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Abstract

We investigate the e�ect that caches have on the performance of sorting algorithms both
experimentally and analytically. To address the performance problems that high cache miss
penalties introduce we restructure mergesort, quicksort, and heapsort in order to improve their
cache locality. For all three algorithms the improvement in cache performance leads to a reduction
in total execution time. We also investigate the performance of radix sort. Despite the extremely
low instruction count incurred by this linear time sorting algorithm, its relatively poor cache
performance results in worse overall performance than the e�cient comparison based sorting
algorithms. For each algorithm we provide an analysis that closely predicts the number of cache
misses incurred by the algorithm.

1 Introduction

Since the introduction of caches, main memory has continued to grow slower relative to processor
cycle times. The time to service a cache miss to memory has grown from 6 cycles for the Vax
11/780 to 120 for the AlphaServer 8400 [3, 6]. Cache miss penalties have grown to the point where
good overall performance cannot be achieved without good cache performance. As a consequence of
this change in computer architectures, algorithms that have been designed to minimize instruction
count may not achieve the performance of algorithms that take into account both instruction count
and cache performance.

One of the most common tasks computers perform is sorting a set of unordered keys. Sorting is a
fundamental task and hundreds of sorting algorithms have been developed. In this paper we explore
the potential performance gains that cache-conscious design o�ers in understanding and improving
the performance of four popular sorting algorithms: mergesort1, quicksort [11], heapsort [24], and

�A preliminary version of this paper appears in Proceedings of the Eighth Annual ACM-SIAM Symposium on

Discrete Algorithms, 370-379, 1997.
1Knuth [15] traces mergesort back to card sorting machines of the 1930s.
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radix sort2. Mergesort, quicksort, and heapsort are all comparison based sorting algorithms while
radix sort is not.

For each of the four sorting algorithms we choose an implementation variant with potential
for good overall performance and then heavily optimize this variant using traditional techniques
to minimize the number of instructions executed. These heavily optimized algorithms form the
baseline for comparison. For each of the comparison sort baseline algorithms we develop and apply
memory optimizations in order to improve cache performance and, hopefully, overall performance.
For radix sort we optimize cache performance by varying the radix.

In the process we develop some simple analytic techniques that enable us to predict the memory
performance of these algorithms in terms of cache misses. Cache misses cannot be analyzed precisely
due to a number of factors such as variations in process scheduling and the operating system's virtual
to physical page-mapping policy. In addition, the memory behavior of an algorithm may be too
complex to analyze completely. For these reasons the analyses we present are only approximate
and must be validated empirically.

For comparison purposes we focus on sorting an array (4,000 to 4,096,000 keys) of 64 bit integers
chosen uniformly at random. Our main study uses trace-driven simulations and actual executions
to measure the impact that our memory optimizations have on performance. We concentrate on
three performance measures: instruction count, cache misses, and overall performance (time) on
machines with modern memory systems. Our results can be summarized as follows:

1. For the three comparison based sorting algorithms, memory optimizations improve both cache
and overall performance. The improvements in overall performance for heapsort and merge-
sort are signi�cant, while the improvement for quicksort is modest. Interestingly, memory
optimizations to heapsort also reduce its instruction count. For radix sort the radix that
minimizes cache misses also minimizes instruction count.

2. For large arrays, radix sort has the lowest instruction count, but because of its relatively poor
cache performance, its overall performance is worse than the memory optimized versions of
mergesort and quicksort.

3. Although our study was done on one machine, we demonstrate the robustness of the results
by showing that comparable speedups due to improved cache performance can be achieved on
several other machines.

4. There are e�ective analytic approaches to predicting the number of cache misses these sorting
algorithms incur. In many cases the analysis is not di�cult, yet highly predictive of actual
performance.

The main general lesson to be learned from this study is that because cache miss penalties are
large, and growing larger with each new generation of processor, selecting the fastest algorithm
to solve a problem entails understanding cache performance. Improving an algorithm's overall
performance may require increasing the number of instructions executed while, at the same time,
reducing the number of cache misses. Consequently, cache-conscious design of algorithms is required
to achieve the best performance.

2Knuth [15] traces the radix sorting method to the Hollerith sorting machine that was �rst used to assist the 1890
United States census.
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2 Caches

In order to speed up memory accesses, small high speed memories called caches are placed between
the processor and the main memory. Accessing the cache is typically much faster than accessing
main memory. Unfortunately, since caches are smaller than main memory they can hold only a
subset of its contents. Memory accesses �rst consult the cache to see if it contains the desired
data. If the data is found in the cache, the main memory need not be consulted and the access is
considered to be a cache hit. If the data is not in the cache it is considered a miss, and the data
must be loaded from main memory. On a miss, the block containing the accessed data is loaded
into the cache in the hope that data in the same block will be accessed again in the future. The
hit ratio is a measure of cache performance and is the total number of hits divided by the total
number of accesses.

The major design parameters of caches are:

� Capacity, which is the total number of bytes that the cache can hold.

� Block size, which is the number of bytes that are loaded from and written to memory at a
time.

� Associativity, which indicates the number of di�erent locations in the cache where a particular
block can be loaded. In an N -way set-associative cache, a particular block can be loaded in
N di�erent cache locations. Direct-mapped caches have an associativity of one, and can load
a particular block only in a single location. Fully associative caches are at the other extreme
and can load blocks anywhere in the cache.

� Replacement policy, which indicates the policy of which block to remove from the cache when
a new block is loaded. For the direct-mapped cache the replacement policy is simply to remove
the block currently residing in the cache.

In most modern machines, more than one cache is placed between the processor and main mem-
ory. These hierarchies of caches are con�gured with the smallest, fastest cache next to the processor
and the largest, slowest cache next to main memory. The largest miss penalty is typically incurred
with the cache closest to main memory and this cache is usually direct-mapped. Consequently, our
design and analysis techniques will focus on improving the performance of direct-mapped caches.
We will assume that the cache parameters, block size and capacity, are known to the programmer.

