
1

Handling Memory Problems

Though the PRAM model does not suffice, memory
sharing could be good given a realistic cost assessment.

The challenge in shared memory is the delay, called
latency, between the time the memory is requested and

the time at which the value is delivered. It slows
computation.

Conclusion from Last Week

• Our idea of a parallel machine will be defined
by the CTA model

• The relevant properties are …
• P von Neumann processors operating concurrently
• Connected by an unspecified, but sparse network where
• Memory reference is either local, requiring unit time, or

nonlocal requiring λ>>1 time

2

Sharing ...
• There are two aspects to sharing memory

– (True) shared memory means every processor
can reference every memory location of a “single
coherent memory,” i.e every processor sees the
same values

– Shared address space means every processor
can reference every memory location in the
machine but the memory is not kept coherent

The problem: Suppose in time sequence
Processor A reads location 1000
Processor B writes location 1000
Processors A and C use 1000 in later computation

When A, C use values are they the same or different?

The problem: Suppose in time sequence
Processor A reads location 1000
Processor B writes location 1000
Processors A and C use 1000 in later computation

When A, C use values are they the same or different?

Memory Sharing on a CTA

• With many processors referencing a single
memory image, the probability that a given
reference is nonlocal is (P-1)/P

• So, by the CTA nearly all memory references
will take λ time implying that each processor
can do little work

• Responses
• A “sea” of small processors that can be used “inefficiently”
• Have many threads for processors to switch among
• Find a way to greatly reduce λ
• Change processors from vN to something else

3

“Sea” of Processors

• The idea of zillions of simple processors
derives from early theory on cellular automata
and neural modeling

• Ken Batcher built MASPAR ca. 1983

• Danny Hillis built CM-1 and CM-2 ca. 85-87

• Machines must be SIMD (single instruction,
multiple data) because they are too simple to
be full vN machines

• All processors doing the same thing at the
same time is too constraining

Hiding Latency

To hide memory reference latency (λλλλ of the CTA
model) requires that there be many more
threads (work) than there are processors

• A thread is a sequence of instructions operating on a small
quantity of data -- for example, a loop iteration

• The idea is that a processor with many threads to execute,
can switch to execute another thread when it is stalled
waiting for a memory reference, getting productive work
done during the wait time

• The idea can be used in either a programming
model or hardware implementation

4

Latency Hiding In Programming Model
• Bulk-synchronous programming (BSP) is a

solution by Valiant

• Computation executes in supersteps:
– Assume threads execute 3-address code a:=b op c;

[Load] Fetch operands from memory for many threads
[Compute] For all threads having available operands

compute a:=b op c

[Store] Return the result to memory

• With many threads, there is compute work
enough to hide the data transmission time

Each thread may not execute on each cycleEach thread may not execute on each cycle

BSP Skews A Synchronous Step in Time

• Consider a series of steps

• Enough operands must be shipped on step n
to enable enough threads at computation step
n to cover the latency of the store of n-1 and
the fetch of n+1

Load: n+1Load: n Load: n+2

Comp: n+1Comp: n Comp: n+2

Store: n+1Store: n Store: n+2Store: n-1Store: n-2

Comp: n-1

Notice that the strategy ignores localityNotice that the strategy ignores locality

A parallelogram
represents many threads
at the same step & phase

A parallelogram
represents many threads
at the same step & phase

5

Many Threads = More Parallelism
When enabled-threads are numerous, the

processors keep busy; “compute bound”
• More parallelism exists than can be used by processors
• Communication subsystem operates “below saturation”

Load: n+1Load: n Load: n+2

Comp: n+1

Store: n+1Store: nStore: n-1Store: n-2

Comp: n+2 Comp: n Comp: n+1

MM is example: 2m values imply m2 operationsMM is example: 2m values imply m2 operations

Too Few Threads = Waiting

• When the enabled threads are too few to
cover the latency, processors finish
computing before next data arrives

• Not enough parallelism
• Communication subsystem may be less efficient

Load: n+1Load: n Load: n+2

n+1n n+2

Store: n+1Store: nStore: n-1Store: n-2

n-1

Theoretically, P log P threads are needed, minimumTheoretically, P log P threads are needed, minimum

6

Parallel Slackness

• Valiant called the amount of “excess”
parallelism needed to cover latency parallel
slackness

• In the “best case” a parallel slackness of logP
is required because in the best case latency
will be proportional to log P

• Any additional delays require further
slackness

Problems With BSP

• Though threads are often very numerous, it is
difficult always to have P log P available

• Other considerations
• The network needs to have high bandwidth (explained in

later lecture, but meaning O(n) bisection bandwidth)
• Network congestion can be magnified when operating at

peak capacity
• Memory contention requires that a value be fetched from

each processor’s memory at each cycle …what happens
when multiple values are in the same memory unit?

• What are the implications of slow memories and fast
processors?

