
72

Chapter 3

Finding Similar Items

A fundamental data-mining problem is to examine data for “similar” items. We
shall take up applications in Section 3.1, but an example would be looking at a
collection of Web pages and finding near-duplicate pages. These pages could be
plagiarisms, for example, or they could be mirrors that have almost the same
content but differ in information about the host and about other mirrors.

We begin by phrasing the problem of similarity as one of finding sets with
a relatively large intersection. We show how the problem of finding textually
similar documents can be turned into such a set problem by the technique known
as “shingling.” Then, we introduce a technique called “minhashing,” which
compresses large sets in such a way that we can still deduce the similarity of
the underlying sets from their compressed versions. Other techniques that work
when the required degree of similarity is very high are covered in Section 3.9.

Another important problem that arises when we search for similar items of
any kind is that there may be far too many pairs of items to test each pair for
their degree of similarity, even if computing the similarity of any one pair can be
made very easy. That concern motivates a technique called “locality-sensitive
hashing,” for focusing our search on pairs that are most likely to be similar.

Finally, we explore notions of “similarity” that are not expressible as inter-
section of sets. This study leads us to consider the theory of distance measures
in arbitrary spaces. It also motivates a general framework for locality-sensitive
hashing that applies for other definitions of “similarity.”

3.1 Applications of Near-Neighbor Search

We shall focus initially on a particular notion of “similarity”: the similarity of
sets by looking at the relative size of their intersection. This notion of similarity
is called “Jaccard similarity,” and will be introduced in Section 3.1.1. We then
examine some of the uses of finding similar sets. These include finding textually
similar documents and collaborative filtering by finding similar customers and
similar products. In order to turn the problem of textual similarity of documents

73

74 CHAPTER 3. FINDING SIMILAR ITEMS

into one of set intersection, we use a technique called “shingling,” which is
introduced in Section 3.2.

3.1.1 Jaccard Similarity of Sets

The Jaccard similarity of sets S and T is |S ∩ T |/|S ∪ T |, that is, the ratio
of the size of the intersection of S and T to the size of their union. We shall
denote the Jaccard similarity of S and T by SIM(S, T).

Example 3.1 : In Fig. 3.1 we see two sets S and T . There are three elements
in their intersection and a total of eight elements that appear in S or T or both.
Thus, SIM(S, T) = 3/8. ✷

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

T
S

Figure 3.1: Two sets with Jaccard similarity 3/8

3.1.2 Similarity of Documents

An important class of problems that Jaccard similarity addresses well is that
of finding textually similar documents in a large corpus such as the Web or a
collection of news articles. We should understand that the aspect of similarity
we are looking at here is character-level similarity, not “similar meaning,” which
requires us to examine the words in the documents and their uses. That problem
is also interesting but is addressed by other techniques, which we hinted at in
Section 1.3.1. However, textual similarity also has important uses. Many of
these involve finding duplicates or near duplicates. First, let us observe that
testing whether two documents are exact duplicates is easy; just compare the
two documents character-by-character, and if they ever differ then they are not
the same. However, in many applications, the documents are not identical, yet
they share large portions of their text. Here are some examples:

3.1. APPLICATIONS OF NEAR-NEIGHBOR SEARCH 75

Plagiarism

Finding plagiarized documents tests our ability to find textual similarity. The
plagiarizer may extract only some parts of a document for his own. He may alter
a few words and may alter the order in which sentences of the original appear.
Yet the resulting document may still contain 50% or more of the original. No
simple process of comparing documents character by character will detect a
sophisticated plagiarism.

Mirror Pages

It is common for important or popular Web sites to be duplicated at a number
of hosts, in order to share the load. The pages of these mirror sites will be
quite similar, but are rarely identical. For instance, they might each contain
information associated with their particular host, and they might each have
links to the other mirror sites but not to themselves. A related phenomenon
is the appropriation of pages from one class to another. These pages might
include class notes, assignments, and lecture slides. Similar pages might change
the name of the course, year, and make small changes from year to year. It
is important to be able to detect similar pages of these kinds, because search
engines produce better results if they avoid showing two pages that are nearly
identical within the first page of results.

Articles from the Same Source

It is common for one reporter to write a news article that gets distributed,
say through the Associated Press, to many newspapers, which then publish
the article on their Web sites. Each newspaper changes the article somewhat.
They may cut out paragraphs, or even add material of their own. They most
likely will surround the article by their own logo, ads, and links to other articles
at their site. However, the core of each newspaper’s page will be the original
article. News aggregators, such as Google News, try to find all versions of such
an article, in order to show only one, and that task requires finding when two
Web pages are textually similar, although not identical.1

3.1.3 Collaborative Filtering as a Similar-Sets Problem

Another class of applications where similarity of sets is very important is called
collaborative filtering, a process whereby we recommend to users items that were
liked by other users who have exhibited similar tastes. We shall investigate
collaborative filtering in detail in Section 9.3, but for the moment let us see
some common examples.

