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Symmetric Multiprocessors

Implementing a single memory image operated upon 
by multiple processors is possible at small scales.  The 

SMP is a standard design in which cache coherency 
allows all processors to see the same image.

Homework

Write two procedures -- Put_Task() and 
Get_Task() -- in any language, e.g. C, and 
using Fetch&Add for synchronization as 
follows

• Define TD[1..n], the ToDo array; n=c*Processors 
for some c

• Define FF, for first free, pointing in TD to first free cell
• Define NA, for next available, pointing to next task in TD
• Put_Task(a) takes a task as input, and places it in TD; 
Get_Task() returns the next task from TD if there is one

• The management of TD is completely decentralized
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Homework 
Strategy: The TD[1..n] is several times larger 

than the number of processors; system 
assumes at least 1 producer and 1 consumer

Put_Task(a) {  
slot = Fetch&Add(FF,1);
if slot == n then Fetch&Add(FF, -n);
if slot > n then slot = slot - n;
while TD[slot] != 0 do wait(rand());
TD[slot] = a;

}

Put_Task(a) {  
slot = Fetch&Add(FF,1);
if slot == n then Fetch&Add(FF, -n);
if slot > n then slot = slot - n;
while TD[slot] != 0 do wait(rand());
TD[slot] = a;

} Get_Task { var temp;  
slot = Fetch&Add(NA,1);
if slot == n then Fetch&Add(NA,-n);
if slot > n then slot = slot - n;
while TD[slot] == 0 do wait(rand());   
temp=TD[slot]; TD[slot]=0; return temp;

}

Get_Task { var temp;  
slot = Fetch&Add(NA,1);
if slot == n then Fetch&Add(NA,-n);
if slot > n then slot = slot - n;
while TD[slot] == 0 do wait(rand());   
temp=TD[slot]; TD[slot]=0; return temp;

}

Put waits if the slot is 
occupied to avoid overrun; 
Get waits if slot is empty
No task has is “0”

Shared Memory 
Shared memory was claimed to be a poor model 

because it is does not scale
– Many vendors have sold small shared memory 

machines
• Some like SMPs work well (but modeled poorly by PRAM)  
• Some never worked -- KSR
• Some worked because of a technology opportunity -- slow 

processors with a “fast interconnect”
• Some work on small scale, but not beyond 64 processors 

and everyone tries to ignore that fact -- Origin-2000

– Many researchers have come up with great ideas, 
but they still remain unproved
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Share Memory Image

• Previous models of shared memory have 
literally implemented a single memory unit 
where all data resides

• Besides being a point of contention, a single 
memory doesn’t permit caching (though 
“read-only” caching is OK)

• The SMP turns the idea around and exploits 
caching to implement a shared memory
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Architecture of an SMP
• A symmetric multiprocessor (SMP) is a set of 

processor/cache pairs connected to a bus

• The bus is both good news and bad news
• The (memory) bus is a point at which all processors can 

“see” memory activity, and can know what is happening
• A bus is used “serially,” and becomes a “bottleneck,” 

limiting scaling

P0

Cache

P1

Cache

P2

Cache

P3

Cache

Memory

Bus

Recall Caches

• Cache blocks (lines) contain several words

• Blocks have state
– Valid
– Invalid
– Dirty = diff from mem

• Cache writing
– Write through means update memory on all writes
– Write back means wait and update when block is 

invalidated
– “allocate” vs “no-allocate”

Cache
...

...
addr ...
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Cache Coherence -- The Problem

• Processors can modify shared locations 
without other processors being aware of it 
unless special hardware is added

P1 reads a into its cache

P3

P1

P3

P1 reads a into its cache
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P2 P3

4         Memory
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Cache Coherence -- The Problem

• Processors can modify shared locations 
without other processors being aware of it 
unless special hardware is added
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writes the result through to 
main memory leaving P3 
with stale data
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Cache Coherency -- The Goal
A multiprocessor memory system is coherent if 

for every location there exists a serial order 
for the operations on that location consistent 
with the results of the execution such that 

• The subsequence of operations for any processor are in 
the order issued 

• The value returned by each read is the value written by 
the last write in serial order

p1:i, p3:j, p2:k, p1:i+1, p3:j+1, ...p1:i, p3:j, p2:k, p1:i+1, p3:j+1, ...

