor

ZPL allocates regions (and therefore arrays) to 
processors so many contiguous elements are 
assigned to each

• Array Allocation Rules
– Union the regions together computing the 

bounding region

– Get processor number and arrangement from 
command line

– Allocate the bounding region to the processors

Consider a walk-through of the processConsider a walk-through of the process
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Union The Regions Together

Create the “footprint” of the regions

Technical point: Only interacting regions are 
“unioned,” e.g. if region R is used to declare 
an array which is manipulated in the scope of 
region S, R and S are said to interact

=

Bounding 
2D Region

Bounding 
2D Region

The bounding region is allocated to processorsThe bounding region is allocated to processors
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Get Processor Number + Arrangement

The number of processors and their 
arrangement is given by the programmer on 
the command line

• For the purpose of [understanding] allocation, 
processors are viewed as being arranged in 
grids … this is simply an abstraction:

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7
P2

P1

P3

P0

The CTA does not 
favor any 
arrangement, so 
use a generic one

The CTA does not 
favor any 
arrangement, so 
use a generic one
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Allocate the Bounding Region to the Grid
The bounding region is allocated to the grid in 

the “most balanced” arrangement possible
• Regions inherit their position from the bounding region
• Array elements inherit their positions from their index’s 

position in the region
• 1D is segmented; 2D is panels, strips or blocks; 3D ...

P2P1 P3P0
P1P0

P2 P3

ZPL allocates multiple elements per processorZPL allocates multiple elements per processor

20

Break
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Fundamental Fact of ZPL

Such allocations are mostly standard, but one fact 
makes ZPL performance clear:

ZPL has the property that for any arrays A, B of 
same rank and having an element [i, …, k], that 
element of each will be stored on the same processor

Corollary:  Element-wise operations do not require any 
communication: [R] … A+B … 

=
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Performance Model (WYSIWYG)

To state how ZPL performs operations, each 
operator’s work and communication needs 
are given … producing a performance model
– Performance is given in terms of the CTA
– Performance is relative, e.g. x is more expensive 

in communication than y

• Rules…
A + B -- Element-size array operations

• No communication
• Work comparable to C

• Work fully parallelizable, i.e. time = work/P
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Rules Of Operation (continued)
A@east -- @ references including wrap

• Nearest neighbor point-to-point communication of edge 
elements, i.e. the surface-to-volume advantage applies

• Local data motion, possibly

+<< -- Reduce and scan
• Accumulate local elements
• Ladner/Fischer O(log P) tree accumulation
• Broadcast, which is worst case O(log P), but usu. less

>> [1..n,k] A -- Flood
• Multicast array segments
• Represent data non-redundantly

Pi-1 Pi Pi+1
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Rules of Operation (continued)
<##[I1, I2] -- Permutation

• (Potential) all-to-all processors communication to 
distribute routing information implied by I1, I2

• (Potential) all-to-all processors communication to route 
the elements of A

• Full information on all of ZPL in Chapter 8 of 
ZPL Programmer’s Guide

• “What you see is what you get” performance 
model … large performance features visible

ZPL is only parallel language with performance model ZPL is only parallel language with performance model 
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Applying The WYSIWYG Model To Life...

program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

BigR = [0..n+1,0..n+1];
direction  N = [-1, 0]; NE = [-1, 1]; 

E = [ 0, 1]; SE = [ 1, 1];
S = [ 1, 0]; SW = [ 1,-1];
W = [ 0,-1]; NW = [-1,-1];

var   Ncount : [R] byte; TW : [BigR] boolean;
procedure Life();

[R] begin
TW := (Index1 * Index2) % 2; -- Make some data
repeat

Ncount := (TW@N + TW@NE + TW@E + TW@SE 
+ TW@S + TW@SW + TW@W + TW@NW);

TW := (Ncount=2 & TW) | (Ncount=3 & !TW);
until false;

end;
end;
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Analyzing Life By Color

Blue: Effectively no time … each processor 
does set-up and scalar computation locally
Gold: Element-wise computation perfectly 
parallel … Indexi constants are generated

How is TW allocated on 4 procs?  Three basic choices...