High cache hit ratios depend on a program's stream of memory references exhibiting locality.
A program exhibits temporal locality if there is a good chance that an accessed data item will be
accessed again in the near future. A program exhibits spatial locality if there is good chance that
subsequently accessed data items are located near each other in memory. Most programs tend to
exhibit both kinds of locality and typical hit ratios are greater than 90% [18]. With a 90% hit ratio,
cutting the number of cache misses in half has the e�ect of raising hit ratio to 95%. This may not
seem like a big improvement, but with miss penalties on the order of 100 cycles, normal programs
will exhibit speed-ups approaching 2:1 in execution time. Accordingly, our design techniques will
attempt to improve both the temporal and spatial locality of the sorting algorithms.

Cache misses are often categorized into compulsory, capacity, and conict misses [10]. Compul-
sory misses are those that occur when a block is �rst accessed and brought into the cache. Capacity
misses are those caused by the fact that more blocks are accessed than can �t all at one time in
the cache. Conict misses are those that occur because two or more blocks that map to the same
location in the cache are accessed. In this paper we address techniques to reduce the number of
both capacity and conict misses for sorting algorithms.
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3 Design and Evaluation Methodology

Cache locality is a good thing. When spatial and temporal locality can be improved at no cost
it should always be done. In this paper, however, we develop techniques for improving locality
even when it results in an increase in the total number of executed instructions. This represents
a signi�cant departure from traditional design and optimization methodology. We take this ap-
proach in order to show how large an impact cache performance can have on overall performance.
Interestingly, many of the design techniques are not particularly new. Some have already been
used in optimizing compilers, in algorithms which use external storage devices, and in parallel algo-
rithms. Similar techniques have also been used successfully in the development of the cache-e�cient
Alphasort algorithm [19].

As mentioned earlier we focus on three measures of performance: instruction count, cache
misses, and overall performance in terms of execution time. All of the dynamic instruction counts
and cache simulation results were measured using Atom [22]. Atom is a toolkit developed by DEC
for instrumenting program executables on Alpha workstations. Dynamic instruction counts are
obtained by inserting an increment to a counter after each instruction executed by the algorithm.
Cache performance is determined by inserting calls after every load and store to maintain the
state of a simulated cache and to keep track of hit and miss statistics. In all cases we con�gure the
simulated cache's block size and capacity to be the same as the second level cache of the architecture
used to measure execution time. Execution times are measured on a DEC Alphastation 250, and
execution times in our study represent the median of 15 trials. The machine used in our study has
32 byte cache blocks with a direct-mapped second level cache of 2; 097; 152 = 221 bytes. In our
study, the set to be sorted is varied in size from 4,000 to 4,096,000 keys of 8 bytes each.

Finally, we provide analytic methods to predict cache performance in terms of cache misses. In
some cases the analysis is quite simple. For example, traditional mergesort has a fairly oblivious
pattern of access to memory, thereby making its analysis quite straightforward. However, the
memory access patterns of the other algorithms, such as heapsort, are less oblivious requiring
more sophisticated techniques and approximations to accomplish the analysis. It should be noted
that due to unpredictable factors such as operating system scheduling, our analyses, while often
extremely accurate, are all approximations.

In all our analyses we consistently use n to indicate the number of keys to be sorted, C to
indicate the number of blocks in the cache and B to indicate the number of keys that �t in a cache
block. When we evaluate our analyses on the DEC Alphastation 250 sorting 8 byte keys, C = 216

and B = 4.

4 Mergesort

Two sorted lists can be merged into a single sorted list by traversing the two lists at the same
time in sorted order, repeatedly adding the smaller key to the single sorted list. By treating a
set of unordered keys as a set of sorted lists of length one, the keys can be repeatedly merged
together until a single sorted set of keys remains. Algorithms which sort in this manner are known
as mergesort algorithms, and there are both recursive and iterative variants [12, 15].

4.1 Base Algorithm

For a base algorithm, we chose an iterative mergesort [15] since it is both easy to implement and
is very amenable to traditional optimization techniques. The standard iterative mergesort makes



5

dlog2ne passes over the array, where the i-th pass merges sorted subarrays of length 2i�1 into
sorted subarrays of length 2i. The optimizations applied to the base mergesort include: alternating
the merging process from one array to another to avoid unnecessary copying, making sure that
subarrays to be merged are in opposite order to avoid unnecessary checking for end conditions,
sorting subarrays of size 4 with a fast in-line sorting method, and loop unrolling. Thus, the number
of merge passes is dlog2(n=4)e. If dlog2(n=4)e is odd then an additional copy pass is needed to move
the sorted array to the input array. Our base mergesort algorithm has very low instruction count,
executing the fewest instruction of any of our comparison based sorting algorithms.

4.2 Memory Optimizations

While the base mergesort executes few instructions, it has the potential for terrible cache perfor-
mance. The base mergesort uses each data item only once per pass, and if a pass is large enough
to wrap around in the cache, keys will be ejected before they are used again. If the set of keys is
of size BC=2 or smaller, the entire sort can be performed in the cache and only compulsory misses
will be incurred. When the set size is larger than BC=2, however, temporal reuse drops o� sharply
and when the set size is larger than the cache, no temporal reuse occurs at all. To improve this
ine�ciency, we apply two memory optimizations to the base mergesort. Applying the �rst of these
optimizations yields tiled mergesort, and applying both yields multi-mergesort.

Tiled mergesort employs an idea, called tiling, that is also used in some optimizing compilers
[25]. Tiled mergesort has two phases. To improve temporal locality, in the �rst phase subarrays
of length BC=2 are sorted using mergesort. The second phase returns to the base mergesort to
complete the sorting of the entire array. In order to avoid the �nal copy if dlog2(n=4)e is odd,
subarrays of size 2 are sorted in-line instead of size 4. Tiling the base mergesort drastically reduces
the misses it incurs, and the added loop overhead increases instruction counts very little.

