
1

Shared Memory Without A Bus

In SMPs the bus is a centralized point where the writes
can be serialized. When no such point exists, as in

large parallel computers, the situation gets very much
more complicated. We continue our examination of

shared memory implementations

Source: Culler/Singh, Parallel Computer Architectures, MK ‘99

Preliminaries
• The computers implementing shared memory

without a central bus are called “distributed
shared memory” (DSM) machines

• The subclass is the CC-NUMA machines, for
cache coherent non-uniform memory access

• On an access-fault by the processor
• Find out information about the state of the cache block in

other machines
• Determine the exact location of copies, if necessary
• Communicate with other machines to implement the

shared memory protocol

2

“Distributed” Applies to Memory
• DSM computers have a CTA architecture with

additional hardware to maintain coherency

• Collectively, the controllers make the memory
look shared

P0

Cache

P1

Cache

P2

Cache

P3

Cache

$$
$

M
e

m

$$
$

M
e

m

$$
$

M
e

m

$$
$

M
e

m

Control Control Control Control

Interconnection Network

Directory Based Cache-coherence

Since broadcasting the memory references is
impractical -- that’s what buses do -- a
directory-based scheme is an alternative

• A directory is a data structure giving the state
of each cache block in the machine

P0

$ Mem

Directory
Controller

D
ire

ct
or

y P1

$ Mem

Directory
Controller

D
ire

ct
or

y

Interconnection Network

3

How Does It Work?
• Using the directory it is possible to maintain

cache coherency in a DSM, but its complex
(and time consuming)

• To illustrate, we work through the protocols to
maintain memory coherency

• Concepts
– Events: A read or write access fault
– Cache fields these for local data, controller fields

these for remotely allocated data
– Proc/Proc communication is by packets through

the interconnection network

Terminology
• Node, a processor, cache and memory

• Home node, node whose main memory has
the block allocated

• Dirty node, a node with a modified value

• Owner, node holding a valid copy, usually the
home or dirty node

• Exclusive node, holds only valid cached copy

• Requesting node, (local) node asking for the
block

4

Sample Directory Scheme

• Local node has access fault

• Sends request to home node for directory
information

• Read -- directory tells which node has the valid data and the
data is requested

• Write -- directory tells nodes with copies ... Invalidation or
update requests are sent

• Acknowledgments are returned

• Processor waits for all ACKs before completion

Notice that many transactions can be “in
the air” at once, leading to possible races
Notice that many transactions can be “in
the air” at once, leading to possible races

A Directory Entry
• Directory entries don’t usually keep cache state

• Use a P-length bit-vector to tell in which
processors the block is present … presence bit

• Clean/dirty bit implies exactly 1 presence bit on

• Sufficient?
• Determine who has valid copy for read-miss
• Determine who has copies to be invalidated

Dirty

P0

P1

P2

1

P3

P4

1

P5

P6

P7

Presence Bits

5

A Closer Look (Read) I
• Postulate 1 processor per node, 1 level cache,

local MSI protocol [from last week]

• On a read access fault at Px, the local
directory controller determines if block is
locally/remotely allocated

• If local, it delivers data
• If remote it finds the home … by high order bits probably

• Controller sends request to home node for blk

• Home controller looks up directory entry for blk
• Dirty bit OFF, controller finds blk in memory, sends reply,

sets xth presence bit ON

A Closer Look (Read) II

• Dirty bit ON -- controller sends reply to Px of
the processor ID of Py, the owner

• Px requests data from owner Py

• Owner Py controller, sets state to “shared,”
forwards data to Px and sends data to home

• At home, data is updated, dirty bit is turned
OFF and the xth presence bit is set ON and
yth presence bit remains ON

This is basically the protocol for the LLNL
S-1 multicomputer from the late ‘70s

This is basically the protocol for the LLNL
S-1 multicomputer from the late ‘70s

6

A Closer Look (Write) I
On a write access fault at Px, the local directory

controller checks if the block is locally/remotely
allocated; if remote it finds the home

