
1

Symmetric Multiprocessors

Implementing a single memory image operated upon
by multiple processors is possible at small scales. The

SMP is a standard design in which cache coherency
allows all processors to see the same image.

Homework

Write two procedures -- Put_Task() and
Get_Task() -- in any language, e.g. C, and
using Fetch&Add for synchronization as
follows

• Define TD[1..n], the ToDo array; n=c*Processors
for some c

• Define FF, for first free, pointing in TD to first free cell
• Define NA, for next available, pointing to next task in TD
• Put_Task(a) takes a task as input, and places it in TD;
Get_Task() returns the next task from TD if there is one

• The management of TD is completely decentralized

2

Homework
Strategy: The TD[1..n] is several times larger

than the number of processors; system
assumes at least 1 producer and 1 consumer

Put_Task(a) {
slot = Fetch&Add(FF,1);
if slot == n then Fetch&Add(FF, -n);
if slot > n then slot = slot - n;
while TD[slot] != 0 do wait(rand());
TD[slot] = a;

}

Put_Task(a) {
slot = Fetch&Add(FF,1);
if slot == n then Fetch&Add(FF, -n);
if slot > n then slot = slot - n;
while TD[slot] != 0 do wait(rand());
TD[slot] = a;

} Get_Task { var temp;
slot = Fetch&Add(NA,1);
if slot == n then Fetch&Add(NA,-n);
if slot > n then slot = slot - n;
while TD[slot] == 0 do wait(rand());
temp=TD[slot]; TD[slot]=0; return temp;

}

Get_Task { var temp;
slot = Fetch&Add(NA,1);
if slot == n then Fetch&Add(NA,-n);
if slot > n then slot = slot - n;
while TD[slot] == 0 do wait(rand());
temp=TD[slot]; TD[slot]=0; return temp;

}

Put waits if the slot is
occupied to avoid overrun;
Get waits if slot is empty
No task has is “0”

Shared Memory
Shared memory was claimed to be a poor model

because it is does not scale
– Many vendors have sold small shared memory

machines
• Some like SMPs work well (but modeled poorly by PRAM)
• Some never worked -- KSR
• Some worked because of a technology opportunity -- slow

processors with a “fast interconnect”
• Some work on small scale, but not beyond 64 processors

and everyone tries to ignore that fact -- Origin-2000

– Many researchers have come up with great ideas,
but they still remain unproved

3

Citation

David Culler and J.P. Singh

Parallel Computer Architecture

Morgan Kaufmann, 1999

Share Memory Image

• Previous models of shared memory have
literally implemented a single memory unit
where all data resides

• Besides being a point of contention, a single
memory doesn’t permit caching (though
“read-only” caching is OK)

• The SMP turns the idea around and exploits
caching to implement a shared memory

4

Architecture of an SMP
• A symmetric multiprocessor (SMP) is a set of

processor/cache pairs connected to a bus

• The bus is both good news and bad news
• The (memory) bus is a point at which all processors can

“see” memory activity, and can know what is happening
• A bus is used “serially,” and becomes a “bottleneck,”

limiting scaling

P0

Cache

P1

Cache

P2

Cache

P3

Cache

Memory

Bus

Recall Caches

• Cache blocks (lines) contain several words

• Blocks have state
– Valid
– Invalid
– Dirty = diff from mem

• Cache writing
– Write through means update memory on all writes
– Write back means wait and update when block is

invalidated
– “allocate” vs “no-allocate”

Cache
...

...
addr ...

5

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3

P1

P3

P1 reads a into its cache

P3

P1

P3

P1

4

P2 P3

4 Memory

a:

a:

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1

P3

P1 reads a into its cache

P3 reads a into its cache

P1

P3

P1

4

P2 P3

4

4 Memory

a:

a:

6

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3

P1

4 5

P2 P3

4

4 5 Memory

a:

a:

Cache Coherence -- The Problem

• Processors can modify shared locations
without other processors being aware of it
unless special hardware is added

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3 reads a … incoherent

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes the result through to
main memory leaving P3
with stale data

P3 reads a … incoherent

P1

4 5

P2 P3

4

4 5 Memory

a:

a:

7

Cache Coherency -- The Goal
A multiprocessor memory system is coherent if

for every location there exists a serial order
for the operations on that location consistent
with the results of the execution such that

• The subsequence of operations for any processor are in
the order issued

• The value returned by each read is the value written by
the last write in serial order

p1:i, p3:j, p2:k, p1:i+1, p3:j+1, ...p1:i, p3:j, p2:k, p1:i+1, p3:j+1, ...

P1

4 5

P2 P3

4

4 5 Memory

a

a
w:a r:a

Write Serialization

• For fulfilling “seen by all processors” a bus is
a perfect solution

Implied property of Cache Coherency:

Write Serialization … all writes to a location
are seen in the same order by all processors

Implied property of Cache Coherency:

Write Serialization … all writes to a location
are seen in the same order by all processors

8

Snooping To Solve Coherency

• The cache controllers can “snoop” on the
bus, meaning that they watch the events on
the bus even if they do not issue them, noting
any action relevant to cache lines they hold

• There are two possible actions when a
location held by processor A is changed by
processor B

• Invalidate -- mark the local copy as invalid
• Update -- make the same change B made

The unit of cache coherency is a cache line or blockThe unit of cache coherency is a cache line or block

P3

Snooping
When the cache controller “snoops” it sees

requests by its processor or bus activity by
other processors that is not local to them

P1 P2

Memory

Activity from processor
Activity form others

9

P3

4

Snooping At Work I

By snooping the cache controller for processor
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location

P3

P1

4 5

P2

4 5 Memory

a:

a:

P3

4 5

Snooping At Work II

By snooping the cache controller for processor
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location or updates it