While tiling improves the cache performance of the �rst phase, the second phase still su�ers
from the same problem as the base mergesort. Each pass through the source array in the second
phase needs to fault in all of the blocks, and no reuse is achieved across passes if the set size is
larger than the cache. To �x this ine�ciency in the second phase, we employ a multi-way merge
similar to those used in external sorting (Knuth devotes a section of his book to techniques for
multi-merging [15, Sec. 5.4.1]). In multi-mergesort we replace the �nal dlog2(n=(BC=2))e merge
passes of tiled mergesort with a single pass that merges all of the pieces together at once. This
single pass makes use of a memory-optimized heap to hold the heads of the lists being multi-merged
[16]. The multi-merge introduces several complications to the algorithm and signi�cantly increases
the dynamic instruction count. However, the resulting algorithm has excellent cache performance,
incurring roughly a constant number of cache misses per key in our executions.

4.3 Performance

As mentioned earlier, the performance of the three mergesort algorithms is measured by sorting
sets of uniformly distributed 64 bit integers. Figure 1 shows the number of instructions executed
per key, the cache missed incurred and the execution times for each of the mergesort variants. The
instruction count graph shows that as expected, the base mergesort and the tiled mergesort execute
almost the same number of instructions. The wobble in the instruction count curve for the base
mergesort is due to the �nal copy that may need to take place depending on whether the �nal
merge wrote into the source array or the auxiliary array [15]. When the set size is smaller than
the cache, the multi-mergesort executes the same number of instructions as the tiled mergesort.
Beyond that size, the multimerge is performed and this graph shows the increase it causes in the
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instruction count. For 4,096,000 keys, the multimerge executes 70% more instructions than the
other mergesorts.

The most striking feature of the cache performance graph is the sudden increase in cache misses
for the base mergesort when the set size grows larger than the cache. This graph shows the large
impact that tiling the base mergesort has on cache misses; for 4,096,000 keys, the tiled mergesort
incurs 66% fewer cache misses that the base mergesort. This graph also shows that the multi-
mergesort is a clear success from a cache miss perspective, incurring slightly more than 1 miss per
key regardless of the input size.

The graph of execution times shows that up to the size of the second level cache, all of these
algorithms perform the same. Beyond that size, the base mergesort performs the worst due to the
large number of cache misses it incurs. The tiled mergesort executes up to 55% faster than the
base mergesort, showing the signi�cant impact the cache misses in the �rst phase have on execution
time. When the multi-way merge is �rst performed, the multi-mergesort performs worse than the
tiled mergesort due to the increase in instruction count. Due to lower cache misses, however, the
multi-mergesort scales better and performs as well as the tiled mergesort for the largest set sizes.

4.4 Analysis

It is fairly easy to approximate the number of cache misses incurred by our mergesort variants as
the memory reference patterns of these algorithms are fairly oblivious. We begin with our base
algorithm. For n � BC=2 the number of misses per key is simply 2=B, the compulsory misses.
Since the other two algorithms employ the base algorithm for n � BC=2 then they all have the
same number of misses per key in this range.

For n > BC=2, the number of misses per key in the iterative mergesort algorithm is approxi-
mately

2

B
dlog2

n

4
e +

1

B
+

2

B
(dlog2

n

4
e mod 2): (1)

The �rst term of expression (1) comes from the capacity misses incurred during the dlog2
n
4e merge

passes. In each pass, each key is moved from a source array to a destination array. Every B-th key
visited in the source array results in one cache miss and every B-th key written into the destination
array results in one cache miss. Thus, there are 2=B cache misses per key per pass. The second
term, 1=B, is the compulsory misses per key incurred in the initial pass of sorting into groups of 4.
The �nal term is the number of misses per key caused by the �nal copy, if there is one.

For n > BC=2 the number of misses per key in tiled mergesort is approximately

2

B
dlog2

2n

BC
e+

2

B
: (2)

The �rst term of expression (2) is the number of misses per key for the �nal dlog2
n

BC=2e merge

passes. The second term is the number of misses per key in sorting into BC=2 size pieces. The
number of passes is forced to be even so there is no additional cache misses caused by a copy.
Figure 6 shows how well the analysis of base mergesort and tiled mergesort predict their actual
performance.

Finally, for n > BC=2, the number of misses per key in multi-mergesort is approximately

4

B
: (3)

For B = 4, this closely matches the approximately 1 miss per key shown in cache misses graph of
Figure 1. The �rst phase of multi-mergesort is tiled mergesort which incurs 2=B misses per key. In
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the algorithm we make sure that the number of passes in the �rst phase is odd so that the second
phase multi-merges the auxiliary array into the input array. The second phase multi-merges the
pieces stored in the auxiliary array back into the input array causing another 2=B misses per key.
The multi-merge employs a heap-like array containing k = 2d2n=BCe keys. For practical purposes
it is safe to assume that k is much smaller than BC. Every BC accesses to the input array removes
each member of the heap-like array from the cache. Hence, there can be an additional k=B misses
for every BC accesses to the input array. This can give an additional k=(B2C) misses per key
incurred during the multi-merge phase. This number is negligible for any practical values of n, B,
and C.

5 Quicksort

Quicksort is an in-place divide-and-conquer sorting algorithm considered by most to be the fastest
comparison-based sorting algorithm when the set of keys �t in memory [11]. In quicksort, a key
from the set is chosen as the pivot, and all other keys in the set are partitioned around this pivot.
This is usually accomplished by walking through an array of keys from the outside in, swapping keys
on the left that are greater than the pivot with keys on the right that are less than the pivot. At
the end of the pass, the set of keys will be partitioned around the pivot and the pivot is guaranteed
to be in its �nal position. The quicksort algorithm then recurses on the region to the left of the
pivot and the region to the right. The simple recursive quicksort is a simple, elegant algorithm and
can be expressed in less than twenty lines of code.