1News aggregation also involves finding articles that are about the same topic, even though
not textually similar. This problem too can yield to a similarity search, but it requires
techniques other than Jaccard similarity of sets.

76 CHAPTER 3. FINDING SIMILAR ITEMS

On-Line Purchases

Amazon.com has millions of customers and sells millions of items. Its database
records which items have been bought by which customers. We can say two cus-
tomers are similar if their sets of purchased items have a high Jaccard similarity.
Likewise, two items that have sets of purchasers with high Jaccard similarity
will be deemed similar. Note that, while we might expect mirror sites to have
Jaccard similarity above 90%, it is unlikely that any two customers have Jac-
card similarity that high (unless they have purchased only one item). Even a
Jaccard similarity like 20% might be unusual enough to identify customers with
similar tastes. The same observation holds for items; Jaccard similarities need
not be very high to be significant.

Collaborative filtering requires several tools, in addition to finding similar
customers or items, as we discuss in Chapter 9. For example, two Amazon
customers who like science-fiction might each buy many science-fiction books,
but only a few of these will be in common. However, by combining similarity-
finding with clustering (Chapter 7), we might be able to discover that science-
fiction books are mutually similar and put them in one group. Then, we can
get a more powerful notion of customer-similarity by asking whether they made
purchases within many of the same groups.

Movie Ratings

Netflix records which movies each of its customers rented, and also the ratings
assigned to those movies by the customers. We can see movies as similar if they
were rented or rated highly by many of the same customers, and see customers
as similar if they rented or rated highly many of the same movies. The same
observations that we made for Amazon above apply in this situation: similarities
need not be high to be significant, and clustering movies by genre will make
things easier.

When our data consists of ratings rather than binary decisions (bought/did
not buy or liked/disliked), we cannot rely simply on sets as representations of
customers or items. Some options are:

1. Ignore low-rated customer/movie pairs; that is, treat these events as if
the customer never watched the movie.

2. When comparing customers, imagine two set elements for each movie,
“liked” and “hated.” If a customer rated a movie highly, put the “liked”
for that movie in the customer’s set. If they gave a low rating to a movie,
put “hated” for that movie in their set. Then, we can look for high Jaccard
similarity among these sets. We can do a similar trick when comparing
movies.

3. If ratings are 1-to-5-stars, put a movie in a customer’s set n times if
they rated the movie n-stars. Then, use Jaccard similarity for bags when
measuring the similarity of customers. The Jaccard similarity for bags

3.2. SHINGLING OF DOCUMENTS 77

B and C is defined by counting an element n times in the intersection if
n is the minimum of the number of times the element appears in B and
C. In the union, we count the element the sum of the number of times it
appears in B and in C.2

Example 3.2 : The bag-similarity of bags {a, a, a, b} and {a, a, b, b, c} is 1/3.
The intersection counts a twice and b once, so its size is 3. The size of the
union of two bags is always the sum of the sizes of the two bags, or 9 in this
case. Since the highest possible Jaccard similarity for bags is 1/2, the score
of 1/3 indicates the two bags are quite similar, as should be apparent from an
examination of their contents. ✷

3.1.4 Exercises for Section 3.1

Exercise 3.1.1 : Compute the Jaccard similarities of each pair of the following
three sets: {1, 2, 3, 4}, {2, 3, 5, 7}, and {2, 4, 6}.

Exercise 3.1.2 : Compute the Jaccard bag similarity of each pair of the fol-
lowing three bags: {1, 1, 1, 2}, {1, 1, 2, 2, 3}, and {1, 2, 3, 4}.

!! Exercise 3.1.3 : Suppose we have a universal set U of n elements, and we
choose two subsets S and T at random, each with m of the n elements. What
is the expected value of the Jaccard similarity of S and T ?

3.2 Shingling of Documents

The most effective way to represent documents as sets, for the purpose of iden-
tifying lexically similar documents is to construct from the document the set
of short strings that appear within it. If we do so, then documents that share
pieces as short as sentences or even phrases will have many common elements
in their sets, even if those sentences appear in different orders in the two docu-
ments. In this section, we introduce the simplest and most common approach,
shingling, as well as an interesting variation.

3.2.1 k-Shingles

A document is a string of characters. Define a k-shingle for a document to be
any substring of length k found within the document. Then, we may associate

2Although the union for bags is normally (e.g., in the SQL standard) defined to have the
sum of the number of copies in the two bags, this definition causes some inconsistency with
the Jaccard similarity for sets. Under this definition of bag union, the maximum Jaccard
similarity is 1/2, not 1, since the union of a set with itself has twice as many elements as the
intersection of the same set with itself. If we prefer to have the Jaccard similarity of a set
with itself be 1, we can redefine the union of bags to have each element appear the maximum
number of times it appears in either of the two bags. This change does not simply double the
similarity in each case, but it also gives a reasonable measure of bag similarity.