• Controller sends request to home node for blk

• Home controller looks up directory entry of blk
– Dirty bit OFF, the home has a clean copy

• Home node sends data to Px w/presence vector
• Home controller clears directory, sets xth bit ON and sets

dirty bit ON
• Px controller sends invalidation request to all nodes listed

in the presence vector

A Closer Look (Write) II
• Px controller awaits ACKs from all those nodes
• Px controller delivers blk to cache in dirty state

– Dirty bit is ON
• Home notifies owner Py of Px’s write request
• Py controller invalidates its blk, sends data to Px

• Home clears yth presence bit, turns xth bit ON and dirty bit
stays ON

– On writeback, home stores data, clears both
presence and dirty bits

7

P1

$

Ctlr

a:4
01000

P2

$

Ctlr

P3

$

Ctlr

Detailed Example
• Consider the example similar to last week

• The assumptions are …
• a is globally allocated
• a has it’s home at P1

• P0 previously read a

P1 reads a into its cache

P3 reads a into its cache

P3 changes a to 5

{P2 reads a into its cache

P2 writes a in its cache}

P1 reads a into its cache

P3 reads a into its cache

P3 changes a to 5

{P2 reads a into its cache

P2 writes a in its cache}

P0

a:V:4

Ctlr

Interconnection Network

P1 Reads a Into Cache
• The local directory controller determines if block is

locally/remotely allocated
• If remote it finds the home … by high order bits probably

• Controller asks home node for blk: No-op
• Home controller looks up directory entry for blk

• Dirty bit OFF, controller finds blk in memory, sends reply,
sets xth presence bit ON

P1

a:V:4

Ctlr

a:4
01100

P2

$

Ctlr

P3

$

Ctlr

P0

a:V:4

Ctlr

Interconnection Network

In the special case
that a processor
references it’s own
globally allocated data
no communication is
required, only manage
the presence bits

In the special case
that a processor
references it’s own
globally allocated data
no communication is
required, only manage
the presence bits

8

P3 Reads a Into Cache
• The local directory controller determines if block is

locally/remotely allocated
• If remote it finds the home … by high order bits probably

• Controller asks home node for blk: Message to P1

• Home controller looks up directory entry for blk
• Dirty bit OFF, controller finds blk in memory, sends

message to P3, sets xth presence bit ON

P1

a:V:4

Controller

a:4
01101

P2

$

Controller

P3

a:V:4

Controller

P0

a:V:4

Controller

Interconnection Network

Msg: P3 to P1, Read a

Msg: P1 to P3, Here’s a

Msg: P3 to P1, Read a

Msg: P1 to P3, Here’s a

P3 Writes a Changing It To 5 Part I
• On a write access fault at Px, local controller checks

and finds it remote; finds the home
• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

– Dirty bit OFF, the home has a clean copy
• Home node sends data to Px w/presence vector
• Home controller clears directory, sets xth bit and dirty ON
• Px controller sends invalidation request to all nodes listed

P1

a:V:4

Controller

a:4
10001

P2

$

Controller

P3
Stalled

a:V:4

Controller

P0

a:V:4

Controller

Interconnection Network

Msg: P3 to P1, Write a

Msg: P1 to P3, a:01101

Msg: P3 to P0, Invalid a

Msg: P3 to P1, Invalid a

Msg: P3 to P1, Write a

Msg: P1 to P3, a:01101

Msg: P3 to P0, Invalid a

Msg: P3 to P1, Invalid a

9

P3 Writes a Changing It To 5 Part II
• Processor continues to be stalled

• Px controller awaits ACKs from all those nodes
• Px controller delivers blk to cache in dirty state

