
CS168: The Modern Algorithmic Toolbox
Lecture #3: Similarity Metrics and kd-Trees

Tim Roughgarden & Gregory Valiant∗

April 13, 2020

1 Similarity Search

We begin with the basic problem of how to organize/represent a dataset so that similar items
can be found quickly. There are two slightly different settings in which one might want to
consider this question:

1. All the data is present, and one wants to find pairs or sets of similar items from within
the dataset.

2. There is a reference dataset that one has plenty of time to process cleverly, but when
we are given a new datapoint, we want to very quickly return a similar datapoint from
the reference dataset. This setting is sometimes referred to as the ”nearest neighbor
search” setting.

In general, similar techniques/approaches are used for the above two settings, though it
is worth being aware of the the different objectives.

There are many real-world applications of similarity search:

• Similar documents, web pages, genomes, etc. (de-duplication of datasets, plagiarism
detection in code/essays, detecting mirror web sites, finding similar genes or sequencing
populations of organisms such as in the human gut “microbiome”).

• Collaborative filtering: find similar products (based on whether the same set of peo-
ple purchased them) or individuals (based on purchase history, demographics, web
browsing behavior, etc.).

• Machine learning/classification: If we find two similar datapoints, they might have the
same label....

∗ c©2015–2020, Tim Roughgarden and Gregory Valiant. Not to be sold, published, or distributed without
the authors’ consent.

1

• Combining datasets (e.g. in astronomy—different telescopes take pictures of the same
portions of the sky, maybe in different wavelengths, etc.–very useful to automatically
aggregate these datasets).

• Super fast labeling: e.g. in CERN (which is back up and running as of yesterday), might
want to very quickly figure out which particle traces/trajectories are “interesting” and
worth saving, and which trajectories are just boring/common particles.

2 Measures of Similarity

Before talking about algorithms for finding similar objects, we should begin by considering
several quantifications of what “similarity” means.

2.1 Jaccard Similarity

Jaccard similarity, which we denote by J(·, ·), is a distance metric between two sets (or two
multisets—e.g. sets where elements are allowed to appear more than once) of objects, S, T :

J(S, T) =
|S ∩ T |
|S ∪ T |

.

Equivalently, if we represent our sets (or multisets) S, T as vectors vS, vT , with the ith index
of the vector vS(i) equalling the number of times that the ith element is represented in S,
the above definition becomes:

J(S, T) = J(vS, vT) =

∑
i min(vS(i), vT (i))∑
i max(vS(i), vT (i))

.

This expression is undefined if S, T are both the empty set, in which case we can define the
distance to be 0.

Jaccard similarity works quite well in practice, especially for sparse data. For example,
if we represent documents in terms of the multiset of words they contain, then the Jaccard
similarity between two documents is often a reasonable measure of their similarity. Similarly,
to estimate similarity between individuals, an online marketplace like Amazon, might repre-
sent people as multisets of items purchased, etc, or movies reviewed, etc., and use Jaccard
similarity.

2.2 Euclidean Distance/ `2 distance, and `p distance

Given datapoints in Rd, the Euclidean distance metric, which we are all familiar with, is
simply

Deuclidean(x, y) = ||x− y||2 =

√√√√ d∑
i=1

(x(i)− y(i))2.

2

More generally, we can define other measures of similarity for points in Rd that generalize
the above form; the `p distance is defined as

||x− y||p =

(
d∑

i=1

|x(i)− y(i)|p
)1/p

.

If p = 1, we get “manhattan” distance, and for large p, ||x−y||p is more and more dependent
on the coordinate with maximal difference, with the `∞ distance simply being defined as
maxi |x(i)− y(i)|.

Note that `2 distance is rotationally invariant, whereas `p for p 6= 2 is not invariant to
rotations of the space. One interpretation of this fact is that if you are using `p distance with
p 6= 2, you should make sure that the coordinates of your space actually mean something—
it does not make too much sense to use a distance metric that depends on your choice of
coordinate axes, if your choice of coordinate axes are arbitrary.

2.3 Other similarity metrics

There are many other similarity metrics, including “cosine similarity” which we saw on the
homework, and “edit distance” that measures the similarity between strings (documents,
genetic sequences, etc.) by asking “how many edits—-i.e. insertions/deletions” does it take
to get from one string to the other. Given all these similarity metrics, and it is always worth
spending some time thinking about what metric is right for a given problem.