78 CHAPTER 3. FINDING SIMILAR ITEMS

with each document the set of k-shingles that appear one or more times within
that document.

Example 3.3 : Suppose our document D is the string abcdabd, and we pick
k = 2. Then the set of 2-shingles for D is {ab, bc, cd, da, bd}.

Note that the substring ab appears twice within D, but appears only once
as a shingle. A variation of shingling produces a bag, rather than a set, so each
shingle would appear in the result as many times as it appears in the document.
However, we shall not use bags of shingles here. ✷

There are several options regarding how white space (blank, tab, newline,
etc.) is treated. It probably makes sense to replace any sequence of one or more
white-space characters by a single blank. That way, we distinguish shingles that
cover two or more words from those that do not.

Example 3.4 : If we use k = 9, but eliminate whitespace altogether, then we
would see some lexical similarity in the sentences “The plane was ready for

touch down”. and “The quarterback scored a touchdown”. However, if we
retain the blanks, then the first has shingles touch dow and ouch down, while
the second has touchdown. If we eliminated the blanks, then both would have
touchdown. ✷

3.2.2 Choosing the Shingle Size

We can pick k to be any constant we like. However, if we pick k too small, then
we would expect most sequences of k characters to appear in most documents.
If so, then we could have documents whose shingle-sets had high Jaccard simi-
larity, yet the documents had none of the same sentences or even phrases. As
an extreme example, if we use k = 1, most Web pages will have most of the
common characters and few other characters, so almost all Web pages will have
high similarity.

How large k should be depends on how long typical documents are and how
large the set of typical characters is. The important thing to remember is:

• k should be picked large enough that the probability of any given shingle
appearing in any given document is low.

Thus, if our corpus of documents is emails, picking k = 5 should be fine.
To see why, suppose that only letters and a general white-space character ap-
pear in emails (although in practice, most of the printable ASCII characters
can be expected to appear occasionally). If so, then there would be 275 =
14,348,907 possible shingles. Since the typical email is much smaller than 14
million characters long, we would expect k = 5 to work well, and indeed it does.

However, the calculation is a bit more subtle. Surely, more than 27 charac-
ters appear in emails, However, all characters do not appear with equal proba-
bility. Common letters and blanks dominate, while ”z” and other letters that

3.2. SHINGLING OF DOCUMENTS 79

have high point-value in Scrabble are rare. Thus, even short emails will have
many 5-shingles consisting of common letters, and the chances of unrelated
emails sharing these common shingles is greater than would be implied by the
calculation in the paragraph above. A good rule of thumb is to imagine that
there are only 20 characters and estimate the number of k-shingles as 20k. For
large documents, such as research articles, choice k = 9 is considered safe.

3.2.3 Hashing Shingles

Instead of using substrings directly as shingles, we can pick a hash function
that maps strings of length k to some number of buckets and treat the resulting
bucket number as the shingle. The set representing a document is then the
set of integers that are bucket numbers of one or more k-shingles that appear
in the document. For instance, we could construct the set of 9-shingles for a
document and then map each of those 9-shingles to a bucket number in the
range 0 to 232 − 1. Thus, each shingle is represented by four bytes instead
of nine. Not only has the data been compacted, but we can now manipulate
(hashed) shingles by single-word machine operations.

Notice that we can differentiate documents better if we use 9-shingles and
hash them down to four bytes than to use 4-shingles, even though the space used
to represent a shingle is the same. The reason was touched upon in Section 3.2.2.
If we use 4-shingles, most sequences of four bytes are unlikely or impossible to
find in typical documents. Thus, the effective number of different shingles is
much less than 232− 1. If, as in Section 3.2.2, we assume only 20 characters are
frequent in English text, then the number of different 4-shingles that are likely
to occur is only (20)4 = 160,000. However, if we use 9-shingles, there are many
more than 232 likely shingles. When we hash them down to four bytes, we can
expect almost any sequence of four bytes to be possible, as was discussed in
Section 1.3.2.

3.2.4 Shingles Built from Words

An alternative form of shingle has proved effective for the problem of identifying
similar news articles, mentioned in Section 3.1.2. The exploitable distinction for
this problem is that the news articles are written in a rather different style than
are other elements that typically appear on the page with the article. News
articles, and most prose, have a lot of stop words (see Section 1.3.1), the most
common words such as “and,” “you,” “to,” and so on. In many applications,
we want to ignore stop words, since they don’t tell us anything useful about
the article, such as its topic.