P1

4 5

P2 P3

4

4 5     Memory

a

a
w:a r:a

Write Serialization

• For fulfilling “seen by all processors” a bus is 
a perfect solution

Implied property of Cache Coherency:

Write Serialization … all writes to a location 
are seen in the same order by all processors

Implied property of Cache Coherency:

Write Serialization … all writes to a location 
are seen in the same order by all processors
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Snooping To Solve Coherency

• The cache controllers can “snoop” on the 
bus, meaning that they watch the events on 
the bus even if they do not issue them, noting 
any action relevant to cache lines they hold

• There are two possible actions when a 
location held by processor A is changed by 
processor B

• Invalidate -- mark the local copy as invalid
• Update -- make the same change B made

The unit of cache coherency is a cache line or blockThe unit of cache coherency is a cache line or block

P3

Snooping
When the cache controller “snoops” it sees 

requests by its processor or bus activity by 
other processors that is not local to them

P1 P2

Memory

Activity from processor
Activity form others
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P3

4

Snooping At Work I

By snooping the cache controller for processor 
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location

P3
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P1 changes a to 5 and 
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memory; P3 sees the 
action and invalidates the 
location

P3
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Snooping At Work II

By snooping the cache controller for processor 
P3 can take action in response to P1’s write

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location or updates it

P3

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory; P3 sees the 
action and invalidates the 
location or updates it

P3

P1

4 5

P2

4 5      Memory
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Write-through Coherency

• State diagrams show the protocol

PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--

States of a cache line
V is valid
I is invalid

Transactions
Reads (Rd) or Writes (Wr) 
by processor or bus

Labeling A/B
If A is observed

Then transaction B is 
generated

Applying the WT Protocol

• Consider the transactions PrRd/-- PrWr/BusWr

PrWr/BusWr

V

I

PrRd/BusRd BusWr/--P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory

P3 sees the action and 
invalidates the location 

P2 reads a into its cache

P1 reads a into its cache

P3 reads a into its cache

P1 changes a to 5 and 
writes through to main 
memory

P3 sees the action and 
invalidates the location 

P2 reads a into its cache

P1 : I --> V  
PrRd/BusRd
P3 : I --> V  
PrRd/BusRd
P1 : V --> V 
PrWr/BusWr
P3 : V --> I   
BusWr/--
P2 :  I --> V  
PrRd/BusRd
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Partial Order On Memory Operations

Write bus transactions define a global sequence 
of events; between writes processors can read 
… any total order produced by interleaving

R

R

R

R

R

R

R

R

W R

R

R R

R

R

R

W

Memory Consistency

• What should it mean for processors to see a 
consistent view of memory?

• Coherency is too weak because it only 
requires ordering with respect to individual 
locations, but there are other ways of binding 
values together P0 : [a, flag initially 0]

a     := 1;

flag  := 1;

P1 :

while(flag != 1)do; -- spin

print (a); 

P0 : [a, flag initially 0]

a     := 1;

flag  := 1;

P1 :

while(flag != 1)do; -- spin

print (a); 

Coherency requires 
only that the 0 --> 1 
transition of a be seen 
eventually by P1
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Basic Write-back Snoopy Cache Design
• Write-back protocols are more complex than 

write-through because modified data remains 
in the cache

• Introduce more cache states to handle that
• Modified, or dirty, the value differs from memory
• Exclusive, no other cache has this location

• Consider an MSI protocol with three states:
• Modified -- data is correct locally, different from memory
• Shared  (Valid)  -- data at this location is correct
• Invalid -- data at this location not correct

MSI Protocol

• Rdx means that the 
cache holds a 
modified value of 
the location and 
asks for exclusive 
permission to read

• Reply means put 
the value on the bus 
for another 
processor to read

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Conceptually: Manage dirty value within caches
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MSI Protocol In Action 

