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The Basics of ZPL

Like sequential computation with its C programming
language and von Neumann model of computation
explaining the performance of programs, parallel

computation needs a language calibrated to the CTA
model. ZPL is the only such language.

2

Thread of CSE596
The reasoning bringing us to this point is:

– Model of computation: We cannot write fast
programs without having some idea of how they
will perform when they execute … CTA

– Shared memory (PRAM) seems like a natural
programming generalization of sequential
computation, but …

• It “hides” performance-critical info (= locality) at “log cost”

• Concurrency on shared memory is complex
• Coherent shared memory OK for SMP, … but beyond???

–  Only a global view of the computation is required
– Invent new abstractions for a global view … ZPL
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ZPL -- A Practical Parallel Language
• ZPL was designed and built using the CTA

model, so like C
• Semantics are defined relative to the model

• Compiler and run-time system assume the model

… so ZPL programs are efficient for any CTA computer

• ZPL designed from “1st principles” meaning…
• ZPL is not an extension of existing language -- it’s new

• Careful analysis of programming task: XYZ-levels
• No programming “fads”: functional, OO, “miracle” solutions

• Search for new ideas that help parallel programmers

• Focus on “user needs,” e.g. scientific computation

ZPL is the third attempt -- Spot and Orca “failed”ZPL is the third attempt -- Spot and Orca “failed”
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ZPL ...
Is an array language -- whole arrays are

manipulated with primitive operations
• Requires new thinking strategies --

• Forget one-operation-a-time scalar programming
• Think of the computation globally -- make the global logic

work efficiently and leave the details to the compiler

• Is parallel, but there are no parallel constructs
in the language; the compiler...

• Finds all concurrency

• Performs all interprocessor communication

• Implements all necessary synchronization (almost none)

• Performs extensive parallel and scalar optimizations
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A Sample of ZPL Code
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

ZPL is an imperative
array language with
the usual datatypes
and operators, the
familiar statement
forms, and a few
new concepts added
Is a mix of Pascal, C
and new syntax

ZPL is an imperative
array language with
the usual datatypes
and operators, the
familiar statement
forms, and a few
new concepts added
Is a mix of Pascal, C
and new syntax
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A Sample of ZPL Code
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

New features
config vars
region
direction
prefixing [ ]
assist with the
global view of
computation

New features
config vars
region
direction
prefixing [ ]
assist with the
global view of
computation
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Jacobi Iteration: How does it work?
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

Think of averaging the 4 nearest
neighbors as whole array operations

Think of averaging the 4 nearest
neighbors as whole array operations

:= ( + + + )/4.0;
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Regions: A New Concept
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

Regions are index sets -- like
arrays but with no data; used for
declarations and execution control

Regions are index sets -- like
arrays but with no data; used for
declarations and execution control
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Directions: Another New Concept
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

Directions are
vectors pointing in
index space … e.g.
    S = [ 1, 0 ]
points to row below

Directions are
vectors pointing in
index space … e.g.
    S = [ 1, 0 ]
points to row below
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Operations on Regions
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

Transform regions
using “prepositional”
operators: of, in, at,
by, etc.  e.g.
   [S of R]
specifies region south
of R of extent given
by len., i.e. single row

Transform regions
using “prepositional”
operators: of, in, at,
by, etc.  e.g.
   [S of R]
specifies region south
of R of extent given
by len., i.e. single row
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Referencing 4 Nearest Neighbors
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

@d shifts applicable
region in d direction

@d shifts applicable
region in d direction

:= ( + + + )/4.0;
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The “High Level” Logic Of J-Iteration
program Jacobi;
config var n : integer = 512;
         eps : float = 0.00001;

region     R = [1..n, 1..n];
        BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
           E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
           A : [BigR] float;
         err : float;

procedure Jacobi();
   [R] begin
[BigR] A := 0.0;

[S of R] A := 1.0;
repeat
  Temp := (A@N + A@E + A@S + A@W)/4.0;
  err  := max<< abs(Temp - A);
  A    := Temp;
until err < eps;

  end;
end;

Compute new averages
Find the largest error
Update array
… until convergence

Compute new averages
Find the largest error
Update array
… until convergence
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ZPL In Detail ...
ZPL has the usual stuff

– Datatypes:  boolean, float, double, quad,
complex, signed and unsigned integers: byte,
ubyte, integer, uinteger, char, …

– Operators:
• Unary: +, -, !