2.4 The Relationships between Metrics, and Metric Embeddings

A very natural mathematical questions is “how different are the different metrics”? A specific
practical motivation is that many geometric algorithms are designed for Euclidean distance
(in part because of its rotation invariance). Given a set of points, and a distance metric D, is
it possible to map the points into a set of point in Rd, such that the original distance between
points is equal to (or closely approximated by) the Euclidean distance between the images
of those points? Formally, given a distance metric D, and a set of points X = x1, . . . , xn,
is it possible to map the points to a set Y = y1, . . . , yn, where yi ∈ Rd, ideally for a lowish
dimension d, s.t. for all i, j,

D(xi, xj) ≈ ||yi − yj||2.
This is known as a “metric embedding”—in this case, an embedding into Rd under

Euclidean distance—and there is a whole area of math/geometry/computer science devoted
to studying when such embeddings exist.

3 A Datastructure for Similarity Search: kd-trees

For the remainder of the lecture, we will focus on Euclidean distance, though it is worth
thinking about how one would apply these ideas to other similarity measures.

3

A kd-tree (originally proposed by Bentley in 1975) is a space partitioning datastructure
that allows one to very quickly find the closest point in a dataset to a given “query” point.
kd-trees perform extremely well when the dimensionality (or effective dimensionality) of the
data is not too large—usually people say that it works well if the dimensionality of the space
is less than 20, or if the number of points is at least 2d, where d is the dimensionality of
the points. There are many variants of kd-trees, and you should think of this as a general
framework for designing such a datastructure, though the specifics can be fruitfully tailored
to individual datasets and applications.

The high-level idea is to build a binary search tree that partitions space. Edges of
the tree will correspond to subsets of space, and each node, v, in the tree will have two
data-fields: the index of some dimension iv, and a value mv. Let Sv denote the subset of
space corresponding to the edge going into a node v, and let S<, S> denote the subsets
of space corresponding to the two outgoing edges of v. These subsets will be defined as
S< = {x : x ∈ Sv, s.t. x(iv) < mv} and S> = {x : x ∈ Sv, s.t. x(iv) ≥ mv}.

We build this tree as follows:

Algorithm 1
kd-Tree

Given a pair [S, v], where S = x1, . . . , xn is a set of points with xi ∈ Rd,
corresponding to node v in a partially built kd-tree:

• if n = 1, then store that point in the node v. v will now be a leaf of the
tree.

• Otherwise, pick a dimension i ∈ {1, . . . d} [there are many suggested
heuristics]

• Let m be the median of the ith dimension of the points: m =
median[x1(i), . . . , xn(i)]. Store dimension i and median m at node v.
Partition the set S into S< and S> according to whether the ith coor-
dinate of each point exceeds m. [Note that in some implementations,
“median” might be replaced by “mean” or some other value.]

• Make two children of v< and v>, and recurse on [v<, S<] and [v>, S>].

Note that the size of the data-structure is linear in the size of the initial pointset. To add
a point, v, to the structure, one simply goes down the tree, querying the indices of V , and
comparing them to the various medians until one reaches a leaf, at which point one will then
split the leaf into two children. The tree will initially be balanced (because we are using the
medians of the coordinate values), and hence will have depth O(log n).

Given a node v, if we want to find the closest point in our kd-tree structure to v, we will
first go down the tree and find the leaf in which v would end up. We then go back up the
tree, at each juncture, asking “is it possible that the closest point to v would have ended up

4

down the other path?”. In low dimensions, the answer to this question will often be “no”,
and the search will be efficient. For example, in 1 dimension, the leaf node corresponding
to v will always contain the closest point to v. [Think about why this is the case!] In high
dimensions, we might end up needing to explore many/all leaves of the tree, which is why
kd-trees are ill-suited to very high dimensional data.

4 The Curse of Dimensionality

Why are high-dimensional spaces often hard to deal with? Why do the running times of many
algorithms scale exponentially with the dimension? One answer is that high-dimensional
spaces, in some sense, can lack geometry. For example, they can have lots and lots of points
with the property that all pairs of points have roughly the same distance.

Example 4.1 What is the largest number of points that fit in d-dimensional space, with
the property that all pairwise distances are in the interval [0.75, 1]?

• d = 1: At most 2 points have this property...if you try to fit a third point, at least one
of the 3 pairwise distances will be off.

• d = 2: At most 3 points have this property...if you try to fit a fourth point, at least
one of the 6 pairwise distances will be off.

• d = 100: You will be able to fit several thousand points!

• In general, you will be able to fit an exponential number of points (a quick calculation
shows that a random set of exp(

√
d) will satisfy this property with high probability).

5

	Similarity Search
	Measures of Similarity
	Jaccard Similarity
	Euclidean Distance/ 2 distance, and p distance
	Other similarity metrics
	The Relationships between Metrics, and Metric Embeddings

	A Datastructure for Similarity Search: kd-trees
	The Curse of Dimensionality