• Total messages when clean copy exists: ToHome,
FromHome, (Invalidate, ACK)*s

P1

a:I:4

Controller

a:4
10001

P2

$

Controller

P3

a:M:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P0 to P3, ACK

Msg: P1 to P3, ACK

Msg: P0 to P3, ACK

Msg: P1 to P3, ACK

P2 Reads a Into Cache
Dirty bit ON -- home controller sends reply to Px of the

processor ID of Py, the owner; Px asks Py for data
• Owner Py controller, sets state to “shared,” forwards

data to Px and sends data to home
• At home, data is updated, dirty bit is turned OFF and

the xth presence bit is set ON and yth presence bit
remains ON

P1

a:I:4

Controller

a:5
00011

P2

a:V:5

Controller

P3

a:V:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P2 to P1, Read a

Msg: P1 to P2, P3 has it

Msg: P2 to P3, Read a

Msg: P3 to P2, Here’s a

Msg: P3 to P1, Here’s a

Msg: P2 to P1, Read a

Msg: P1 to P2, P3 has it

Msg: P2 to P3, Read a

Msg: P3 to P2, Here’s a

Msg: P3 to P1, Here’s a

10

Instead Let P2’s Request Be Write 6

• That is … this action replaces the previous slide
• Dirty bit is ON

• Home notifies owner Py of Px’s write request
• Py controller invalidates its block, sends data to Px

• Home clears yth presence bit, turns xth bit ON and dirty bit
stays ON

P1

a:I:4

Controller

a:4
10010

P2

a:M:6

Controller

P3

a:I:5

Controller

P0

a:I:4

Controller

Interconnection Network

Msg: P2 to P1, Write a

Msg: P1 to P3, P2 asking

Msg: P3 to P2, Here’s a

Msg: P2 to P1, Write a

Msg: P1 to P3, P2 asking

Msg: P3 to P2, Here’s a

Summarizing The Example

• The controller sends out a series messages
to keep the writes to the memory locations
coherent

• The scheme differs from the bus solution in
that all processors get the information at the
same time using the bus, but at different
times using the network

• The number of messages is potentially large
if there are many sharers

11

Homework Assignment

Suppose a 100x100 array S is distributed by blocks
across four processors, so that each contains a
50x50 subarray. At each position S[i,j] is updated by
the sum of its 8 nearest neighbors:

S’[i,j]=(S[i-1,j-1]+S[i-1,j]+S[i-1,j+1]+S[i,j+1]+S[i+1,j+1]
+S[i+1,j]+S[i+1,j-1]+S[i,j-1])/8;

If each processor updates its own elements, how many
messages must are produced to maintain
concurrency for a directory based CC-NUMA?

HINT: Assume that an extra row and column, initialized
to zero, surrounds A, A is allocated in rmo, and
storage for S alternates with S’

Break

12

Alternative Directory Schemes

• The “bit vector directory” is storage-costly

• Consider improvements to Mblk*P cost
– Increase block size, cluster processors
– Just keep list of Processor IDs of sharers

• Need overflow scheme
• Five slots probably suffice

– Link the shared items together
• Home keeps the head of list
• List is doubly-linked
• New sharer adds self to head of list
• Obvious protocol suffices, but watch for races

Assessment

• An obvious difference between directory and
bus solutions is that for directories, the
invalidate request grows as the number of
processors that are sharing

• Directories take memory
• 1 bit per block per processor + c
• If a block is B bytes, 8B processors imply 100%

overhead to store the directory

13

Performance Data

• To see how much sharing takes place and
how many invalidations must be sent,
experiments were run

• Summarizing the data
• Usually there are few shares
• The mode is 1 other processor(s) sharing ~ 60
• The “tail” of the distribution stretches out for some