• Binary: +, -, *, /, ^, %, &, |

• Relational: <, <=, =, !=, >=, >=

• Bit Operations: bnot(), band(), bor(), bxor(), bsl(), bsr()
• Assignments: :=, +=, -=, *=, /=, %=, &=, |=

– Control Structures: if-then-[elseif]-else, repeat-until,
while-do, for-do, exit, return, continue, halt, begin-end

14

ZPL Detail (continued)

• White space ignored
• All statements are terminated by semicolon (;)
• Comments are

--                    to the end of the line

/*   */         all text within pairs including newlines

• All variables must be declared using var

• Names are case sensitive
• Programs begin with

program <name>;

the procedure with <name> is the entry point
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ZPL Detail (continued)
• The unary global operation reduction (<<)

“reduces” an entire array to a single value
using an associative operator: +<<, *<<,
max<<, min<<, &<<, |<<

• For example, +<< is summation (Σ) and
max<< is global maximum

err := max<< abs(Temp - A);

Global sum was solved the first day with a tree
algorithm; global maximum was solved with the
tournament algorithm … primitive in ZPL

Global sum was solved the first day with a tree
algorithm; global maximum was solved with the
tournament algorithm … primitive in ZPL
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Bounding Box

• Let X,Y be 1-dimensional n element arrays
such that (xi, yi) is a position in the plane

• The bounding box is the extreme coordinates
in each dimension
[1..n] begin

      rightedge := max<< X;

      topedge := max<< Y;

      leftedge := min<< X;

      bottomedge := min<< Y;

       end
X

Y
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Alternative Data Representation

• ZPL allows programmers to define a type
• Rather than using X and Y arrays, define
type cartPoint = record

             x : integer; -- x coordinate

             y : integer; -- y coordinate

     end;

...

var Pts : [1..n] cartPoint; -- an array of points

        rightedge  := max<< Pts.x;

        topedge    := max<< Pts.y;

        leftedge   := min<< Pts.x;

        bottomedge := min<< Pts.y;

18

ZPL Inherits from C

• ZPL is translated into C
• Mathematical functions come from math.h
• ZPL’s Input and Output follow C conventions

and formatting, though the behavior on
parallel machines can differ

Configuration variables (config vars) are a list
of command line assignable variables with
specified defaults … cannot be reset

config var prob_size : integer = 64;

Configuration variables (config vars) are a list
of command line assignable variables with
specified defaults … cannot be reset

config var prob_size : integer = 64;
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Mean and Standard Deviation ...

Find µ and σ for array of Sample values
program Sample_Stats;
  config var n : integer = 100;
  region     V = [1..n];

procedure Sample_Stats();
  var Sample : [V] float;
     mu,sigma: float;
  [V] begin
        read(Sample);
        mu := +<<Sample/n;
        sigma := sqrt(+<<((Sample-mu)^2)/n);
        write ("Mean: ", mu,"S.D. :", sigma);
      end;

µ = Σ Samplei
         n

σ =  Σ(Samplei - µ)2
           n

Basically, a direct translation
into imperative form
Basically, a direct translation
into imperative form
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Regions

• Regions are named sets of index tuples
• Regions are declared with syntax

region <name> = [<ll>..<ul> {, <ll>..<ul>}* ]

• For example
region R = [1..n, 1..n];   -- Std 2-dim region

region V = [0..m-1];       -- 0-origin

• Short names common; caps by convention
• Specify stride with by following the limits,

region Evens = [0..n by 2]; -- 0, 2, 4, ...
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Declaring Variables

• Variable declarations have the form of a list
followed by colon (:) followed by a datatype
var x, y, z : double;

• The type of an array is a pair
[<region>] <data type>

• The region can be named or explicit
var A, B, C : [R] double;

 Small_data : [1..n] byte;

• Arrays passed as parameters must have this
type given in the formal parameter

22

Regions Controlling Array Stmt Execution

Regions specify the indices over which
computation will be performed

• Specify region in brackets as statement prefix
[1..n,1..n] A := B;

• The n2 elements of the region are replaced in
A by their corresponding elements in B

• Regions are scoped
[1..n,1] begin -- Work on first column only

            A := 0;

   B := 2*C;

         end;
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More About Regions

• With explicit indices leave a dimension blank
to inherit from enclosing scope
[1..n, 1] begin