5.1 Base Algorithm

An excellent study of fast implementations of quicksort was conducted by Sedgewick, and we use
the optimized quicksort he develops as our base algorithm [20]. Among the optimizations that
Sedgewick suggests is one that sorts small subsets using a faster sorting method [20]. He suggests
that, rather than sorting these in the natural course of the quicksort recursion, all the small unsorted
subarrays be left unsorted until the very end, at which time they are sorted using insertion sort in a
single �nal pass over the entire array. We employ all the optimizations recommended by Sedgewick
in our base quicksort.

5.2 Memory Optimizations

In practice, quicksort generally exhibits excellent cache performance. Since the algorithm makes
sequential passes through the source array, all keys in a block are always used and spatial locality
is excellent. Quicksort's divide-and-conquer structure also gives it excellent temporal locality. If a
subset to be sorted is small enough to �t in the cache, quicksort will incur at most one cache miss
per block before the subset is fully sorted. Despite this, improvements can be made and we develop
two memory optimized versions of quicksort, memory-tuned quicksort and multi-quicksort.

Our memory-tuned quicksort simply removes Sedgewick's elegant insertion sort at the end, and
instead sorts small subarrays when they are �rst encountered using an unoptimized insertion sort.
When a small subarray is encountered, it has just been part of a recent partitioning and this is an
ideal time to sort it, since all of its keys should be in the cache. While saving small subarrays until
the end makes sense from an instruction count perspective, it is exactly the wrong thing to do from
a cache performance perspective.

Multi-quicksort employs a second memory optimization in similar spirit to that used in multi-
mergesort. Although quicksort incurs only one cache miss per block when the set is cache-sized or
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smaller, larger sets incur a substantial number of misses. To �x this ine�ciency, a single multi-
partition pass can be used to divide the full set into a number of subsets which are likely to be
cache sized or smaller.

Multi-partitioning is used in parallel sorting algorithms to divide a set into subsets for multiple
processors [1, 13] in order to quickly balance the load. We choose the number of pivots so that
the number of subsets larger than the cache is small with su�ciently high probability. Feller shows
that if k points are placed randomly in a range of length 1, the chance of a resulting subrange
being of size x or greater is exactly (1 � x)k [5, Vol. 2, Pg. 22]. Let n be the total number
of keys, B the number of keys per cache block, and C the capacity of the cache in blocks. In
multi-quicksort we partition the input array into 3n=(BC) pieces, requiring (3n=(BC))� 1 pivots.
Feller's formula indicates that after the multi-partition, the chance that a subset is larger than BC
is (1� BC=n)(3n=(BC))�1. In the limit as n grows large, the percentage of subsets that are larger
than the cache is e�3, less than 5%.

There are a number of complications in the design of the multi-partition phase of multi-quicksort,
not the least of which is that the algorithm cannot be done e�ciently in-place and executes more
instructions than the base quicksort. However, the resulting multi-quicksort is very e�cient from
a cache perspective.

5.3 Performance

Figure 2 shows the performance of the three quicksort algorithms sorting 64 bit uniformly dis-
tributed integers. The instruction count graph shows that the base quicksort executes the fewest
instructions with the memory-tuned quicksort executing a constant number of additional instruc-
tions per key. This di�erence is due to the ine�ciency of sorting the small subsets individually
rather than at the end as suggested by Sedgewick. For large set sizes the multi-quicksort performs
the multipartition which result in a signi�cant increase in the number of instructions executed.

The cache performance graph shows that all of the quicksort algorithms incur very few cache
misses. The base quicksort incurs fewer than two misses per key for 4,096,000 keys, lower than all
of the other algorithms up to this point with the exception of the multi-mergesort. The cache miss
curve for the memory-tuned quicksort shows that removing the instruction count optimization in
the base quicksort improves cache performance by approximately .25 cache misses per key. The
cache miss graph also shows that the multi-way partition produces a at cache miss curve much
the same as the curve for the multi-mergesort. The maximum number of misses incurred per key
for the multi-quicksort is slightly larger than 1 miss per key, validating the conjecture that it is
uncommon for the multipartition to produce subsets larger than the size of the cache.

The graph of execution times shows the execution times of the three quicksort algorithms. All
three of these algorithms perform similarly on our DEC Alphastation 250. This graph shows that
sorting small subsets early is a bene�t, and the reduction in cache misses outweighs the increase in
instruction cost. The multipartition initially hurts the performance of the multi-quicksort due to
the increase in instruction cost, but the low number of cache misses makes it more competitive as
the set size is increased. This graph suggests that if more memory were available and larger sets
were sorted, the multi-quicksort would outperform both the base quicksort and the memory-tuned
quicksort.

5.4 Analysis

We begin by analyzing memory-tuned quicksort which has slightly simplier behavior than base
quicksort. If n � BC then memory-tuned quicksort incurs 1=B misses per key for the compulsory
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misses. Because base quicksort makes an extra pass at the end to perform the insertion sort, the
number of cache misses per key incurred by base quicksort is 1=B plus the number of cache misses
per key incurred by memory-tuned quicksort. The cache miss graph of �gure 2 clearly show the
additional 1=B = :25 misses per key for base quicksort in our simulation.

For n > BC the expected number of misses per key in memory-tuned quicksort is approximately

2

B
ln(

n

BC
) +

5

8B
+

3C

8n
: (4)

We analyze the algorithm in two parts. In the �rst part we assume that partitioning an array of
size m costs m=B misses if m > BC and 0 misses otherwise. In the second part we correct this
by estimating undercounted and overcounted cache misses. Let M(n) be the expected number of
misses incurred in quicksort under our assumption of the �rst part of the analysis. We then have
the recurrence

M(n) =
n

B
+

1

n

n�1X

i=0

(M(i) +M(n� i� 1)) if n > BC

and M(n) = 0 if n � BC. Using standard techniques [15] this recurrence solves to

M(n) =
2(n+ 1)

B
ln(

n+ 1

BC + 2
) +O(

1

n
)

for n > BC.
The �rst correction we make is undercounting the misses that are incurred when the subproblem

�rst reaches size � BC. In the analysis above we count this as zero misses, when in fact this
subproblem may have no part in the cache. To account for this we add in n=B more misses since
there are approximately n keys in all the subproblems that �rst reach size � BC.

