
1

Models In Parallel Computation

It is difficult to write programs without a good idea of
how the target computer will execute the code. The

most important information is knowing how expensive
the operations are in terms of time, space, and

communication costs

Last Week
• Matrix Multiplication was used to illustrate

different parallel solutions
– Maximum parallelism, O(log n) time, O(n3)

processors, PRAM model
– Basic (strips x panels), O(n) time, O(n2)

processors
– Pipelined (systolic), O(n) time, O(n2) processors,

VLSI model
– SUMMA algorithm, used many techniques, O(n)

time, O(n2) processors, scalable, Distributed
Memory Model

2

Last Week (continued)
• Different techniques illustrated --

– Decompose into independent tasks
– Pipelining
– Overlapping computation and communication

• Optimizations
– Enlarge task size, e.g. several rows/columns at

once
– Improve caching by blocking
– Reorder computation to “use data once”
– Exploit broadcast communication

The SUMMA algorithm used all of these ideasThe SUMMA algorithm used all of these ideas

Plan for Today

• Importance of von Neumann model & C
programming language

• Recall PRAM model
• Valiant’s Maximum Algorithm

– Analyze result to evaluate model

• Introduce CTA model
– Analyze result to evaluate model

• Alternative Models
– LogP is too specific
– Functional is too vague

3

Successful Programming
When we write programs in C they are ...

– Efficient -- programs run fast, especially if we use
performance as a goal

• traverse arrays in row major order to improve caching

– Economical -- use resources well
• represent data by packing memory

– Portable -- run well on any computer with C compiler
• all computers are universal, but with C fast programs are

fast everywhere

– Easy to write -- we know many ‘good’ techniques
• reference data, don’t copy

These qualities all derive from von Neumman modelThese qualities all derive from von Neumman model

Von Neumann (RAM) Model
• Call the ‘standard’ model of a computer

(RAM) the von Neumann model
• A processor interpreting 3-address instructions

• PC pointing to the next instruction of program in memory
• Flat, randomly accessed memory requires 1 time unit
• Memory is composed of fixed-size addressable units
• One instruction executes at a time, and is completed

before the next instruction executes

• The model is not literally true, e.g., memory is
hierarchical but made to “look flat”

C directly implements this model in a HLLC directly implements this model in a HLL

4

vN Model Contributes To Success
• The cost of C statements on the vN machine

is “understood” by C programmers …
• How much time does A[r][s] += B[r][s];

require?
• Load row_size_A, r, s, A_base, B_base (5)
• temp = (row_size_A * r + s) * data_size (3)
• A_base + temp; B_base + temp; load both values (4)
• Add values and return to memory (2)

• Same for many operations, any data size
• Result is measured in “instructions” not time
• Efficient and Economical and Easy to Write

Widely known and effectively usedWidely known and effectively used

Portability
• Most important property of the C-vN coupling:

It is approximately right everywhere

• Why so little variation in sequential computers?

HW vendors must
run installed SW
so follow vN rules

HW vendors must
run installed SW
so follow vN rules

SW vendors must
run on installed HW
so follow vN rules

SW vendors must
run on installed HW
so follow vN rules

Everyone wins … no
motive to change
Everyone wins … no
motive to change

5

Von Neumann Summary
• The von Neumann model “explains” the costs

of C because C expresses the facilities of the
von Neumann machines in a set of useful
programming facilities

• Knowing the relationship between C and the
von Neumann machine is essential for writing
efficient programs

• Following the rules produces good results
everywhere because everyone benefits

What is the parallel version of vN?What is the parallel version of vN?

PRAM Often Proposed As A Candidate

PRAM (Parallel RAM) ignores memory
organization, collisions, latency, conflicts, etc.

Ignoring these are claimed to be benefits ...
– Portable everywhere since it is very general
– It is a simple programming model ignoring only

insignificant details -- off by “only log P”
– Ignoring memory difficulties is OK because

hardware can “fake” a shared memory
– Start with PRAM then refine the program to a

practical solution -- good for getting started

6

Recall Parallel Random-Access Machine
PRAM has any number of processors

– Every processor references any memory in “time 1”
– Memory read and write collisions must be resolved

P1P0 P3P2 P5P4 P7P6

Memory

PRAMPRAM

A BC

Variations on PRAM

Resolving the memory conflicts considers read
and write conflicts separately

• Exclusive read/exclusive write (EREW)
• The most limited model

• Concurrent read/exclusive write (CREW)
• Multiple readers are OK

• Concurrent read/concurrent write (CRCW)
• Various write-conflict resolutions used