applications

• Remote activity increases as the number of
processors

• Larger block sizes increase traffic, 32 is good

Protocol Optimizations I
• Read Request to Exclusively Held Block

L H R2
1 3

4a

4b

L H R4
1 2

3

L H R
1 2

3a

3b

1: Request
2: Response
3: Intervention
4a: Revise
4b: Response

1: Request
2: Intervention
3: Revise
4: Response

1: Request
2: Intervention
3a: Revise
3b: Response

Strict Request/
Response

Intervention
Forwarding

Reply
Forwarding

14

Protocol Optimizations II (Lists)
• Improved Invalidation

L S1 S22:A
1:I 3:I

4:A

S3

5:I

6:A

ACK includes next
sharer on list

L S1 S22b:A
1:I 2a:I

3b:A

S3

3a:I

4:A

ACK and next
invalidate in parallel

ACK comes from
the last sharer L S1 S2

1:I 2:I
S3

3:I

4:A

Higher Level Optimization
• Organizing nodes as SMPs with one coherent

memory and one directory controller can improve
performance since one processor might fetch data
that the next processor wants … it is already present

• The main liability is that the controller resource and
probably its channel into the network are shared

P0

Cache

Directory
Controller

D
ire

ct
or

y P2

Cache

Interconnection Network

P1

Cache

P3

Cache

15

Serialization
• The bus defines the ordering on writes in

SMPs

• For directory systems, memory (home) does

• If home always has value, FIFO would work
– Consider a block in modified state and two nodes

requesting exclusive access in an invalidation
protocol: The requests reach home in one order,
but they could reach the owner in a different order;
which order prevails?

• Fix: Add “busy state” indicating transaction in
flight

Four Solutions To Ensure Serialization

• Buffer at home -- keep request at home, service
in order … lower concurrency, overflow

• Buffer at requesters with linked list; follow Py

• NACK and retry -- when directory is busy, just
“return to sender”

• Forward to dirty node -- serialize at home for
clean, serialize at owner otherwise

16

Coherency != Memory Consistency
Assume A and B initially 0

P0

$ Mem

Directory
Controller

P2

$ Mem

Directory
Controller

Interconnection Network

P1

$ Mem

Directory
Controller

A=1; while (A==0)do;
B=1; while (B==0)do;

print A;

A=1; B=1;

A=1;
Delay

Print 0Print 0

Sequential Consistency

• Sequential Consistency is a very strict form of
memory consistency

• A MP is sequentially consistent if the result of
any execution is the same as some
sequential order and operations of each
processor are in program order

A=1; while (A==0)do;
B=1; while (B==0)do;

print A;

17

Relaxed Consistency Models
• Since sequential consistency is so strict,

alternative schemes allow reordering of reads
and writes to improve performance

• total store ordering (TSO)
• partial store ordering (PSO)
• relaxed memory ordering (RMO)
• processor consistency (PC)
• weak ordering (WO)
• release consistency (RC)

• Many are difficult to use in practice

Relaxing Write-to-Read Program Order

• While a write miss is in the write buffer and
not yet visible to other processors, the
processor can issue and complete reads that
hit in its cache or even a single read that
misses in its cache. TSO and PSO allow this.

• This matches intuition often …

• This code works as expected

P0 P1 P0 P1
A=1; while (Flag==0)do; A=1; print B;
Flag=1; print A; B=1; print A;

18

Less Intuitive

• Some programs don’t work as expected

We expect to get one of the following:
• A=0, B=1
• A=1, B=0
• A=1, B=1

• But not A=0, B=0 … but TSO would permit it

• Solution: Insert a memory barrier after write

P0 P1
A=1; B=1;
print B; print A;

Origin 2000
• Intellectual descendant of Stanford DASH

• Two processors per node

• Caches use MESI protocol

• Directory has 7 states:
– Stable: unowned, shared, exclusive (cl/dirty in $)
– Busy: Processor not ready to handle new requests

to block, read, readex, uncached

• Generally O2000 follows protocols discussed
• Proves basic ideas actually apply
• Shows that simplifying assumptions must be revisited to

get a system built and deployed

19

Summary

• Shared memory support is much more
difficult when there is no bus

• A directory scheme achieves the same result,
but the protocol requires a substantial
number of messages, proportional to the
amount of sharing

• Coherency applies to individual locations

• Consistent memory requires additional
software or hardware to assure that updates
or invalidations are complete