In the very �rst partitioning in quicksort, there are n=B cache misses, but not necessarily for
subsequent partitionings. At the end of partitioning some of the array in the left subproblem is
still in the cache. Hence there are hits that we are counting as misses in the analysis above. Note
that the right subproblem does not have these hits because by the time the algorithm reaches the
right subproblem its data has been removed from the cache.

We �rst analyze the expected number of subproblems of size > BC. This is given by the
recurrence

N(n) = 1 +
1

n

n�1X

i=0

(N(i) +N(n� i� 1)) if n > BC

and N(n) = 0 if n � BC. This recurrence solves exactly to

N(n) =
n + 1

BC + 2
� 1

for n > BC. For each of these subproblems there is a left subproblem. On average, BC=2 of the
keys in this left subproblem are in the cache. Not all the accesses to these keys are hits. While
the right pointer in the partitioning enjoys the bene�t of access to these keys, the left pointer
eventually accesses blocks that map to these blocks in the cache, thereby replacing them. Without
loss of generality we can assume that the right pointer in the partitioning begins at the right end
of the cache. There are two scenarios. In the �rst scenario, the right pointer progresses left and the
left pointer starts i blocks to the left of the middle of the cache and progresses right. On average,
there will be C=2+i

2 hits. In the second scenario, the left pointer starts i blocks to the right of the

middle of the cache and progresses right. On average, there will be i+ C=2�i
2 = C=2+i

2 hits. If we
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assume that the left pointer can start on any block with equal probability then we can estimate
the expected number of hits to be

2

C

C=2X

i=1

C=2 + i

2
�

3C

8
:

Hence the expected number of hits not accounted for in the computation of M(n) is approximately

3C

8
N(n):

Adding up all the pieces, for n > BC, the expected number of misses per key is approximately

(M(n) + (n=B)�
3C

8
N(n))=n

which is approximated closely by expression (4) above. Figure 7 shows how well this approximation
of cache misses predicts the actual performance of memory-tuned quicksort. In addition, Figure 7
shows approximation of 1=B more misses per key for base quicksort is predicted well.

For multi-quicksort the approximate analysis is quite simple. If n � BC multi-quicksort the
number of misses per key is simply 1=B, the compulsory misses. For n > BC then the algorithm
partitions the input into k = 3n=(BC) pieces, the vast majority of which are smaller than the
cache. For the purposes of our analysis we assume they are are all smaller than the cache. In
this multi-partition phase we move the partitioned keys into k linked lists one for each partition.
Each node in a linked list has room for 100 keys. In this way can minimize storage waste at the
same time as minimizing cache misses. We approximate the number of misses per key in the �rst
phase as 2=B, one miss per block in the input array and one miss per block in the linked list.
In the second phase each partition is returned to the input array and sorted in place. This costs
approximately another 2=B misses per key. The cache miss overhead of maintaining the additional
pivots is negligible for practical values of n, B and C. The total is approximately

4

B
(5)

misses per key which closely matches the misses reported in Figure 2.

6 Heapsort

While heaps are used for a variety of purposes, they were �rst proposed by Williams as part of
the heapsort algorithm [24]. The heapsort algorithm sorts by �rst building a heap containing all
of the keys and then removing them one at a time in sorted order. Using an array implementation
of a heap results in an straightforward in-place sorting algorithm. On a set of n keys, Williams'
algorithm takes O(n logn) steps to build the heap and O(n logn) steps to remove the keys in sorted
order. In 1965 Floyd proposed an improved technique for building a heap with better average case
performance and a worst case of O(n) steps [7]. Williams' base algorithm with Floyd's improvement
is still the most prevalent heapsort variant in use.

6.1 Base Algorithm

As a base heapsort algorithm, we follow the recommendations of algorithm textbooks and use an
array implementation of a binary heap constructed using Floyd's method. In addition, we employ
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a standard optimization of using a sentinel at the end of the heap to eliminate a comparison per
level which reduces instruction count. The literature contains a number of other optimizations that
reduce the number of comparisons performed for both adds and removes [4, 2, 9], but in practice
these increase the total number of instructions executed and do not improve performance. For this
reason, we do not include them in our base heapsort.

6.2 Memory Optimizations

To this base heapsort algorithm, we now apply memory optimizations in order to further improve
performance. Our previous results [17, 16] show that William's repeated-adds algorithm [24] for
building a binary heap incurs fewer cache misses than Floyd's method. In addition we have shown
that two other optimizations reduce the number of cache misses incurred by the remove-min oper-
ation [17, 16]. The �rst optimization is to replace the traditional binary heap with a d-heap [14]
where each non-leaf node has d children instead of two. The fanout d is chosen so that exactly d keys
�t in a cache block. If d is relatively small, say 4 or 8, there is an added advantage that the number
of instructions executed for both add and remove-min is also reduced. The second optimization is
to align the heap array in memory so that all d children lie on the same cache block. This opti-
mization reduces what Lebeck and Wood refer to as alignment misses [18]. Our memory-optimized
heapsort dynamically chooses between Williams' repeated-adds method and Floyd's method for
building a heap. If the heap is larger than the cache and Williams' method can o�er a reduction
in cache misses, it is chosen over Floyd's method. We call the base algorithm with these memory
optimizations applied memory-tuned heapsort.

6.3 Performance

Since the DEC Alphastation 250 has a 32 byte block size and since we are sorting 8 byte keys, 4 keys
�t in a block. As a consequence we choose d = 4 in our memory-tuned heapsort. Figure 3 shows
the performance of both the base heapsort and the memory-tuned heapsort. The instruction count
curves show that memory-tuned heapsort executes fewer instructions than base heapsort (d = 2).

The graph of cache performance shows that when the set to be sorted �t in the cache, the
minimum 8 bytes / 32 bytes = 0.25 compulsory misses are incurred per key for both algorithms.
For larger sets the number of cache misses incurred by memory-tuned heapsort is less than half the
misses incurred by base heapsort.