             X := Y; -- replace first column

       [ , 2]  X += X; -- double second column

          end;

• Arrays must “conform” in rank and both
define elements for indices of region

• “Applicable region” for assignments are
(generally) the most tightly enclosing region
of the rank of the left hand side

24

Directions

• Directions are vectors pointing in index space
• Declare directions using

direction <name> = [ <tuple> ]

where <tuple> is a sequence of indices
separated by commas

• For example
direction northwest = [-1, -1];

           right = [1];

• Short names are common and preferred
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The @ Operator

The @ operator takes as operands an array
variable and a direction, and returns an array
whose values come from the given array
offset from the prevailing region by direction
[1..n,1..n-1]  A := B@e;  -- assume e = [0,1]

• Assign A[r,s] the value B[r,s+1]
• That is, B@e contains the last n-1 columns of
B, which are assigned to the first n-1 columns
of A

:=
The @ must reference
defined values

The @ must reference
defined values

26

3 Identical Values In Sequence

region    V = [1..n];

var Letters : [V] char;

        Seq : [V] boolean;

    triples : integer;

direction r = [1]; r2 = [2];

…

[1..n-2] begin

Seq     := (Letters = Letters@r)

      & (Letters = Letters@r2);

triples := +<< Seq;

   end;
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What Happens

abcd
0000
0

P0

ddcb
0000
0

P1

abcd
0000
0

P2

eeeh
0000
0

P3• Send left
• Compare +1
• Compare +2
• Local +
• Accum Tree
• Bdcast Tree

abcddd
0001
2

P0

ddcbab
0000
2

P1

abcdee
0000
2

P2

eeeh
1000
2

P3

⇓

28

Region Operators
ZPL has region operators taking as operands a

region and a direction, and producing a region
• at translates the region’s index set in the direction

• of defines a new region adjacent to the given region along
direction edge and of direction extent

region R = [1..8,1..8];
       C = [2..7,2..7];
var X, Y : [R] byte;

region R = [1..8,1..8];
       C = [2..7,2..7];
var X, Y : [R] byte;

Direction e = [ 0,1];
          n = [-1,0];
         ne = [-1,1];

Direction e = [ 0,1];
          n = [-1,0];
         ne = [-1,1];

[C] X:= [C] X:= [C at e] Y:= [C at e] Y:= [n of C] Y:= [n of C] Y:= [C] Y:=X@ne [C] Y:=X@ne 
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Index1 ...

• ZPL comes with “constant arrays” of any size
• Indexi means indices of the ith dimension

[1..n,1..n]  begin

               Z := Index1; -- fill with first index

               P := Index2; -- fill with second index

               L := Z=P;    -- define identity array

             end;

• These array -- of arbitrary dimension -- are
compiler created using no space

30

Scan
• Scan is the parallel prefix operation for

associative operators: +, *, min, max, &, |
• Scan is like reduction, but uses ||
• Prefix sum from the first lecture is +||

   A ⇔  2  4   6   8   0

+||A ⇔  2  6  12  20  20

• Yes, “or scan” is ||| as in
        B  ⇔ 0  0  0  1  1  0  1  1

Run:=|||B  ⇔ 0  0  0  1  1  1  1  1

[2..n] Run := (Run != Run@w)*Index1;

 pos := max<< Run;

Think globabllyThink globablly



16

31

Break

32

Recall Cannon’s Algorithm
c11 c12 c13          a11 a12 a13 a14

c21 c22 c23        a21 a22 a23 a24

c31 c32 c33        a31 a32 a33 a34

c41 c42 c43    a41 a42 a43 a44

        b13

    b12 b23

b11 b22 b33

b21 b32 b43

b31 b42

b41

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step
at a time

Elements arriving at a place are
multiplied, added in

C is initialized to 0.0

Arrays A, B are skewed

A, B move “across” C one step
at a time

Elements arriving at a place are
multiplied, added in

⇑

⇐
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Programming Cannon’s In ZPL
• Step 1: Handle the skewed arrays

c11 c12 c13          a11 a12 a13 a14

c21 c22 c23        a21 a22 a23 a24

c31 c32 c33        a31 a32 a33 a34

c41 c42 c43    a41 a42 a43 a44

        b13   c11 c12 c13  a11 a12 a13 a14

    b12 b23   c21 c22 c23  a22 a23 a24 a21

b11 b22 b33   c31 c32 c33  a33 a34 a31 a32

b21 b32 b43   c41 c42 c43  a44 a41 a42 a43

b31 b42       b11 b22 b33

b41           b21 b32 b43

              b31 b42 b13

              b41 b12 b23

Pack skewed arrays
into dense arrays by
rotation; process all
n2 elements at once