Delay is cλDelay is cλ
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Analyzing By Color (continued)

Red:  Element-wise computation with @ 
operations … expect λ delay for @ (though it 
may be combined with wrap) and then full 
parallel speed-up for local operations

• That’s the worst case … optimizations are 
possible … for example stencil optimizations

⇒ 7 additions are used for 
each element, but fewer 
adds are sufficient

7 additions are used for 
each element, but fewer 
adds are sufficient

⇒
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Summarizing WYSIWYG Model

• Data and processing allocations are given
• All constructs of the language are explained 

in terms of the allocations and the CTA

• Result: relative, worst-case statement of how 
the computation runs anywhere … rely on it 

• Optimizations can improve on the times, but if 
they don’t fire, nothing is lost 

The best use of the WYSIWYG model is to 
make comparative programming decisions

The best use of the WYSIWYG model is to 
make comparative programming decisions
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Comparing Cannon’s and SUMMA MM

• If you have to write MM, what algorithm do 
you want to use?

• Analyze the choices with WYSIWYG …
• Recall that the two algorithms have the 

structure: 
Cannon’s 
Declare 
Skew A 
Skew B 
Initialize 
loop til n   
C+=A*B 
Rotate A,B

Cannon’s 
Declare 
Skew A 
Skew B 
Initialize 
loop til n   
C+=A*B 
Rotate A,B

SUMMA
Declare 
Initialize 
loop til n 
flood A 
flood B 
C+=A*B

SUMMA
Declare 
Initialize 
loop til n 
flood A 
flood B 
C+=A*B
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Comparing Cannon’s and SUMMA MM
• Step one is to cancel out the equivalent parts 

of the two solutions … they’ll work the same
• For MM the comparison reduces to whether 

the initial skews and the iterated rotates are 
more/less expensive than iterated floods 

Cannon’s
Declare 
Skew A 
Skew B 
Initialize 
loop til n   
C+=A*B 
Rotate A,B

Cannon’s
Declare 
Skew A 
Skew B 
Initialize 
loop til n   
C+=A*B 
Rotate A,B

SUMMA
Declare 
Initialize 
loop til n 
flood A 
flood B 
C+=A*B

SUMMA
Declare 
Initialize 
loop til n 
flood A 
flood B 
C+=A*B
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Programming Cannon’s In ZPL
• Handle the skewed arrays

c11 c12 c13 a11 a12 a13 a14

c21 c22 c23 a21 a22 a23 a24

c31 c32 c33 a31 a32 a33 a34

c41 c42 c43 a41 a42 a43 a44

b13   c11 c12 c13  a11 a12 a13 a14

b12 b23   c21 c22 c23  a22 a23 a24 a21 

b11 b22 b33   c31 c32 c33  a33 a34 a31 a32 

b21 b32 b43   c41 c42 c43  a44 a41 a42 a43 

b31 b42       b11 b22 b33 

b41           b21 b32 b43 

b31 b42 b13 

b41 b12 b23 

Pack skewed arrays 
into dense arrays by 
rotation; process all 
n2 elements at once

Pack skewed arrays 
into dense arrays by 
rotation; process all 
n2 elements at once
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Four Steps of Skewing A
for i := 2 to m do

[i..m, 1..n] A := A@^right;  -- Shift last m-i rows left

end;

a11 a12 a13 a14            a11 a12 a13 a14

a21 a22 a23 a24            a22 a23 a24 a21

a31 a32 a33 a34            a32 a33 a34 a31

a41 a42 a43 a44            a42 a43 a44 a41

Initial i = 2 step

a11 a12 a13 a14  a11 a12 a13 a14

a22 a23 a24 a21 a22 a23 a24 a21

a33 a34 a31 a32 a33 a34 a31 a32

a43 a44 a41 a42 a44 a41 a42 a43

i = 3 step             i = 4 step

… And Skew B vertically… And Skew B vertically
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Cannon’s Declarations