7

Reducing λ

• Reducing λ requires good engineering and
some clever programming

• NYU’s Ultracomputer Group tried both using
2-3 very slick ideas

• Though they were ultimately unsuccessful,
the approach stands as a fair test of a true
shared memory parallel system

J.T. Schwartz, Ultracomputers, ACM Transactions
on Programming Languages and Systems 2(4):484-
521, 1980

J.T. Schwartz, Ultracomputers, ACM Transactions
on Programming Languages and Systems 2(4):484-
521, 1980

Historical caution ...

• Jack Schwartz wrote a paper called
Ultracomputer in which he observed

• The ideal parallel computer would be a PRAM (he called
it a paracomputer), but it can’t work

• The realistic alterative would be an “ultracomputer” which
was a specific (CTA-type architecture) using a shuffle-ex
network, vN processors, etc.

• Allen Gottlieb started a project to build an ultracomputer,
but after getting started, i.e. after the computer was
already named, decided they’d build a paracomputer

Although the original ultracomputer
doesn’t have a shared memory the
machine that was built did … confusing

Although the original ultracomputer
doesn’t have a shared memory the
machine that was built did … confusing

8

An Alternate Concurrency Primitive

• Rather than using the Test&Set to guard
shared data, use Fetch&Add

• Fetch&Add is an atomic read-modify-write operation on
memory -- requires special hardware, to be discussed

• Use Fetch&Add as a semaphore and as a scheduler

• Operation: Fetch&Add(V,e)
• V is a memory location
• e is an integer expression
• Contents of V are returned
• New value of V is V+e
• Operation is atomic

V: 0

Fetch&Add(V,1)

V: 1

0 is returned

V: 0

Fetch&Add(V,1)

V: 1

0 is returned

Concurrent Fetch&Adds
• When multiple Fetch&Adds are executed

simultaneously, they are serializable

• Assume Fetch&Add(V, e1) and
Fetch&Add(V, e2) are execute simultaneously

• Assuming an initial value of e0
• Final value is e0+e1+e2
• The 1st process receives either e0 or e0+e2, implying it

was first (e0) or second (e0+e2)
• The 2nd process receives either e0 or e0+e1, implying it

was second (e0+e1) or first (e0)

Suppose both execute Fetch&Add(I,1), then
one gets I back, the other I+1, and final is I+2
Suppose both execute Fetch&Add(I,1), then
one gets I back, the other I+1, and final is I+2

9

Fetch&Add on Work List
• Let TD[1..n] be a Todo list of TaskIDs

• Let Next be the index of the first unassigned
task

• Processes execute
• Fetch&Add(Next, 1)
• Receive an index back
• If index ≥ n, wrap around => Fetch&Add(Next,-n)

Such automatic scheduling can be useful for
rows of an array or other ordered data structure
Such automatic scheduling can be useful for
rows of an array or other ordered data structure

Generalizing Fetch&Add

• Fetch&φ(V,e) is a generalization for arbitrary
binary, associative operation φ

• Define φ(a,b) = a+b to define Fetch&Add()

• If φ is associative, the final value is
independent of the serializing order

• Test&Set(V) is just Fetch&Or(V, 1)

• Load and Store use π1(a,b)=a, π2(a,b)=b
• Load R <-- Fetch&π1(V,*)
• Store * <-- Fetch&π2(V,L)

* means value doesn’t matter

10

Break

• Problem to think about at the break … are
test&set and fetch&add equivalent?

Fetch&Add vs. Test&Set

Compare K concurrent processes using
Fetch&Add(I,1) and Test&Set(V)
– The Fetch&Add distinguishes among and orders

the competing processes, assigning each one a
unique number

• Excellent for allocating work and scheduling

– Test&Set returns the FALSE to at most one of the
processes, and so divides the set of competing
processes into two groups, the winner and K-1
others

• Excellent for mutual exclusion

T&S is a potential bottleneckT&S is a potential bottleneck

11

Fetch&Add Exploits Sharing
• Though earlier solutions attempt to reduce

sharing to reduce the amount of invalidation
and acknowledgment, Fetch&Add does better
with greater sharing

• Sharing is used to schedule or allocate, which
is then independent activity

• Sharing is concentrated in a few variables
• Fine grain size is possible

• Since load/store, Test&Set, etc. are
implementable, it is a sufficient primitive

Implementing Fetch&Add

• Fetch&Add assumes a flat shared memory as
implemented by a “dance hall architecture”

P0

PNI

P1

PNI

P2

PNI

P6

PNI

P7

PNI

P3

PNI

P4

PNI

P5

PNI

Interconnection Network

M0

MNI

M1

MNI

M2

MNI

M3

MNI

M4

MNI

M6

MNI

M5

MNI

M7

MNI

12

Omega Network

• The interconnection network is an Ω-network
0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Connection between 2 and 6 … follow
bits to destination lsb to msb
Connection between 2 and 6 … follow
bits to destination lsb to msb

P
ro

ce
ss

or
 ID

H
i M

em
ory B

its

Notice Details
• The Ω-Network requires O(P log P) routers

• The given network uses 2x2 but 2bx2b work

• Wiring is consistent at each stage
0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Long Wires Are NecessaryLong Wires Are Necessary

13

Routing In Ω-Network

• The network is pipelined

• There is a unique path between any
processor and memory port pair

• Conflicts are possible because there exist
permutations in which packets collide

• What happens when two packets collide at a
router?