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory; P3 sees the
action and invalidates the
location or updates it

P3

P1

4 5

P2

4 5 Memory

a:

a:

10

Write-through Coherency

• State diagrams show the protocol

PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--

States of a cache line
V is valid
I is invalid

Transactions
Reads (Rd) or Writes (Wr)
by processor or bus

Labeling A/B
If A is observed

Then transaction B is
generated

Applying the WT Protocol

• Consider the transactions PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory

P3 sees the action and
invalidates the location

P2 reads a into its cache

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and
writes through to main
memory

P3 sees the action and
invalidates the location

P2 reads a into its cache

P1 : I --> V
PrRd/BusRd
P3 : I --> V
PrRd/BusRd
P1 : V --> V
PrWr/BusWr
P3 : V --> I
BusWr/--
P2 : I --> V
PrRd/BusRd

11

Partial Order On Memory Operations

Write bus transactions define a global sequence
of events; between writes processors can read
… any total order produced by interleaving

R

R

R

R

R

R

R

R

W R

R

R R

R

R

R

W

Memory Consistency

• What should it mean for processors to see a
consistent view of memory?

• Coherency is too weak because it only
requires ordering with respect to individual
locations, but there are other ways of binding
values together P0 : [a, flag initially 0]

a := 1;

flag := 1;

P1 :

while(flag != 1)do; -- spin

print (a);

P0 : [a, flag initially 0]

a := 1;

flag := 1;

P1 :

while(flag != 1)do; -- spin

print (a);

Coherency requires
only that the 0 --> 1
transition of a be seen
eventually by P1

12

Basic Write-back Snoopy Cache Design
• Write-back protocols are more complex than

write-through because modified data remains
in the cache

• Introduce more cache states to handle that
• Modified, or dirty, the value differs from memory
• Exclusive, no other cache has this location

• Consider an MSI protocol with three states:
• Modified -- data is correct locally, different from memory
• Shared (Valid) -- data at this location is correct
• Invalid -- data at this location not correct

MSI Protocol

• Rdx means that the
cache holds a
modified value of
the location and
asks for exclusive
permission to read

• Reply means put
the value on the bus
for another
processor to read

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Conceptually: Manage dirty value within caches

13

MSI Protocol In Action

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc Data

Action P0 P1 P2 Bus From

P0:r a S - - BRd Mem

P2:r a S - S BRd Mem

P2:w a I - M BRdx

P0:r a S - S BRd P2

P1:r a S S S BRd Mem

Proc Data

Action P0 P1 P2 Bus From

P0:r a S - - BRd Mem

P2:r a S - S BRd Mem

P2:w a I - M BRdx

P0:r a S - S BRd P2

P1:r a S S S BRd Mem

Critique of MSI
Bad: 2 bus ops to load

and update a value even

without any sharing

• Add an Exclusive State, opposite of Shared

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc Data

Action P0 Pi Bus From

P0:r a S - BRd Mem

P0:w a M - BRdx

Proc Data

Action P0 Pi Bus From

P0:r a S - BRd Mem

P0:w a M - BRdx

14

Break

Illinois Protocol
PRd/-- PWr/--

M

S

I

E
PWr/BRdx

PRd/BRd

PWr/BRdx

PWr/-

PrRd/-

PrRd/-
BRd/Rp'

PRd/BRdx'

BRd/Rp

BRd/Rp
BRdx/Rp'

BRdx/Rp

BRdx/Rp'

P=processor
B=Bus
Rd=Read
Rdx=Read Ex
RdS=Read Sh
RdS'=Read Ex
Rp=Reply
Rp=Reply Someone

Proc Data

Action P0 Pi Bus From

P0:r a E - BRdx' Mem

P0:w a M -

Proc Data

Action P0 Pi Bus From

P0:r a E - BRdx' Mem

P0:w a M -

15

Alternative … Updating
• One caching issue is “invalidation” vs “update”:

Dragon

E MSC SM

Proc Data

Action P0 P1 P2 Bus From

P1:r a E - - BRd Mem

P3:r a Sc - Sc BRd Mem

P3:w a Sc - Sm Bupd P3

P1:r a Sc - Sm null -

P2:r a Sc Sc Sm BRd P3

Proc Data

Action P0 P1 P2 Bus From

P1:r a E - - BRd Mem

P3:r a Sc - Sc BRd Mem

P3:w a Sc - Sm Bupd P3

P1:r a Sc - Sm null -

P2:r a Sc Sc Sm BRd P3

Invalidation vs Update

1 Repeat k times: P1 writes V, P2-Pp read V

… perhaps representing work allocation

2 Repeat k times: P1 writes V M times, P2 reads

… perhaps representing sharing pair

invl = 6B, update = 14B, miss = 70B

P = 16, M = 10, k = 10

U1: 1,260B I1:10,624B
U2: 1,400B I2: 824B

U1: 1,260B I1:10,624B
U2: 1,400B I2: 824B

16

Implications of Blocksize

• Larger blocks exploit spatial locality better

• Bus transactions take more time with larger
blocks

• Fewer large blocks for a given amount of
memory or more small blocks

• There are implications on sharing

True/False Sharing
• If two processors reference the same cache

line and the same word, they are “truly”
sharing

• If two processors reference the same cache
line but a different word, they are “falsely”
sharing

Cache
...

...
addr ...

P0 references P1 references

17

Discussion

• What is the best model of an SMP … PRAM?

P1P0 P3P2 P5P4 P7P6

Memory

A BC

Summary
• SMPs solve shared memory by snooping

• Key to SMP’s success is the bus, a site for
serializing memory references

• Buses work, but only for a small number (64
is upper limit, but fewer is better) of
processors

• Relative to the two requirements of shared
memory -- acceptable costs, coherency -- the
SMP meets both