For completeness, when A is m×n and B is n×p, 
the declarations are …

region    Lop = [1..m, 1..n];

Rop = [1..n, 1..p];

Res = [1..m, 1..p];

direction right = [ 0, 1];

below = [ 1, 0];

var           A : [Lop] double;

B : [Rop] double;

C : [Res] double;
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Cannon’s Algorithm
Skew A, Skew B, {Multiply, Accumulate, Rotate}

for i := 2 to m do -- Skew A
[i..m, 1..n] A := A@^right;

end;
for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;
end;

[Res] C := 0.0;      -- Initialize C
for i := 1 to n do -- For common dim

[Res] C := C + A*B;  -- For product
[Lop] A := A@^right; -- Rotate A
[Rop] B := B@^below; -- Rotate B
end;
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Cannon’s Algorithm
Skew A, Skew B, {Multiply, Accumulate, Rotate}

for i := 2 to m do -- Skew A
[i..m, 1..n] A := A@^right;

end;
for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;
end;

[Res] C := 0.0;      -- Initialize C
for i := 1 to n do -- For common dim

[Res] C := C + A*B;  -- For product
[Lop] A := A@^right; -- Rotate A
[Rop] B := B@^below; -- Rotate B
end;

Comms have λ latency, 
but much data motion
Comms have λ latency, 
but much data motion
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SUMMA Algorithm Analysis

The flood is more expensive than λ time, but less 
that λ(log P) ... probably much less

[1..m,1..p] C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;
SUMMA does not require as 
much comm or data motion 
as Cannon’s, nor does it 
“touch” the array as much

SUMMA does not require as 
much comm or data motion 
as Cannon’s, nor does it 
“touch” the array as much
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A Parallel Programming Technique 

ZPL’s approach admits new programming tricks
Problem Space Promotion (PSP) is a parallel 

programming technique in which d-dimension 
data is processed by solving the problem in a 
higher dimension d’ > d

• Flooding (logically) replicates the data
• Intermediate data structures need not be built, i.e. PSP is 

space efficient

• Greater parallelism than the control flow solution 
• Less synchronous solution

38

3D MM Is A Problem Space Promo Alg

The 2D arrays are multiplied in a logical 3D 
space … flooding creates the logical set-up
region IK = [1..n,*,1..n]

JK = [*,1..n,1..n];

IJ = [1..n,1..n,*];

IJK = [1..n,1..n,1..n];

[IK] A2 := A#[Index1,Index3,Index2]; 

[JK] B2 := B#[Index3,Index2,Index1];

[IJ]  C := +<<[IJK](>>[IK]A2)*(>>[JK]B2);

Input
A2

B2

C
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Sorting By PSP

To sort, compute the position in the output by 
counting the number of elements smaller than

[1,1..n] begin
[1..n,1]   ST := S#[Index2,Index1]; -- Transpose input

P := +<<[1..n,1..n](>>[*,1..n]S <= >>[1..n,*]ST);
-- Compare n^2 items, reduce

S := S#[Index1,P]; -- Reorder by permutation
end;

3  1  4  5  9  2
3  1  0  1  1 1 0
1  1  1  1  1  1  1 
4  0  0  1  1  1  0
5  0  0  0  1  1  0
9  0  0  0  0  1  0
2  1  0  1  1  1  1

P   
3 1 4 5 6 2

S   
3 1 4 5 9 2

ST
3
1
4
5
9
2

S   
1 2 3 4 5 9

40

Summary

• The CTA explains how ZPL works when we 
explain how the operations of the language 
are implemented (by the language designers 
and compiler writers) on the CTA

• The WYSIWYG performance model is ZPL’s 
way of giving that information

• Allocation of data and processing are specified
• Work is specified

• Communication is specified

• We’ve shown how to apply WYSIWYG to 
assess alternative algorithms 