However, for the problem of finding similar news articles, it was found that
defining a shingle to be a stop word followed by the next two words, regardless
of whether or not they were stop words, formed a useful set of shingles. The
advantage of this approach is that the news article would then contribute more
shingles to the set representing the Web page than would the surrounding ele-

80 CHAPTER 3. FINDING SIMILAR ITEMS

ments. Recall that the goal of the exercise is to find pages that had the same
articles, regardless of the surrounding elements. By biasing the set of shingles
in favor of the article, pages with the same article and different surrounding
material have higher Jaccard similarity than pages with the same surrounding
material but with a different article.

Example 3.5 : An ad might have the simple text “Buy Sudzo.” However, a
news article with the same idea might read something like “A spokesperson

for the Sudzo Corporation revealed today that studies have shown it is

good for people to buy Sudzo products.” Here, we have italicized all the
likely stop words, although there is no set number of the most frequent words
that should be considered stop words. The first three shingles made from a
stop word and the next two following are:

A spokesperson for

for the Sudzo

the Sudzo Corporation

There are nine shingles from the sentence, but none from the “ad.” ✷

3.2.5 Exercises for Section 3.2

Exercise 3.2.1 : What are the first ten 3-shingles in the first sentence of Sec-
tion 3.2?

Exercise 3.2.2 : If we use the stop-word-based shingles of Section 3.2.4, and
we take the stop words to be all the words of three or fewer letters, then what
are the shingles in the first sentence of Section 3.2?

Exercise 3.2.3 : What is the largest number of k-shingles a document of n
bytes can have? You may assume that the size of the alphabet is large enough
that the number of possible strings of length k is at least as n.

3.3 Similarity-Preserving Summaries of Sets

Sets of shingles are large. Even if we hash them to four bytes each, the space
needed to store a set is still roughly four times the space taken by the document.
If we have millions of documents, it may well not be possible to store all the
shingle-sets in main memory.3

Our goal in this section is to replace large sets by much smaller represen-
tations called “signatures.” The important property we need for signatures is
that we can compare the signatures of two sets and estimate the Jaccard sim-
ilarity of the underlying sets from the signatures alone. It is not possible that

3There is another serious concern: even if the sets fit in main memory, the number of pairs
may be too great for us to evaluate the similarity of each pair. We take up the solution to
this problem in Section 3.4.

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 81

the signatures give the exact similarity of the sets they represent, but the esti-
mates they provide are close, and the larger the signatures the more accurate
the estimates. For example, if we replace the 200,000-byte hashed-shingle sets
that derive from 50,000-byte documents by signatures of 1000 bytes, we can
usually get within a few percent.

3.3.1 Matrix Representation of Sets

Before explaining how it is possible to construct small signatures from large
sets, it is helpful to visualize a collection of sets as their characteristic matrix.
The columns of the matrix correspond to the sets, and the rows correspond to
elements of the universal set from which elements of the sets are drawn. There
is a 1 in row r and column c if the element for row r is a member of the set for
column c. Otherwise the value in position (r, c) is 0.

Element S1 S2 S3 S4

a 1 0 0 1

b 0 0 1 0

c 0 1 0 1

d 1 0 1 1

e 0 0 1 0

Figure 3.2: A matrix representing four sets

Example 3.6 : In Fig. 3.2 is an example of a matrix representing sets chosen
from the universal set {a, b, c, d, e}. Here, S1 = {a, d}, S2 = {c}, S3 = {b, d, e},
and S4 = {a, c, d}. The top row and leftmost columns are not part of the matrix,
but are present only to remind us what the rows and columns represent. ✷

It is important to remember that the characteristic matrix is unlikely to be
the way the data is stored, but it is useful as a way to visualize the data. For one
reason not to store data as a matrix, these matrices are almost always sparse
(they have many more 0’s than 1’s) in practice. It saves space to represent a
sparse matrix of 0’s and 1’s by the positions in which the 1’s appear. For another
reason, the data is usually stored in some other format for other purposes.

As an example, if rows are products, and columns are customers, represented
by the set of products they bought, then this data would really appear in a
database table of purchases. A tuple in this table would list the item, the
purchaser, and probably other details about the purchase, such as the date and
the credit card used.

3.3.2 Minhashing

The signatures we desire to construct for sets are composed of the results of a
large number of calculations, say several hundred, each of which is a “minhash”

82 CHAPTER 3. FINDING SIMILAR ITEMS

of the characteristic matrix. In this section, we shall learn how a minhash is
computed in principle, and in later sections we shall see how a good approxi-
mation to the minhash is computed in practice.

To minhash a set represented by a column of the characteristic matrix, pick
a permutation of the rows. The minhash value of any column is the number of
the first row, in the permuted order, in which the column has a 1.