The execution time graph shows that the memory-tuned heapsort outperforms the base heapsort
for all set sizes. The memory-tuned heapsort initially outperforms the base heapsort due to lower
instruction counts. When the set size reaches the cache size, the gap widens due to di�erences in
the number of cache misses incurred. For 4,096,000 keys, the memory-tuned heapsort sorts 81%
faster than the base heapsort.

6.4 Analysis

For n � BC heapsort, as an in-place sorting algorithm takes 1=B misses per key. For n > BC we
adopt an analysis technique, collective analysis that we used in a previous paper [17]. Collective
analysis is an analytical framework for predicting the cache performance of algorithms when the
algorithm's memory access behavior can be approximated using independent stochastic processes.
As part of the analysis, the cache is divided into regions that are assumed to be accessed uniformly.
By stating the way in which each process accesses each region, a simple formula can be used to
predict cache performance. While collective analysis makes a number of simpli�cations which limit
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the class of algorithms that can be accurately analyzed, it serves well for algorithms whose behavior
is understood, but whose exact reference pattern varies.

As part of our collective analysis work, we analyzed the cache performance of d-heaps in the
hold model. In the hold model, the number of elements in the heap is held constant as elements
are alternately removed from and added to the heap. By adding some additional work between
the removes and the adds, the hold model becomes a good approximation of a discrete event
simulation with a static number of events. While the number of elements in the heap does not
remain constant during heapsort, we can still use our collective analysis of heaps to approximate
its cache performance.

Our heapsort algorithm goes through two phases: the build-heap phase and the remove phase.
For the build-heap phase, recall that William's method for building the heap simply puts each key
at the bottom of the heap and percolates it up to its proper place [24]. We pessimistically assume
that all of these adds percolate to the root and that only the most recent leaf-to-root path is in the
cache. In this case, the probability that the next leaf is not in the cache is 1=B, that chance that
the parent of that leaf is not in the cache is 1=(dB), the chance that the grandparent of that leaf
is not in the cache is 1=(d2B), and so on. This gives the simple approximation of the number of
misses incurred per key during the build phase of

P
1

i=0 1=(d
iB) = d=((d� 1)B). Thus we estimate

the expected number of misses for the build-heap phase at dn=((d� 1)B). It is interesting to note
that this is within a small constant factor of the n=B compulsory misses that must be incurred by
any build-heap algorithm.

We divide the remove phase of heapsort into n=(BC) subphases with each subphase removing
BC keys. For 0 � i < n=(BC)� 1 we model the removal of keys BCi+1 to BC(i+1) as BC steps
on an array of size n � BCi in the hold model. In essence, we are saying that the removal of BC
keys from the d-heap is approximated by BC repeated remove-mins and adds in approximately the
same size d-heap. Admittedly, this approximation was one of convenience because we already had
a complete approximate analysis of the d-heap in the hold model. Combining this remove phase
estimate with our build-heap predictions yields Figure 8. This graph shows our cache predictions
for heapsort using both the traditional binary heap (base heapsort) and the 4-heap (memory-
tuned heapsort). The predictions match the simulation results surprisingly well considering the
simplifying assumptions made in the analysis.

7 Radix Sort

Radix sort is the most important non-comparison based sorting algorithm used today. Knuth [15]
traces the radix sort suitable for sorting in the main memory of a computer to a Master's thesis of
Seward, 1954 [21]. Seward pointed out that radix sort of n keys can be accomplished using two n
key arrays together with a count array of size 2r which can hold integers up to size n, where r is the
\radix." Seward's method is still a standard method found in radix sorting programs. Radix sort
is often called a \linear time" sort because for keys of �xed length and for a �xed radix a constant
number of passes over the data is su�cient to accomplish the sort, independent of the number of
keys. For example, if we are sorting b bit integers with a radix of r then Seward's method does
db=re iterations each with 2 passes over the source array. The �rst pass accumulates counts of the
number of keys with each radix. The counts are used to determine the o�sets in the keys of each
radix in the destination array. The second pass moves the source array to the destination array
according to the o�sets. Friend [8] suggested an improvement to reduce the number of passes over
the source array, by accumulating the counts for the (i+1)-st iteration at the same time as moving
keys during the i-th iteration. This requires a second count array of size 2r. This improvement has
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a positive e�ect on both instruction count and cache misses. Our radix sort is a highly optimized
version of Seward's algorithm with Friend's improvement. The �nal task is to pick the radix which
minimizes instruction count. This is done empirically since there is no universally best r which
minimizes instruction count.

There is no obvious memory optimization for radix sort that is similar to those that we used
for our comparison sorts. A simple memory optimization is to choose the radix which minimizes
cache misses. As it happens, for our implementation of radixsort, a radix of 16 bits minimizes both
cache misses and instruction count on an Alphastation 250. In the analysis subsection below we
take a closer look at the cache misses incurred by radix sort.

7.1 Performance

For this study the keys are 64 bit integers and the counts can be restricted to 32 bit integers.
With a 16 bit radix the two count arrays together are 1/4-th the size of the 2 Megabyte cache.
Figure 4 shows the resulting performance. The instruction count graph shows radix sort's \linear
time" behavior rather stunningly. The cache miss graph shows that when the size of the input
array reaches the cache capacity the number of cache misses rapidly grows to a constant slightly
more than 3 misses per key. The execution time graph clearly shows the e�ect that cache misses
can have on overall performance. The execution time curve looks much like the instruction count
curve until the input array exceeds the cache size at which time cycles per key increase according
to the cache miss curve.

7.2 Analysis

The approximate cache miss analysis of radix sort is more complicated than our previous analyses
for a number of reasons. First, there are a multitude of parameters to consider in this analysis:
n, the number of keys; b, the number of bits per key; r, the radix; B, the number of keys per
block; A, the number of counts per block; C, the capacity of the cache in blocks. Second, there are
several cache e�ects to consider. We will focus on what we feel are the three most signi�cant cache
e�ects, the capacity misses in traversals over the source and destination arrays, the conict misses
between the traversal of the source array and accesses to the two count arrays, and the conict
misses between the traversal of the source array and accesses to the destination array.