Pack skewed arrays
into dense arrays by
rotation; process all
n2 elements at once

34

Wrap-@

The @-operator has (recently) been extended
to automatically wrap-around an array rather
than “falling off” -- excellent for “periodic
boundaries”:

var A : [1..n,1..n] double; -- array of doubles

…

A := A@^east; -- rotate columns left

:=

“Falling off” relative to
the declared dimensions
“Falling off” relative to
the declared dimensions
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Skewing Computation for A
Skew by incrementally shifting last of array left,

finishing 1 row / step
• Assume declarations
• region Lop = [1..m, 1..n];

• direction right = [0,1];

a11 a12 a13 a14

a22 a23 a24 a21 Intended Result
a33 a34 a31 a32

a44 a41 a42 a43

           for i := 2 to m do

[i..m, 1..n]   A := A@^right; -- Shift last i rows left

           end;

36

Four Steps of Skewing A
           for i := 2 to m do

  [i..m, 1..n] A := A@^right;  -- Shift last m-i rows left

           end;

a11 a12 a13 a14            a11 a12 a13 a14

a21 a22 a23 a24            a22 a23 a24 a21

a31 a32 a33 a34            a32 a33 a34 a31

a41 a42 a43 a44            a42 a43 a44 a41

             Initial                        i = 2 step
a11 a12 a13 a14            a11 a12 a13 a14

a22 a23 a24 a21            a22 a23 a24 a21

a33 a34 a31 a32            a33 a34 a31 a32

a43 a44 a41 a42            a44 a41 a42 a43

            i = 3 step                                               i = 4 step

Skew B verticallySkew B vertically
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Cannon’s Declarations

For completeness, when A is m×n and B is n×p,
the declarations are …

region      Lop = [1..m, 1..n];

            Rop = [1..n, 1..p];

            Res = [1..m, 1..p];

direction right = [ 0, 1];

          below = [ 1, 0];

var           A : [Lop] double;

              B : [Rop] double;

              C : [Res] double;

38

Cannon’s Algorithm
Skew A, Skew B, {Multiply, Accumulate, Rotate}

           for i := 2 to m do -- Skew A
  [i..m, 1..n] A := A@^right;
           end;
           for i := 2 to p do -- Skew B
  [1..n, i..p] B := B@^below;
           end;

         [Res] C := 0.0;      -- Initialize C
           for i := 1 to n do -- For common dim
         [Res] C := C + A*B;  -- For product
         [Lop] A := A@^right; -- Rotate A
         [Rop] B := B@^below; -- Rotate B
           end;
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Combining Arrays of Different Ranks
An apparent limitation of ZPL (so far) is: Only

arrays of like rank can be combined
– Element-wise operators combine corresponding

elements: [R] A := B+C;

– Sometimes combining arrays of different rank is
needed. E.g. Scale the elements of each row
by the row maximum

• Find the row maximum:  2 dimension reduced to 1
dimension

• Divide each element of the row by its row max: 1
dimension applied to 2 dimensions

⇐

⇐ ÷

Two casesTwo cases

40

Don’t Change Rank

• Rather than change rank, use “singleton”
values to collapse dimensions for lower rank

• For a region R = [1..m, 1..n], the rank 2
arrays R1 = [1..m, 1] and R2 = [1, 1..n]
are regions corresponding to the first column
and row

• ZPL is designed to exploit the similarity
between an array with collapsed dimensions
and a corresponding array of lower rank
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The Reduction Case
• Partial reduction applies reduction to an array

to produce a subarray … two regions needed
• “Statement region” specifies the shape of the result

• “Expression region” specifies the shape of the operand

• The subarray that is combined is the subarray of the
operand formed by the singleton dimensions

[1..m,1] Max1 := max<< [1..m,1..n] A;

Statement
region

Statement
region

Max1 declared
[1..m, 1]

Max1 declared
[1..m, 1]

Partial
reduction

Partial
reduction

Expression
region

Expression
region

A declared
[1..m, 1..n]

A declared
[1..m, 1..n]

42

Partial Reduction (continued)