Example 3.7 : Let us suppose we pick the order of rows beadc for the matrix
of Fig. 3.2. This permutation defines a minhash function h that maps sets to
rows. Let us compute the minhash value of set S1 according to h. The first
column, which is the column for set S1, has 0 in row b, so we proceed to row e,
the second in the permuted order. There is again a 0 in the column for S1, so
we proceed to row a, where we find a 1. Thus. h(S1) = a.

Element S1 S2 S3 S4

b 0 0 1 0

e 0 0 1 0

a 1 0 0 1

d 1 0 1 1

c 0 1 0 1

Figure 3.3: A permutation of the rows of Fig. 3.2

Although it is not physically possible to permute very large characteristic
matrices, the minhash function h implicitly reorders the rows of the matrix of
Fig. 3.2 so it becomes the matrix of Fig. 3.3. In this matrix, we can read off
the values of h by scanning from the top until we come to a 1. Thus, we see
that h(S2) = c, h(S3) = b, and h(S4) = a. ✷

3.3.3 Minhashing and Jaccard Similarity

There is a remarkable connection between minhashing and Jaccard similarity
of the sets that are minhashed.

• The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard similarity
of those sets.

To see why, we need to picture the columns for those two sets. If we restrict
ourselves to the columns for sets S1 and S2, then rows can be divided into three
classes:

1. Type X rows have 1 in both columns.

2. Type Y rows have 1 in one of the columns and 0 in the other.

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 83

3. Type Z rows have 0 in both columns.

Since the matrix is sparse, most rows are of type Z. However, it is the ratio
of the numbers of type X and type Y rows that determine both SIM(S1, S2)
and the probability that h(S1) = h(S2). Let there be x rows of type X and y
rows of type Y . Then SIM(S1, S2) = x/(x+ y). The reason is that x is the size
of S1 ∩ S2 and x+ y is the size of S1 ∪ S2.

Now, consider the probability that h(S1) = h(S2). If we imagine the rows
permuted randomly, and we proceed from the top, the probability that we shall
meet a type X row before we meet a type Y row is x/(x + y). But if the
first row from the top other than type Z rows is a type X row, then surely
h(S1) = h(S2). On the other hand, if the first row other than a type Z row
that we meet is a type Y row, then the set with a 1 gets that row as its minhash
value. However the set with a 0 in that row surely gets some row further down
the permuted list. Thus, we know h(S1) 6= h(S2) if we first meet a type Y row.
We conclude the probability that h(S1) = h(S2) is x/(x+ y), which is also the
Jaccard similarity of S1 and S2.

3.3.4 Minhash Signatures

Again think of a collection of sets represented by their characteristic matrix M .
To represent sets, we pick at random some number n of permutations of the
rows of M . Perhaps 100 permutations or several hundred permutations will do.
Call the minhash functions determined by these permutations h1, h2, . . . , hn.
From the column representing set S, construct the minhash signature for S, the
vector [h1(S), h2(S), . . . , hn(S)]. We normally represent this list of hash-values
as a column. Thus, we can form from matrix M a signature matrix, in which
the ith column of M is replaced by the minhash signature for (the set of) the
ith column.

Note that the signature matrix has the same number of columns as M but
only n rows. Even if M is not represented explicitly, but in some compressed
form suitable for a sparse matrix (e.g., by the locations of its 1’s), it is normal
for the signature matrix to be much smaller than M .

3.3.5 Computing Minhash Signatures

It is not feasible to permute a large characteristic matrix explicitly. Even picking
a random permutation of millions or billions of rows is time-consuming, and
the necessary sorting of the rows would take even more time. Thus, permuted
matrices like that suggested by Fig. 3.3, while conceptually appealing, are not
implementable.

Fortunately, it is possible to simulate the effect of a random permutation by
a random hash function that maps row numbers to as many buckets as there
are rows. A hash function that maps integers 0, 1, . . . , k− 1 to bucket numbers
0 through k−1 typically will map some pairs of integers to the same bucket and
leave other buckets unfilled. However, the difference is unimportant as long as

84 CHAPTER 3. FINDING SIMILAR ITEMS

k is large and there are not too many collisions. We can maintain the fiction
that our hash function h “permutes” row r to position h(r) in the permuted
order.

Thus, instead of picking n random permutations of rows, we pick n randomly
chosen hash functions h1, h2, . . . , hn on the rows. We construct the signature
matrix by considering each row in their given order. Let SIG(i, c) be the element
of the signature matrix for the ith hash function and column c. Initially, set
SIG(i, c) to ∞ for all i and c. We handle row r by doing the following:

1. Compute h1(r), h2(r), . . . , hn(r).

2. For each column c do the following:

(a) If c has 0 in row r, do nothing.