We will focus on analyzing the number of cache misses for a �xed large number of keys, while
varying the radix. In the case of radix 16 this analysis attempts to predict the at part of the cache
curve in Figure 4. We assume that the size of the two count arrays is less than the cache capacity,
2r+1 � AC. In addition, we assume that r � b. For n > BC, the expected number of cache misses
per key in radix sort is approximated by sum of three terms Mtrav +Mcount +Mdest where Mtrav
is the number of misses per key incurred in traversing the source and destination arrays, Mcount is
the expected number of misses per key incurred in accesses to the count arrays, and Mdest is the
expected number of misses per key in the destination array caused by conicts with the traversal
of the source array. We approximate Mtrav, Mcount, and Mdest by the following:

Mtrav =
1

B
(2d

b

r
e + 1) +

2

B
(d
b

r
e mod 2) (6)

Mcount =
2r+1

ABC
(1� (1�min(1;

A

2r
))BC)b

b

r
c+

2(bmodr)+1

ABC
(1� (1�min(1;
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))BC) (7)

Mdest =
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1
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We start with the derivation of Mtrav, equation (6). To implement Friend's improvement,
there is an initial pass over the input array during which counts are accumulated in the �rst count
array. Then there are db=re iterations, where a source array is moved to the the destination array
according to the o�sets established by one of the count arrays in the previous iteration. If db=re
is odd then the �nal sorted array must be copied back into the input array. In total, there are
2db=re+ 1+ 2(db=remod 2) passes over either a source or destination array. Ignoring any conicts
between the source and destination array, the number of misses per key is 1=B times the number
of passes.

The quantity Mcount accounts for the misses in random accesses in the two count arrays caused
by the traversal over the source array. There are a total of db=re+1 traversals over the source array
that conict with random accesses to at least one count array. If r divides b then the �rst and last
traversal conict with random accesses to one count array of size 2r and all the other traversals
conict with random accesses to two count arrays of size 2r. If r does not divide b then the �rst
traversal conicts with random accesses to one count array of size 2r, the last traversal conicts
with random accesses to one count array of size 2bmodr, the second to last traversal conicts with
random access to one count array of size 2r and one count array of size 2bmodr, and the remaining
traversals, if any, conict with random accesses to two count arrays of size 2r. Generally, let us
consider a pass over a source array that is in conict with a count array of size 2m. Consider a
speci�c block x in one of the count arrays. Every BC steps of the algorithm the traversal of the
source array ejects the block x from the cache. If the block is accessed in the count array before
the another BC steps of the algorithm then a miss is incurred in that access. The probability
that block x is accessed in BC steps is 1 � (1�min(1; A=2m))BC . The total expected number of
misses is approximated by this quantity times the number of blocks in the array (2m=A) times the
number of times x is visited in the traversal (n=(BC)). Thus, the expected number of misses per
key incurred by a traversal over the source array in the count array of size 2m is approximately

2m

ABC
(1� (1�min(1;

A

2m
))BC): (9)

If r divides b then the e�ect is 2b=r passes that conict with a single count array of size 2r.
Expression (9) yields the �rst term of equation (7) (and the second term is negligible). If r does
not divide b then the e�ect is 2bb=rc passes that conict with a count array of size 2r and two
passes that conict with a count array of size 2bmodr. This yields equation (7).

The quantity Mdest accounts for the conict for the cache between the traversal over the source
array and accesses into the destination array. Consider a speci�c block x in the destination array.
In each iteration of the algorithm this block is visited exactly B times. The �rst visit is a cache miss
that was accounted for in Mtrav above. Each of the remaining B � 1 visits is a cache hit unless the
traversal in the source array visits the cache block of x before the next visit to x by the destination
array. Assume that the number of pointers into the destination array is 2m. As an approximation
we assume that the B� 1 remaining accesses to block x each occur independently with probability
1=2m. Under this assumption, the probability that the traversal will visit the cache block of x
before the next visit to x by the destination array is

2m

BC
(1� (1�

1

2m
)BC): (10)

To see this, suppose that in exactly i + 1 steps the traversal will visit the cache block of x. The
probability that x will be accessed in the destination array before the traversal captures the cache
block of x is approximately (1� 1=2m)i. With probability 1=BC the traversal is i+ 1 steps from
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capturing the cache block of x. Thus, the probability that the traversal will capture the cache block
of x before the access to block x is

1

BC

BC�1X

i=0

(1�
1

2m
)i

which is equal to expression (10). To complete the derivation of equation (8) there are two cases to
consider, depending on whether r divides b or not. If r divides b then there are b=r traversals of the
source array that conict with a traversal of the destination array. There are 2r pointers into the
destination array. The expected number of misses per key is then the number of passes, b=r, times
2r

BC (1� (1 � 1=2r)BC) times (B � 1)=B, which totals to the �rst term of Mdest. In this case the
second term of Mdest is negiligible. If r does not divide b then there are bb=rc traversals with 2r

pointers and one traversal with 2bmodr pointers. Using an analysis similar to that above yields the
equation for Mdest. We should note that a more accurate formula for Mdest, that does not treat
the B � 1 accesses to block x as independent, can be derived. However, the more accurate formula
is actually a complex recurrence that does not yield itself to a simple closed form solution nor to a
tractable numerical solution. Our independence assumption seems to yield fairly accurate results.

Figure 9 compares this approximation with the actual number of cache misses incurred per key,
as a function of r, by radix sort for n = 4; 096; 000, b = 64, A = 8, B = 4, and C = 216. Figure 9
only goes up to radix 18 because beyond radix 18 the two count arrays are together larger than the
cache. The theoretical prediction and the simulation agree that for this parameter set the optimal
radix is 16.