• Packet is delayed, leaving its “file”
• Pipelining is affected, here comes more

0 0
1 1

The separate packets must be serializedThe separate packets must be serialized

Two Processors Make Fetch&Add(V,1)

• Simultaneous requests collide in network

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Fetch&Add(V)

Fetch&Add(V)

V

Fetch&Add increases potential for collisionsFetch&Add increases potential for collisions

Hot spotHot spot

14

The Bright Idea: Combine Requests

Idea: Combine requests for same dest. In the
limit all nodes could be referencing same loc.

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

V

Combining Loads and Stores

• At a switch combine loads and stores to a
common location as follows

• Load/Load -- forward one of the loads towards the
memory, and when the value is returned, satisfy both

• Load/Store -- forward the store, and when the ACK
arrives back at the switch, return value to satisfy load

• Store/Store -- forward one of the stores, and when the
ACK arrives back at the switch, return it for both

• Processors are restricted to having only one
outstanding request at a time to a given
location

15

Implementing Fetch&Add

• Include an adder with the Memory Network
Interface chips

• For Fetch&Add(V,e)
• Fetch the value of V, say e0
• Return e0 to processor requesting
• Add e0+e
• Store e0+e back into V

• It is probably necessary to do these
concurrently

MNI

Mem Mem

Combining Fetch&Adds at Switch
Suppose Fetch&Add(V,e) and Fetch&Add(V,f)

arrive at a switch together …
– Form the sum f+e
– Send Fetch&Add(V,f+e) on to the memory
– Store e locally
– When g0 is returned by the memory

• Return g0 as response to Fetch&Add(V,e)
• Return g0+e as response to Fetch&Add(V,f)

Switch

F&E(V,e+f)
g0

F&E(V,f)
g0+e

F&E(V,e)
g0

16

Combine Fetch&Add with other requests

• Combining can apply to all memory traffic to a
location V

• Consider the following cases
• Fetch&Add/Fetch&Add -- as just described
• Fetch&Add/Load -- Treat Load as Fetch&Add(V,0)
• Fetch&Add/Store -- If Fetch&Add(V,e) meets Store(V,f)

send Store(V,e+f) to memory; when ACK is received,
return f as value of F&A

• Conclusion -- it is possible to combine all
requests to the same memory location

Will It Work?

• Potential Problems …
• Network routing is driven entirely by performance, so a

complicated switch is usually a problem
• Routers typically forward non-blocked packets in <= 3 tix
• Matching to recognize that two requests collide is an

“add” operation
• Combining is an “add” operation after the previous add
• Combining relies on the requests getting to the switch

simultaneously, or at worst, before the forwarded packet
leaves … this is improbable

• Most traffic is non-combinable -- head for different places

• A combining router was created by Susan Dickey

17

A Backup Strategy

• If the network switch is too slow then …
– Do not combine at every stage … so that some

stages can be fast
– Use two networks, one fast and one that does

combining -- it can handle the sharing requests
– Combine only like requests, e.g. loads/loads
– Limit combining at a node to two requests

– As it happened
• Only like requests have ever been implemented in switch
• IBM used the two network solution in the RP3

More Globally

• Norton and Pfister discovered in simulation for the
RP3 computer that the Ω-Network develops hot-spots

• It was thought that combining would remove the hot-
spots … it seemed to for 64-way network

• The problem is that once a node becomes hot, a
“back-up” tree forms “behind” the node

18

More Globally
• But Lee, Kruskal and Kuck showed by simulation and

also proved it won’t work
• LKK discovered and named the “back-up tree”
• Showed in simulation that the 64-way network is a lucky case
• Combining doesn’t help because it is the other traffic that is

really the problem

0.125% traffic
directed at a
hot spot

Assessment
• It was a good idea but it didn’t work

• What was good and bad
– Good

• Fetch&Add is clever -- a primitive with good properties
• Shifting from protecting data to allocating work is better
• Computation at memory is powerful, worth doing

– Bad
• Pipelined multistage networks probably just don’t work
• Complexity in a switch is wrong -- speed is essential
• Failed to exploit locality -- caching essentially impossible

Can other designs include the good ideas?Can other designs include the good ideas?

19

Summary
• We introduced the concept of the Fetch&Add

• Showed how F&A can be used to implement
many basic parallel operations

• Considered the implementation
• Ω-network
• Switches and interface structure

• Introduced combining at switches w/ examples

• Combining may fix hotspots, but its slow
performance can slow down other operations

Homework

Write two procedures -- Put_Task() and
Get_Task() -- in any language, e.g. C, and
using Fetch&Add for synchronization as
follows

• Define TD[1..n], the ToDo array; n=c*Processors
for some c

• Define FF, for first free, pointing in TD to first free cell
• Define NA, for next available, pointing to next task in TD
• Put_Task(a) takes a task as input, and places it in TD;
Get_Task() returns the next task from TD if there is one

• The management of TD is completely decentralized

Submit solution by email to Adam prior to classSubmit solution by email to Adam prior to class