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc Data

Action P0 P1 P2 Bus From

P0:r a  S  - - BRd  Mem 

P2:r a  S  - S BRd  Mem

P2:w a  I  - M BRdx

P0:r a  S  - S BRd P2

P1:r a  S  S  S BRd Mem

Proc Data

Action P0 P1 P2 Bus From

P0:r a  S  - - BRd  Mem 

P2:r a  S  - S BRd  Mem

P2:w a  I  - M BRdx

P0:r a  S  - S BRd P2

P1:r a  S  S  S BRd Mem

Critique of MSI
Bad: 2 bus ops to load

and update a value even 

without any sharing

• Add an Exclusive State, opposite of Shared

PrWr/BusRdx
BusRd/Reply

PrRd/-
BusRd/-

BusRdx/--

PrRd/BusRd

PrWr/BusRdx

PrRd/-- PrWr/--

M

S

I

BusRdx/Reply

Proc Data

Action P0 Pi Bus From

P0:r a  S  - BRd  Mem 

P0:w a  M  - BRdx

Proc Data

Action P0 Pi Bus From

P0:r a  S  - BRd  Mem 

P0:w a  M  - BRdx
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Break

Illinois Protocol
PRd/-- PWr/--

M

S

I

E
PWr/BRdx

PRd/BRd

PWr/BRdx

PWr/-

PrRd/-

PrRd/-
BRd/Rp'

PRd/BRdx'

BRd/Rp

BRd/Rp
BRdx/Rp'

BRdx/Rp

BRdx/Rp'

P=processor
B=Bus
Rd=Read
Rdx=Read Ex
RdS=Read Sh
RdS'=Read Ex
Rp=Reply
Rp=Reply Someone

Proc Data

Action P0 Pi Bus From

P0:r a  E  - BRdx' Mem 

P0:w a  M  -

Proc Data

Action P0 Pi Bus From

P0:r a  E  - BRdx' Mem 

P0:w a  M  -
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Alternative … Updating
• One caching issue is “invalidation” vs “update”: 

Dragon

E MSC SM

Proc Data

Action P0 P1 P2  Bus From

P1:r a  E  - - BRd  Mem 

P3:r a  Sc - Sc BRd  Mem

P3:w a  Sc - Sm Bupd P3

P1:r a  Sc - Sm null -

P2:r a  Sc Sc Sm BRd  P3

Proc Data

Action P0 P1 P2  Bus From

P1:r a  E  - - BRd  Mem 

P3:r a  Sc - Sc BRd  Mem

P3:w a  Sc - Sm Bupd P3

P1:r a  Sc - Sm null -

P2:r a  Sc Sc Sm BRd  P3

Invalidation vs Update

1 Repeat k times: P1 writes V, P2-Pp read V

… perhaps representing work allocation

2 Repeat k times: P1 writes V M times, P2 reads

… perhaps representing sharing pair

invl = 6B, update = 14B, miss = 70B

P = 16, M = 10, k = 10

U1: 1,260B I1:10,624B
U2: 1,400B I2:  824B 

U1: 1,260B I1:10,624B
U2: 1,400B I2:  824B 
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Implications of Blocksize

• Larger blocks exploit spatial locality better

• Bus transactions take more time with larger 
blocks

• Fewer large blocks for a given amount of 
memory or more small blocks

• There are implications on sharing

True/False Sharing
• If two processors reference the same cache 

line and the same word, they are “truly” 
sharing 

• If two processors reference the same cache 
line but a different word, they are “falsely” 
sharing

Cache
...

...
addr ...

P0 references P1 references
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Discussion

• What is the best model of an SMP … PRAM?

P1P0 P3P2 P5P4 P7P6

Memory

A BC

Summary
• SMPs solve shared memory by snooping

• Key to SMP’s success is the bus, a site for 
serializing memory references

• Buses work, but only for a small number (64 
is upper limit, but fewer is better) of 
processors

• Relative to the two requirements of shared 
memory -- acceptable costs, coherency -- the 
SMP meets both