8 Discussion

In this section we compare the performance of the fastest variant of each of the four sorting algo-
rithms we examined in our study. In addition, we examine the performance of our algorithms on
four additional architectures, in order to explore the robustness of our memory optimizations.

8.1 Performance Comparison

To compare performance across sorting algorithms, Figure 5 shows the instruction count, cache
misses and cycles executed per key for the fastest variants of heapsort, mergesort, quicksort and
radix sort.

The instruction count graph shows that the memory-tuned heapsort executes the most instruc-
tions, while radix sort executes the least. The cache miss graph shows that radix sort has the most
cache misses, incurring more than twice as many misses as memory-tuned quicksort. The execu-
tion time graph strikingly shows the e�ect of cache performance on overall performance. For the
largest data set memory-tuned quicksort ran 24% faster than radix sort even though memory-tuned
quicksort performed more than three times as many instructions. This graph also shows that the
small di�erences in instruction count and cache misses between the memory-tuned mergesort and
memory-tuned quicksort o�set to yield two algorithms with very comparable execution times.

8.2 Robustness

In order to determine if our experimental results generalize beyond the DEC Alphastation 250, we
ran our programs on four other platforms: an IBM Power PC, a Sparc 10, a DEC Alpha 3000/400
and a Pentium base PC. Figure 10 shows the speedup that the memory-tuned heapsort achieves



16

over the base heapsort for the Alphastation 250 as well as these four additional machines. Despite
the di�erences in architecture, all the platforms show similar speedups.

Figure 11 shows the speedup of our tiled mergesort over the traditional mergesort for the
same �ve machines. Unlike the heapsort case, the speedups for mergesort di�er substantially.
This is partly due to di�erences in the page mapping policies of the di�erent operating systems.
Throughout this study we have assumed that a block of contiguous pages in the virtual address
space map to a block of contiguous pages in the cache. This is only guaranteed to be true when
caches are virtually indexed rather than physically indexed [10]. Unfortunately, the caches on all
�ve of our test machines are physically indexed. Fortunately, some operating systems, such as
Digital Unix, have virtual to physical page mapping polices that attempt to map pages so that
blocks of memory nearby in the virtual address space do not conict in the cache [23]. Unlike the
heapsort algorithms, tiled mergesort relies heavily on the assumption that a cache-sized block of
pages do not conict in the cache. As a result, the speedup of tiled mergesort relies heavily on
the quality of the operating system's page mapping decisions. While the operating systems for
the Sparc and the Alphas (Solaris and Digital Unix) make cache-conscious decisions about page
placement, the operating systems for the Power PC and the Pentium (AIX and Linux) appear not
to be as careful.

9 Conclusions

We have explored the potential performance gains that cache-conscious design and analysis o�ers
to classic sorting algorithms. The main conclusion of this work is that the e�ects of caching are
extremely important and need to be considered if good performance is a goal. Despite its very low
instruction count, radix sort is outperformed by both mergesort and quicksort due to its relatively
poor locality. Despite the fact that the multi-mergesort executed 75% more instructions than the
base mergesort, it sorts up to 70% faster. Neither the multi-mergesort nor the multi-quicksort are
in-place or stable. Nevertheless, these two algorithms o�er something that none of the others do.
They both incur very few cache misses, which renders their overall performance far less sensitive to
cache miss penalties than the others. As a result, these algorithms can be expected to outperform
the others as relative cache miss penalties continue to increase.

In this paper, a number of memory optimizations are applied to algorithms in order to improve
their overall performance. What follows is a summary of the design principles applied in this work:

� Improving cache performance even at the cost of an increased instruction count can improve
overall performance.

� Knowing and using architectural constants such as cache size and block size can improve an
algorithm's memory system performance beyond that of a generic algorithm.

� Spatial locality can be improved by adjusting an algorithm's structure to fully utilize cache
blocks.

� Temporal locality can be improved by padding and adjusting data layout so that structures
are aligned within cache blocks.

� Capacity misses can be reduced by processing large data sets in cache-sized pieces.

� Conict misses can be reduced by processing data in cache-block-sized pieces.
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This paper also shows that despite the complexities of caching, the cache performance of algo-
rithms can be reasonably approximated with a modest amount of work. Figures 6-9 show that our
approximate analysis gives good information. However, more work needs to be done to improve
the analysis techniques to make them more accurate.
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Figure 1: Performance of mergesort on sets between 4,000 and 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key and the execution times per key.
Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2 megabytes with
a 32 byte block size.
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Figure 2: Performance of quicksort on sets between 4,000 and 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key and the execution times per key.
Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2 megabytes with
a 32 byte block size.
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Figure 3: Performance of heapsort on sets between 4,000 and 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key and the execution times per key.
Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2 megabytes with
a 32 byte block size.
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Figure 4: Performance of radixsort on sets between 4,000 and 4,096,000 keys. From top to bottom,
the graphs show instruction counts per key, cache misses per key and the execution times per key.
Executions were run on a DEC Alphastation 250 and simulated cache capacity is 2 megabytes with
a 32 byte block size.
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Figure 5: Instruction count, cache misses and execution time per key for the best heapsort, merge-
sort, quicksort and radix sort on a DEC Alphastation 250. Simulated cache capacity is 2 megabytes,
block size is 32 bytes.



24

0

2

4

6

8

10

12

10000 100000 1e+06

c
a
c
h
e
 
m
i
s
s
e
s
 
p
e
r
 
k
e
y

set size in keys

base mergesort - measured
base mergesort - predicted
tiled mergesort - measured
tiled mergesort - predicted

Figure 6: Cache misses incurred by mergesort, measured versus predicted.
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Figure 7: Cache misses incurred by quicksort, measured versus predicted.
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Figure 8: Cache misses incurred by heapsort, measured versus predicted.
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Figure 9: Cache misses incurred by radix sort, measured versus predicted.
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Figure 10: Speedup of memory-tuned heapsort over base heapsort on �ve architectures.
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Figure 11: Speedup of tiled mergesort over base mergesort on �ve architectures.