• There are at least dozen other variations

All theoretical -- not used in practiceAll theoretical -- not used in practice

7

Find Maximum with PRAM (Valiant)

Task: Find largest of n integers w/ n processors
Model: CRCW PRAM (writes OK if same value)

L.G.Valiant, “Parallelism in comparison problems,”
SIAM J. Computing 4(3):348-355, 1975

L.G. Valiant, “A Bridging Model for Parallel
Computation,” CACM 33(8):103-111, 1990

R.J. Anderson & L. Snyder, “A Comparison of
Shared and Nonshared Memory Models for
Parallel Computation,” Proc. IEEE 79(4):480-487

Algorithm Sketch

Algorithm: T rounds of O(1) time each
In round, process groups of m vals, v1, v2, …, vm

• Fill m memory locations x1, x2, …, xm with 1
• For each 1≤i,j ≤m a processor tests ...

if vi < vj then xi = 0 else xj = 0

• If xk = 1 it’s max of group; pass xk to next round

The ‘trick’ is to pick m right to minimize TThe ‘trick’ is to pick m right to minimize T

8

Finding Max (continued)

Round 1: m = 3

v1 v2 v3
v1 - v1 : v2 v1 : v3
v2 - - v2 : v3
v3 - - -

x1 x2 x3
1 1 1

v1 v2 v3
20 3 34

x1 x2 x3
0 0 1

For groups of size 3, three tests
can find max, i.e. 3 procesors
For groups of size 3, three tests
can find max, i.e. 3 procesors

Schedule

Input

Output
Knock out

Solving Whole Problem
• Round 1 uses P processors to find the max in

groups of m=3 … producing P/3 group maxes
• Round 2 uses P processors to find the max in

groups of m=7 … producing P/21 group maxes
• Generally to find the max of a group requires

m(m-1)/2 comparisons
• Picking m when there are P processors, r

maxes … largest m s.t. (r/m)(m(m-1)/2) ≤ P i.e.
r(m-1) ≤ 2P

9

Finding Max (continued)

• Initially, r = P, so
r(m-1) ≤ 2P
implies m = 3, producing r = P/3

• For (P/3)(m-1) ≤ 2P implies next group = 7
• Etc.
• Group size increases quadratically implying

the maximum is found in O(loglog n) steps on
CRCW PRAM

It’s very clever, but is it of any practical use? It’s very clever, but is it of any practical use?

Assessing Valiant’s Max Algorithm
The PRAM model caused us to ...

– Exploit the “free use” of read and write collisions,
which are not possible in practice

– Ignore the costs of data motion, so we adopt an
algorithm that runs faster than the time required to
bring all data values together, which is Ω(log n)

– So what?

10

Running Valiant’s Algorithm
• PRAM’s don’t exist and can’t be built
• To run the algorithm we need a simulator for the

CRCWPRAM
• In order to simulate the concurrent reads and the

concurrent writes, a parallel computer will need Ω(log
P) time per step, though there are bandwidth
requirements and serious engineering problems to
attain that goal [details in future lecture]

• Observed performance of Valiant’s Max:

O(log n loglog n)

Alternative Solution
• What is the best (practical) way of computing

max?
– The tournament algorithm, a variation on global sum
– O(log P) time on P processors (as with sum, the

problem size can be Plog P)
– The tournament algorithm doesn’t need to be

simulated … it runs in the stated time directly on all
existing parallel processors

• Since O(log n) < O(log n loglog n) the PRAM
model mispredicted the best practical algorithm

The PRAM didn’t help, it hurt our effortThe PRAM didn’t help, it hurt our effort

11

Is The PRAM A Good Abstraction?

Different Opinions ...
• OK for finding theoretical limits to parallelismã
• It is a simple programming model ignoring only

insignificant details -- off only by log P ä
• Ignoring memory difficulties is OK because

hardware can “fake” a shared memoryä
• Start with PRAM then evolve to more realistic

solution -- good for getting started ä

Break

• Question to think about …
“Should a model of computation be ‘close to
the machine’ so that the programs are
efficient, or ‘far from the machine’ so the
programs are machine independent?”