• All associative operators can be used in
partial form: +, *, max, min, &, |

• The “singleton” dimension is “meaningful” in
that the values are stored with like indices

• E.g. [1..m,1] is stored with other first column values

• Arrays can have arbitrary dimension values if
they have the right rank & elements defined…

• E.g.  Add row elements 2..n and store sum in 1st position
• [1..m,1] A := +<< [1..m, 2..n] A;

+
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Flood Regions and Arrays
Flood regions recognize that reducing into a

specific column over specifies the situation
Need a generic column -- or a column that does

not have a specific position … use ‘*’ as value

region FlCol = [1..m, *];  -- Flood regions

       FlRow = [*, 1..n];

var   MaxCol : [FlCol] double; -- An m length col

         Row : [FlRow] double; -- An n length row

[1..m,*] MaxCol := max<< [1..m,1..n] A; -- Better
+

......
Think of column
in every position

Think of column
in every position

44

Flood (continued)

Since flood arrays have unspecified dimensions,
they can be “promoted” in those dimensions, i.e
logically replicated

• The computation is completed …

   [1..m,*] MaxCol := max<< [1..m,1..n] A;

[1..m,1..n]      A := A / MaxCol;     --Scale A;

Flood makes combining different ranks “element-wise”Flood makes combining different ranks “element-wise”

The promotion of flooded arrays is only logicalThe promotion of flooded arrays is only logical
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The Flood Operator (>>)
An alternative is to save flooded vals -- dumb
• Flood (>>) replicates values of a subarray to

fill a larger array
• “Statement region” specifies the shape of the result
• “Expression region” specifies the shape of the operand

• The subarray is replicated in all of the operand’s
singleton dimensions

[1..m,1..n] Maxfill := >>[1..m,1] Max1;

Statement
region

Statement
region

Maxfill declared
[1..m, 1..n]

Maxfill declared
[1..m, 1..n]

FloodFlood

Expression
region

Expression
region

Max1 declared
[1..m, 1]

Max1 declared
[1..m, 1]

46

Explicit Solution vs Logical Solution
• Reducing into a specific position and then

flooding works, but it explicitly replicates values

   [1..m,1]    Max1 := max<<[1..m,1..n] A;--Save Col

[1..m,1..n] Maxfill := >>[1..m,1] Max1;  --Flood Col

[1..m,1..n]       A := A/Maxfill; --Div by col array

• Flood logically replicates values...and it’s easier
   [1..m,*] MaxCol := max<< [1..m,1..n] A;

[1..m,1..n]      A := A / MaxCol; --Scale A;

-- or --

[1..m,1..n] A := A/(>>[1..m,*]  max<< [1..m,1..n] A);
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Partial Scan
• Partial scan would seen to be an easy

generalization of partial reduce, but since it
doesn’t “collapse” dimensions, it is not
necessary to specify a region, only a
dimension

A := Index1;

B := +||[2] A;

A:
1 1 1
2 2 2
3 3 3

B:
1 2 3
2 4 6
3 6 9

48

Remembering Reduce, Scan & Flood

• The operators for reduce, scan and flood are
suggestive …

• Reduce << produces a result of smaller size

• Scan || produces a result of the same size

• Flood >> produces a result of greater size

⇐

⇐

⇐
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To Illustrate Computing With Flood

• Recall the SUMMA Algorithm
A BC

b11     b12

a11

a21

a11b11

a21b11

a11b12

a21b12

Switch Orientation -- By
using a column of A and
a row of B broadcast to
all, compute the “next”
terms of the dot product

Switch Orientation -- By
using a column of A and
a row of B broadcast to
all, compute the “next”
terms of the dot product
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SUMMA Algorithm

• A column broadcast is simply a column flood
and similarly for row broadcast is a row flood

• Define variables

var   Col : [1..m,*] double; -- Col flood array

      Row : [*,1..p] double; -- Row flood array

        A : [1..m,1..n] double;

        B : [1..n,1..p] double;

        C : [1..m,1..p] double;
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SUMMA Algorithm (continued)

For each col-row in the common dimension, flood
the item and combine it

[1..m,1..p]    C := 0.0;       -- Initialize C

           for k := 1 to n do

   [1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

   [*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

           end;

SUMMA is the easiest MM
algorithm to program in ZPL
SUMMA is the easiest MM
algorithm to program in ZPL

52

SUMMA, The First Step
c11 c12 c13  a11 a12 a13 a14

c21 c22 c23  a21 a22 a23 a24

c31 c32 c33  a31 a32 a33 a34

c41 c42 c43  a41 a42 a43 a44

b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

a11 a11 a11
a21 a21 a21
a31 a31 a31
a41 a41 a41

b11 b12 b13
b11 b12 b13
b11 b12 b13
b11 b12 b13

a11b11 a11b12 a11b13
a21b11 a21b12 a21b13
a31b11 a31b12 a31b13
a41b11 a41b12 a41b13

×

Col Row

C
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Cannon’s or SUMMA?

