
1

Handling Memory Problems

Though the PRAM model does not suffice, memory 
sharing could be good given a realistic cost assessment. 

The challenge in shared memory is the delay, called 
latency, between the time the memory is requested and 

the time at which the value is delivered.  It slows 
computation.

Conclusion from Last Week

• Our idea of a parallel machine will be defined 
by the CTA model

• The relevant properties are …
• P von Neumann processors operating concurrently
• Connected by an unspecified, but sparse network where
• Memory reference is either local, requiring unit time, or 

nonlocal requiring λ>>1 time 
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Sharing ...
• There are two aspects to sharing memory

– (True) shared memory means every processor 
can reference every memory location of a “single 
coherent memory,” i.e every processor sees the 
same values

– Shared address space means every processor 
can reference every memory location in the 
machine but the memory is not kept coherent 

The problem: Suppose in time sequence
Processor A reads location 1000
Processor B writes location 1000
Processors A and C use 1000 in later computation

When A, C use values are they the same or different?

The problem: Suppose in time sequence
Processor A reads location 1000
Processor B writes location 1000
Processors A and C use 1000 in later computation

When A, C use values are they the same or different?

Memory Sharing on a CTA

• With many processors referencing a single 
memory image, the probability that a given 
reference is nonlocal is (P-1)/P 

• So, by the CTA nearly all memory references 
will take λ time implying that each processor 
can do little work

• Responses
• A “sea” of small processors that can be used “inefficiently”
• Have many threads for processors to switch among
• Find a way to greatly reduce λ
• Change processors from vN to something else
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“Sea” of Processors

• The idea of zillions of simple processors 
derives from early theory on cellular automata 
and neural modeling

• Ken Batcher built MASPAR ca. 1983

• Danny Hillis built CM-1 and CM-2 ca. 85-87

• Machines must be SIMD (single instruction, 
multiple data) because they are too simple to 
be full vN machines

• All processors doing the same thing at the 
same time is too constraining

Hiding Latency

To hide memory reference latency (λλλλ of the CTA 
model) requires that there be many more 
threads (work) than there are processors

• A thread is a sequence of instructions operating on a small 
quantity of data -- for example, a loop iteration

• The idea is that a processor with many threads to execute, 
can switch to execute another thread when it is stalled 
waiting for a memory reference, getting productive work 
done during the wait time

• The idea can be used in either a programming 
model or hardware implementation 
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Latency Hiding In Programming Model
• Bulk-synchronous programming (BSP) is a 

solution by Valiant

• Computation executes in supersteps:
– Assume threads execute 3-address code  a:=b op c;

[Load]  Fetch operands from memory for many threads
[Compute]  For all threads having available operands 

compute a:=b op c

[Store] Return the result to memory

• With many threads, there is compute work 
enough to hide the data transmission time

Each thread may not execute on each cycleEach thread may not execute on each cycle

BSP Skews A Synchronous Step in Time

• Consider a series of steps

• Enough operands must be shipped on step n 
to enable enough threads at computation step 
n to cover the latency of the store of n-1 and 
the fetch of n+1

Load: n+1Load: n Load: n+2

Comp: n+1Comp: n Comp: n+2

Store: n+1Store: n Store: n+2Store: n-1Store: n-2

Comp: n-1

Notice that the strategy ignores localityNotice that the strategy ignores locality

A parallelogram 
represents many threads 
at the same step & phase

A parallelogram 
represents many threads 
at the same step & phase
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Many Threads = More Parallelism
When enabled-threads are numerous, the 

processors keep busy; “compute bound”
• More parallelism exists than can be used by processors
• Communication subsystem operates “below saturation” 

Load: n+1Load: n Load: n+2

Comp: n+1

Store: n+1Store: nStore: n-1Store: n-2

Comp: n+2 Comp: n Comp: n+1

MM is example: 2m values imply m2 operationsMM is example: 2m values imply m2 operations

Too Few Threads = Waiting

• When the enabled threads are too few to 
cover the latency, processors finish 
computing before next data arrives

• Not enough parallelism
• Communication subsystem may be less efficient

Load: n+1Load: n Load: n+2

n+1n n+2

Store: n+1Store: nStore: n-1Store: n-2

n-1

Theoretically, P log P threads are needed, minimumTheoretically, P log P threads are needed, minimum
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Parallel Slackness

• Valiant called the amount of “excess” 
parallelism needed to cover latency parallel 
slackness

• In the “best case” a parallel slackness of logP 
is required because in the best case latency 
will be proportional to log P

• Any additional delays require further 
slackness

Problems With BSP

• Though threads are often very numerous, it is 
difficult always to have P log P available

• Other considerations
• The network needs to have high bandwidth (explained in 

later lecture, but meaning O(n) bisection bandwidth)
• Network congestion can be magnified when operating at 

peak capacity
• Memory contention requires that a value  be fetched from 

each processor’s memory at each cycle …what happens 
when multiple values are in the same memory unit?