(b) However, if c has 1 in row r, then for each i = 1, 2, . . . , n set SIG(i, c)
to the smaller of the current value of SIG(i, c) and hi(r).

Row S1 S2 S3 S4 x+ 1 mod 5 3x+ 1 mod 5
0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Figure 3.4: Hash functions computed for the matrix of Fig. 3.2

Example 3.8 : Let us reconsider the characteristic matrix of Fig. 3.2, which
we reproduce with some additional data as Fig. 3.4. We have replaced the
letters naming the rows by integers 0 through 4. We have also chosen two hash
functions: h1(x) = x+1 mod 5 and h2(x) = 3x+1 mod 5. The values of these
two functions applied to the row numbers are given in the last two columns of
Fig. 3.4. Notice that these simple hash functions are true permutations of the
rows, but a true permutation is only possible because the number of rows, 5, is
a prime. In general, there will be collisions, where two rows get the same hash
value.

Now, let us simulate the algorithm for computing the signature matrix.
Initially, this matrix consists of all ∞’s:

S1 S2 S3 S4

h1 ∞ ∞ ∞ ∞
h2 ∞ ∞ ∞ ∞

First, we consider row 0 of Fig. 3.4. We see that the values of h1(0) and
h2(0) are both 1. The row numbered 0 has 1’s in the columns for sets S1 and

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 85

S4, so only these columns of the signature matrix can change. As 1 is less than
∞, we do in fact change both values in the columns for S1 and S4. The current
estimate of the signature matrix is thus:

S1 S2 S3 S4

h1 1 ∞ ∞ 1
h2 1 ∞ ∞ 1

Now, we move to the row numbered 1 in Fig. 3.4. This row has 1 only in
S3, and its hash values are h1(1) = 2 and h2(1) = 4. Thus, we set SIG(1, 3) to 2
and SIG(2, 3) to 4. All other signature entries remain as they are because their
columns have 0 in the row numbered 1. The new signature matrix:

S1 S2 S3 S4

h1 1 ∞ 2 1
h2 1 ∞ 4 1

The row of Fig. 3.4 numbered 2 has 1’s in the columns for S2 and S4, and
its hash values are h1(2) = 3 and h2(2) = 2. We could change the values in the
signature for S4, but the values in this column of the signature matrix, [1, 1], are
each less than the corresponding hash values [3, 2]. However, since the column
for S2 still has ∞’s, we replace it by [3, 2], resulting in:

S1 S2 S3 S4

h1 1 3 2 1
h2 1 2 4 1

Next comes the row numbered 3 in Fig. 3.4. Here, all columns but S2 have
1, and the hash values are h1(3) = 4 and h2(3) = 0. The value 4 for h1 exceeds
what is already in the signature matrix for all the columns, so we shall not
change any values in the first row of the signature matrix. However, the value
0 for h2 is less than what is already present, so we lower SIG(2, 1), SIG(2, 3) and
SIG(2, 4) to 0. Note that we cannot lower SIG(2, 2) because the column for S2 in
Fig. 3.4 has 0 in the row we are currently considering. The resulting signature
matrix:

S1 S2 S3 S4

h1 1 3 2 1
h2 0 2 0 0

Finally, consider the row of Fig. 3.4 numbered 4. h1(4) = 0 and h2(4) = 3.
Since row 4 has 1 only in the column for S3, we only compare the current
signature column for that set, [2, 0] with the hash values [0, 3]. Since 0 < 2, we
change SIG(1, 3) to 0, but since 3 > 0 we do not change SIG(2, 3). The final
signature matrix is:

S1 S2 S3 S4

h1 1 3 0 1
h2 0 2 0 0

86 CHAPTER 3. FINDING SIMILAR ITEMS

We can estimate the Jaccard similarities of the underlying sets from this
signature matrix. Notice that columns 1 and 4 are identical, so we guess that
SIM(S1, S4) = 1.0. If we look at Fig. 3.4, we see that the true Jaccard similarity
of S1 and S4 is 2/3. Remember that the fraction of rows that agree in the
signature matrix is only an estimate of the true Jaccard similarity, and this
example is much too small for the law of large numbers to assure that the
estimates are close. For additional examples, the signature columns for S1 and
S3 agree in half the rows (true similarity 1/4), while the signatures of S1 and
S2 estimate 0 as their Jaccard similarity (the correct value). ✷

3.3.6 Exercises for Section 3.3

Exercise 3.3.1 : Verify the theorem from Section 3.3.3, which relates the Jac-
card similarity to the probability of minhashing to equal values, for the partic-
ular case of Fig. 3.2.

(a) Compute the Jaccard similarity of each of the pairs of columns in Fig. 3.2.

! (b) Compute, for each pair of columns of that figure, the fraction of the 120
permutations of the rows that make the two columns hash to the same
value.