Which algorithm is better for MM?
• Cannon’s algorithm uses the simpler

concepts and simpler operations
• SUMMA is conceptually cleaner, but requires

ideas like flood arrays
• We will analyze the two algorithms when we

have a performance model defined

54

Still Another MM Algorithm
If flooding is so good for columns/rows, why not

use it for whole planes?
region IK = [1..n,*,1..n]

       JK = [*,1..n,1..n];

       IJ = [1..n,1..n,*];

      IJK = [1..n,1..n,1..n];

[IK]  A2 := <##[Index1,Index3,Index2] A;

[JK]  B2 := <##[Index3,Index2,Index1] B;

[IJ]   C := +<<[IJK](>>[IK]A2)*(>>[JK]B2);

Input
A2

B2

C
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ZPL Procedures
• Procedures have form:

procedure <name> ({<params>}) {:Type};

<statement>;

• Parameters are listed with their type
separated by commas:

procedure F(A, B : [R] byte, x : float): float;

• Values are returned with return … ;
• Parameters are “called by value” as the

default, but by prefixing with var they can be
called by reference

procedure G(var A : [R] integer, big : integer);

56

A Procedure for Matrix Multiplication
procedure MM (n: integer,

          var A:[1..m,1..n] double,

          var B:[1..n,1..p] double,

          var C:[1..m,1..p] double);

var i : integer;

[1..m,1..p]  begin

                for k := 1 to n do

                    C += (>>[ ,k] A)*(>>[k, ]B);

                end;

             end;

MM(n, E, F, G);

Explicit values in the
parameter list force
specific global
variables to be used

Explicit values in the
parameter list force
specific global
variables to be used
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Rank Defined Formal Parameters
It is sufficient for the compiler to know the ranks

of the arrays, not their specific dimensional
values … rank-defined parameters

• Use commas to imply the rank (r-1)

• Call the procedure in the context of the proper region

procedure MM(n:integer, var A,B,C :[ , ] double);

    var i : integer;

    begin

       for k := 1 to n do

           C += (>>[ ,k] A)*(>>[k, ]B);

       end;

    end;
Inherit regions … call is

[1..m,1..p] MM(n,E,F,G);

Inherit regions … call is

[1..m,1..p] MM(n,E,F,G);
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Promoting Scalar Procedures

• Procedures that only use scalar parameters,
operations, etc. can be promoted to arrays

• Cannot use regions, array operations or other array-
based notation

procedure sign (x: double) : integer;

    if x < 0 then return -1

             elseif x = 0 then return 0

                          else return 1;

[1..m, 1..n] A := sign(B);

Importing scalar computations
from C is an application

Importing scalar computations
from C is an application
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Shattered Control Flow
ZPL logically executes one instruction at a time
• There is a natural generalization in which

statements are controlled by arrays rather
than scalars

if A < 0 then A := -A;  -- define absolute

• Convenient for iterations
Let N and Nfact be defined [1..n]

Nfact := 1;

for i := 2 to N do

   Nfact := Nfact * i;  -- Compute N!

end;

60

Exercise: Game of Life

• Write a ZPL program for the game of life on a
toroidal world, i.e. top wraps to bottom, left
wraps to right

• The world is populated by organisms -- bits
• Any 1 bit with exactly 2 neighbors in this generation lives

on in the next generation; all other 1s go to 0
• Any 0 bit with exactly 3 neighbors is born in the next

generation; all other 0s stay 0

⇒

Expect a homework assignment via emailExpect a homework assignment via email
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Summary

• ZPL is an array programming language
• Array programming emphasizes large

operations in which the compiler specifies the
looping and indexing

• One new idea is the region -- set of indices
• Programming in ZPL emphasizes thinking

about the task at a high level rather than at
the detailed scalar level