• What are the implications of slow memories and fast 
processors?
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Reducing λ

• Reducing λ requires good engineering and 
some clever programming

• NYU’s Ultracomputer Group tried both using 
2-3 very slick ideas

• Though they were ultimately unsuccessful, 
the approach stands as a fair test of a true 
shared memory parallel system

J.T. Schwartz, Ultracomputers, ACM Transactions 
on Programming Languages and Systems 2(4):484-
521, 1980

J.T. Schwartz, Ultracomputers, ACM Transactions 
on Programming Languages and Systems 2(4):484-
521, 1980

Historical caution ...

• Jack Schwartz wrote a paper called 
Ultracomputer in which he observed

• The ideal parallel computer would be a PRAM (he called 
it a paracomputer), but it can’t work

• The realistic alterative would be an “ultracomputer” which 
was a specific (CTA-type architecture) using a shuffle-ex 
network, vN processors, etc.

• Allen Gottlieb started a project to build an ultracomputer, 
but after getting started, i.e. after the computer was 
already named, decided they’d build a paracomputer

Although the original ultracomputer 
doesn’t have a shared memory the 
machine that was built did … confusing

Although the original ultracomputer 
doesn’t have a shared memory the 
machine that was built did … confusing
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An Alternate Concurrency Primitive

• Rather than using the Test&Set to guard 
shared data, use Fetch&Add

• Fetch&Add is an atomic read-modify-write operation on 
memory -- requires special hardware, to be discussed

• Use Fetch&Add as a semaphore and as a scheduler

• Operation:  Fetch&Add(V,e)
• V is a memory location
• e is an integer expression
• Contents of V are returned
• New value of V is V+e
• Operation is atomic

V: 0

Fetch&Add(V,1)

V: 1

0 is returned

V: 0

Fetch&Add(V,1)

V: 1

0 is returned

Concurrent Fetch&Adds
• When multiple Fetch&Adds are executed 

simultaneously, they are serializable

• Assume  Fetch&Add(V, e1) and 
Fetch&Add(V, e2) are execute simultaneously

• Assuming an initial value of e0
• Final value is e0+e1+e2
• The 1st process receives either e0 or e0+e2, implying it 

was first (e0) or second (e0+e2)
• The 2nd process receives either e0 or e0+e1, implying it 

was second (e0+e1) or first (e0)

Suppose both execute Fetch&Add(I,1), then 
one gets I back, the other I+1, and final is I+2
Suppose both execute Fetch&Add(I,1), then 
one gets I back, the other I+1, and final is I+2
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Fetch&Add on Work List
• Let TD[1..n] be a Todo list of TaskIDs

• Let Next be the index of the first unassigned 
task

• Processes execute
• Fetch&Add(Next, 1)
• Receive an index back
• If index ≥ n, wrap around => Fetch&Add(Next,-n)

Such automatic scheduling can be useful for 
rows of an array or other ordered data structure
Such automatic scheduling can be useful for 
rows of an array or other ordered data structure

Generalizing Fetch&Add

• Fetch&φ(V,e) is a generalization for arbitrary 
binary, associative operation φ

• Define φ(a,b) = a+b to define Fetch&Add( ) 

• If φ is associative, the final value is 
independent of the serializing order

• Test&Set(V) is just Fetch&Or(V, 1)

• Load and Store use π1(a,b)=a, π2(a,b)=b
• Load  R <-- Fetch&π1(V,*)
• Store  * <-- Fetch&π2(V,L)

* means value doesn’t matter
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Break

• Problem to think about at the break … are 
test&set and fetch&add equivalent?

Fetch&Add vs. Test&Set

Compare K concurrent processes using 
Fetch&Add(I,1) and Test&Set(V)
– The Fetch&Add distinguishes among and orders 

the competing processes, assigning each one a 
unique number 

• Excellent for allocating work and scheduling

– Test&Set returns the FALSE to at most one of the 
processes, and so divides the set of competing 
processes into two groups, the winner and K-1 
others 

• Excellent for mutual exclusion

T&S is a potential bottleneckT&S is a potential bottleneck
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Fetch&Add Exploits Sharing
• Though earlier solutions attempt to reduce 

sharing to reduce the amount of invalidation 
and acknowledgment, Fetch&Add does better 
with greater sharing

• Sharing is used to schedule or allocate, which 
is then independent activity

• Sharing is concentrated in a few variables 
• Fine grain size is possible

• Since load/store, Test&Set, etc. are 
implementable, it is a sufficient primitive  

Implementing Fetch&Add

• Fetch&Add assumes a flat shared memory as 
implemented by a “dance hall architecture”
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Omega Network

• The interconnection network is an Ω-network
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Notice Details
• The Ω-Network requires O(P log P) routers

• The given network uses 2x2 but 2bx2b work

• Wiring is consistent at each stage
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Routing In Ω-Network

• The network is pipelined

• There is a unique path between any 
processor and memory port pair

• Conflicts are possible because there exist 
permutations in which packets collide

• What happens when two packets collide at a 
router?