12

Requirements Of A Practical Model

• Like von Neumann …
– Capture key features of HW implementations
– Reflect costs realistically
– Portable across physical machines
– Be as simple as possible relative to the above

• Problems for parallel programmers …
– Parallel computers have widely different

architectures -- steady-state cost not established
– Existing SW for Cray vector machines, poor guide
– Sequential computers keep getting faster

Model Must Be “Realizable”

• There should be no “magic”
• Explain how the processors connect to the

memory

P1P0 P3P2 P5P4 P7P6

Memory
A BC

13

Proposed Practical Parallel Model

• CTA* Machine Model

CTA = Candidate Type Architecture

Interconnection Network

...vN vN vN vN vN vN

C

Benefit from everything the vN model does rightBenefit from everything the vN model does right

Processor

Memory
N
I
C

Properties of the CTA ...
• Processor Elements are von Neumann

machines -- they could be SMPs or other
parallel designs, but they execute vN ISA

• PEs are connected by a sparse (O(n) edges)
point-to-point network, not specified

• PE’s connection to network is “narrow”
• Latency λ >> 1 for non-local memory reference
• Controller has “thin” broadcast connection to all

processors

The distributed memory model of last weekThe distributed memory model of last week

14

Network Not Specified

• Historically, programmers have “programmed
to the network” harming their computations

• Examples ...

OK Bottlenecks Not Sparse

Network is like the system bus -- forget it exists Network is like the system bus -- forget it exists

Using CTA What Is Best Max Algorithm?

CTA charges for operations, memory reference,
communication … PRAM solution of little use

• Tournament algorithm finds maximum of n
elements in O(log n) time like the global sum

• Odd PEs send value to next lower processor
• Even PEs recv, compare and send larger value to “parent”
• IDivide PE index by 2, and repeat until one processor left
• Time is O(log n) communication + parallel compare steps

This is a practical algorithm that can be tested This is a practical algorithm that can be tested

15

CTA Emphasizes Locality
CTA models … where the data is & where it goes
• The λ parameter captures the benefit of

exploiting locally stored values
– λ says moving data to other PEs has significant cost

Interconnection Network

...vN vN vN vN vN vN

C

Processor

Memory
N
I
C

The λ value
• λ is a purposely vague quantity

– The cost is not known and cannot be known
because every machine is different

• There is no agreement yet on the parallel architecture
• λ depends on bandwidth, engineering, interfaces, mem

– The cost cannot be a single
number because of network
topology, conflicts, etc.

– Optimizing for communication -- if possible --
should be done by the compiler not a programmer

16

CTA Abstracts Existing Architectures

• The MIMD parallel machines -- all machines
since mid 1980s -- are modeled by CTA

• A few minor adjustments may be needed
• Some machines do not have a controller (front end

machine), but one PE can be both a PE and Controller

• Some machines such as bus-architectures fail to meet
the point -to-point network feature, but a decent bus is an
OK approximation (and there is no other model!)

• Since the CTA contains the von Neumann
architecture C is good for programming PEs
but more global abstractions are needed

Assessing the CTA

The considerations were
– Capture key features of HW implementations
– Reflect costs realistically
– Portable across physical machines

The above have been established experimentally

– Be as simple as possible relative to the above
Difficult to measure, but programmers can use it

We will use the CTA in this class

Improving CTA may be possible, but not in some waysImproving CTA may be possible, but not in some ways

17

Alternatives ...
Many models have been proposed, but they

have had weaknesses
• LogP [UC Berkeley] is CTA+parameters
• The model measures latency and other

variables related to communication -- too
many free variables

• The model was effective at predicting behavior on the
Thinking Machines CM-5, which motivated it

• With many parameters, it was difficult to decide which
were significant, especially when their values are free

• It remains a model of theoretical interest

LogP’s parameters try being exact about λ. Not possibleLogP’s parameters try being exact about λ. Not possible

Alternatives (continued)

• Functional programming has motivated many
models

• Concurrency is natural part of parameter evaluation

• Processors not specifically identified -- they simply work
on next task

• Write-once memory avoids races and indeterminacy
• No notion of locality since it is not possible to associate

memory with any logical processor
• Functional models presume shared memory computers

and have considerable overhead; functional has not
become popular

18

Summary

• The von Neumann model allows us to be
successful C programmers

• A parallel alternative is needed
• The PRAM is not a good alternative because it leads us

to impractical algorithms like the O(loglog n) max

• The CTA does work because it charges for data motion
and communication using the parameter λ

• Capturing locality is a central benefit of the CTA
• CTA abstracts all contemporary MIMD machines

Finding a model is a balancing act in which the “right”
things are modeled and everything else is ignored
Finding a model is a balancing act in which the “right”
things are modeled and everything else is ignored