Exercise 3.3.2 : Using the data from Fig. 3.4, add to the signatures of the
columns the values of the following hash functions:

(a) h3(x) = 2x+ 4 mod 5.

(b) h4(x) = 3x− 1 mod 5.

Element S1 S2 S3 S4

0 0 1 0 1

1 0 1 0 0

2 1 0 0 1

3 0 0 1 0

4 0 0 1 1

5 1 0 0 0

Figure 3.5: Matrix for Exercise 3.3.3

Exercise 3.3.3 : In Fig. 3.5 is a matrix with six rows.

(a) Compute the minhash signature for each column if we use the following
three hash functions: h1(x) = 2x + 1 mod 6; h2(x) = 3x + 2 mod 6;
h3(x) = 5x+ 2 mod 6.

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 87

(b) Which of these hash functions are true permutations?

(c) How close are the estimated Jaccard similarities for the six pairs of columns
to the true Jaccard similarities?

! Exercise 3.3.4 : Now that we know Jaccard similarity is related to the proba-
bility that two sets minhash to the same value, reconsider Exercise 3.1.3. Can
you use this relationship to simplify the problem of computing the expected
Jaccard similarity of randomly chosen sets?

! Exercise 3.3.5 : Prove that if the Jaccard similarity of two columns is 0, then
minhashing always gives a correct estimate of the Jaccard similarity.

!! Exercise 3.3.6 : One might expect that we could estimate the Jaccard simi-
larity of columns without using all possible permutations of rows. For example,
we could only allow cyclic permutations; i.e., start at a randomly chosen row
r, which becomes the first in the order, followed by rows r + 1, r + 2, and so
on, down to the last row, and then continuing with the first row, second row,
and so on, down to row r − 1. There are only n such permutations if there are
n rows. However, these permutations are not sufficient to estimate the Jaccard
similarity correctly. Give an example of a two-column matrix where averaging
over all the cyclic permutations does not give the Jaccard similarity.

! Exercise 3.3.7 : Suppose we want to use a MapReduce framework to compute
minhash signatures. If the matrix is stored in chunks that correspond to some
columns, then it is quite easy to exploit parallelism. Each Map task gets some
of the columns and all the hash functions, and computes the minhash signatures
of its given columns. However, suppose the matrix were chunked by rows, so
that a Map task is given the hash functions and a set of rows to work on. Design
Map and Reduce functions to exploit MapReduce with data in this form.

3.4 Locality-Sensitive Hashing for Documents

Even though we can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of documents, it
still may be impossible to find the pairs with greatest similarity efficiently. The
reason is that the number of pairs of documents may be too large, even if there
are not too many documents.

Example 3.9 : Suppose we have a million documents, and we use signatures
of length 250. Then we use 1000 bytes per document for the signatures, and
the entire data fits in a gigabyte – less than a typical main memory of a laptop.
However, there are

(

1,000,000
2

)

or half a trillion pairs of documents. If it takes a
microsecond to compute the similarity of two signatures, then it takes almost
six days to compute all the similarities on that laptop. ✷

88 CHAPTER 3. FINDING SIMILAR ITEMS

If our goal is to compute the similarity of every pair, there is nothing we
can do to reduce the work, although parallelism can reduce the elapsed time.
However, often we want only the most similar pairs or all pairs that are above
some lower bound in similarity. If so, then we need to focus our attention only
on pairs that are likely to be similar, without investigating every pair. There is
a general theory of how to provide such focus, called locality-sensitive hashing

(LSH) or near-neighbor search. In this section we shall consider a specific form
of LSH, designed for the particular problem we have been studying: documents,
represented by shingle-sets, then minhashed to short signatures. In Section 3.6
we present the general theory of locality-sensitive hashing and a number of
applications and related techniques.

3.4.1 LSH for Minhash Signatures

One general approach to LSH is to “hash” items several times, in such a way that
similar items are more likely to be hashed to the same bucket than dissimilar
items are. We then consider any pair that hashed to the same bucket for any
of the hashings to be a candidate pair. We check only the candidate pairs for
similarity. The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked. Those dissimilar pairs that
do hash to the same bucket are false positives ; we hope these will be only a
small fraction of all pairs. We also hope that most of the truly similar pairs
will hash to the same bucket under at least one of the hash functions. Those
that do not are false negatives; we hope these will be only a small fraction of
the truly similar pairs.

If we have minhash signatures for the items, an effective way to choose the
hashings is to divide the signature matrix into b bands consisting of r rows
each. For each band, there is a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to some large
number of buckets. We can use the same hash function for all the bands, but
we use a separate bucket array for each band, so columns with the same vector
in different bands will not hash to the same bucket.