• Packet is delayed, leaving its “file”
• Pipelining is affected, here comes more

0 0
1 1

The separate packets must be serializedThe separate packets must be serialized

Two Processors Make Fetch&Add(V,1)

• Simultaneous requests collide in network
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The Bright Idea: Combine Requests

Idea: Combine requests for same dest. In the 
limit all nodes could be referencing same loc.
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Combining Loads and Stores

• At a switch combine loads and stores to a 
common location as follows

• Load/Load -- forward one of the loads towards the 
memory, and when the value is returned, satisfy both 

• Load/Store -- forward the store, and when the ACK 
arrives back at the switch, return value to satisfy load

• Store/Store -- forward one of the stores, and when the 
ACK arrives back at the switch, return it for both

• Processors are restricted to having only one 
outstanding request at a time to a given 
location 
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Implementing Fetch&Add

• Include an adder with the Memory Network 
Interface chips

• For Fetch&Add(V,e) 
• Fetch the value of V, say e0
• Return e0 to processor requesting 
• Add e0+e
• Store e0+e back into V

• It is probably necessary to do these 
concurrently

MNI

Mem Mem

Combining Fetch&Adds at Switch
Suppose Fetch&Add(V,e) and Fetch&Add(V,f) 

arrive at a switch together …
– Form the sum f+e
– Send Fetch&Add(V,f+e) on to the memory
– Store e locally
– When g0 is returned by the memory

• Return g0 as response to Fetch&Add(V,e)
• Return g0+e as response to Fetch&Add(V,f)

Switch

F&E(V,e+f)
g0

F&E(V,f)
g0+e

F&E(V,e)
g0
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Combine Fetch&Add with other requests

• Combining can apply to all memory traffic to a 
location V

• Consider the following cases
• Fetch&Add/Fetch&Add -- as just described
• Fetch&Add/Load -- Treat Load as Fetch&Add(V,0)
• Fetch&Add/Store -- If Fetch&Add(V,e) meets Store(V,f) 

send Store(V,e+f) to memory; when ACK is received, 
return f as value of F&A

• Conclusion -- it is possible to combine all 
requests to the same memory location

Will It Work?

• Potential Problems …
• Network routing is driven entirely by performance, so a 

complicated switch is usually a problem
• Routers typically forward non-blocked packets in <= 3 tix
• Matching to recognize that two requests collide is an 

“add” operation
• Combining is an “add” operation after the previous add
• Combining relies on the requests getting to the switch 

simultaneously, or at worst, before the forwarded packet 
leaves … this is improbable

• Most traffic is non-combinable -- head for different places

• A combining router was created by Susan Dickey
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A Backup Strategy

• If the network switch is too slow then …
– Do not combine at every stage … so that some 

stages can be fast
– Use two networks, one fast and one that does 

combining -- it can handle the sharing requests
– Combine only like requests, e.g. loads/loads
– Limit combining at a node to two requests

– As it happened
• Only like requests have ever been implemented in switch
• IBM used the two network solution in the RP3

More Globally

• Norton and Pfister discovered in simulation for the 
RP3 computer that the Ω-Network develops hot-spots

• It was thought that combining would remove the hot-
spots … it seemed to for 64-way network

• The problem is that once a node becomes hot, a 
“back-up” tree forms “behind” the node
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More Globally
• But Lee, Kruskal and Kuck showed by simulation and 

also proved it won’t work
• LKK discovered and named the “back-up tree” 
• Showed in simulation that the 64-way network is a lucky case
• Combining doesn’t help because it is the other traffic that is 

really the problem

0.125% traffic 
directed at a 
hot spot

Assessment
• It was a good idea but it didn’t work

• What was good and bad
– Good

• Fetch&Add is clever -- a primitive with good properties
• Shifting from protecting data to allocating work is better
• Computation at memory is powerful, worth doing

– Bad
• Pipelined multistage networks probably just don’t work
• Complexity in a switch is wrong -- speed is essential
• Failed to exploit locality -- caching essentially impossible

Can other designs include the good ideas?Can other designs include the good ideas?



19

Summary
• We introduced the concept of the Fetch&Add

• Showed how F&A can be used to implement 
many basic parallel operations

• Considered the implementation
• Ω-network
• Switches and interface structure

• Introduced combining at switches w/ examples

• Combining may fix hotspots, but its slow 
performance can slow down other operations

Homework

Write two procedures -- Put_Task() and 
Get_Task() -- in any language, e.g. C, and 
using Fetch&Add for synchronization as 
follows

• Define TD[1..n], the ToDo array; n=c*Processors 
for some c

• Define FF, for first free, pointing in TD to first free cell
• Define NA, for next available, pointing to next task in TD
• Put_Task(a) takes a task as input, and places it in TD; 
Get_Task() returns the next task from TD if there is one

• The management of TD is completely decentralized

Submit solution by email to Adam prior to classSubmit solution by email to Adam prior to class