Example 3.10 : Figure 3.6 shows part of a signature matrix of 12 rows divided
into four bands of three rows each. The second and fourth of the explicitly
shown columns each have the column vector [0, 2, 1] in the first band, so they
will definitely hash to the same bucket in the hashing for the first band. Thus,
regardless of what those columns look like in the other three bands, this pair
of columns will be a candidate pair. It is possible that other columns, such as
the first two shown explicitly, will also hash to the same bucket according to
the hashing of the first band. However, since their column vectors are different,
[1, 3, 0] and [0, 2, 1], and there are many buckets for each hashing, we expect the
chances of an accidental collision to be very small. We shall normally assume
that two vectors hash to the same bucket if and only if they are identical.

Two columns that do not agree in band 1 have three other chances to become
a candidate pair; they might be identical in any one of these other bands.

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 89

1 0 0 0 2
3 2 1 2 2
0 1 3 1 1

.band 1

band 2

band 3

band 4

Figure 3.6: Dividing a signature matrix into four bands of three rows per band

However, observe that the more similar two columns are, the more likely it is
that they will be identical in some band. Thus, intuitively the banding strategy
makes similar columns much more likely to be candidate pairs than dissimilar
pairs. ✷

3.4.2 Analysis of the Banding Technique

Suppose we use b bands of r rows each, and suppose that a particular pair of
documents have Jaccard similarity s. Recall from Section 3.3.3 that the prob-
ability the minhash signatures for these documents agree in any one particular
row of the signature matrix is s. We can calculate the probability that these
documents (or rather their signatures) become a candidate pair as follows:

1. The probability that the signatures agree in all rows of one particular
band is sr.

2. The probability that the signatures disagree in at least one row of a par-
ticular band is 1− sr.

3. The probability that the signatures disagree in at least one row of each
of the bands is (1− sr)b.

4. The probability that the signatures agree in all the rows of at least one
band, and therefore become a candidate pair, is 1− (1− sr)b.

It may not be obvious, but regardless of the chosen constants b and r, this
function has the form of an S-curve, as suggested in Fig. 3.7. The threshold, that
is, the value of similarity s at which the probability of becoming a candidate
is 1/2, is a function of b and r. The threshold is roughly where the rise is
the steepest, and for large b and r there we find that pairs with similarity
above the threshold are very likely to become candidates, while those below the
threshold are unlikely to become candidates – exactly the situation we want.

90 CHAPTER 3. FINDING SIMILAR ITEMS

0 1

 of documents
Jaccard similarity

Probability
of becoming
a candidate

Figure 3.7: The S-curve

An approximation to the threshold is (1/b)1/r. For example, if b = 16 and
r = 4, then the threshold is approximately at s = 1/2, since the 4th root of
1/16 is 1/2.

Example 3.11 : Let us consider the case b = 20 and r = 5. That is, we suppose
we have signatures of length 100, divided into twenty bands of five rows each.
Figure 3.8 tabulates some of the values of the function 1 − (1 − s5)20. Notice
that the threshold, the value of s at which the curve has risen halfway, is just
slightly more than 0.5. Also notice that the curve is not exactly the ideal step
function that jumps from 0 to 1 at the threshold, but the slope of the curve
in the middle is significant. For example, it rises by more than 0.6 going from
s = 0.4 to s = 0.6, so the slope in the middle is greater than 3.

s 1− (1 − sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

Figure 3.8: Values of the S-curve for b = 20 and r = 5

For example, at s = 0.8, 1− (0.8)5 is about 0.672. If you raise this number
to the 20th power, you get about 0.00035. Subtracting this fraction from 1

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 91

yields 0.99965. That is, if we consider two documents with 80% similarity, then
in any one band, they have only about a 33% chance of agreeing in all five rows
and thus becoming a candidate pair. However, there are 20 bands and thus 20
chances to become a candidate. Only roughly one in 3000 pairs that are as high
as 80% similar will fail to become a candidate pair and thus be a false negative.
✷

3.4.3 Combining the Techniques

We can now give an approach to finding the set of candidate pairs for similar
documents and then discovering the truly similar documents among them. It
must be emphasized that this approach can produce false negatives – pairs of
similar documents that are not identified as such because they never become
a candidate pair. There will also be false positives – candidate pairs that are
evaluated, but are found not to be sufficiently similar.

1. Pick a value of k and construct from each document the set of k-shingles.
Optionally, hash the k-shingles to shorter bucket numbers.

2. Sort the document-shingle pairs to order them by shingle.

3. Pick a length n for the minhash signatures. Feed the sorted list to the
algorithm of Section 3.3.5 to compute the minhash signatures for all the
documents.

4. Choose a threshold t that defines how similar documents have to be in
order for them to be regarded as a desired “similar pair.” Pick a number
of bands b and a number of rows r such that br = n, and the threshold
t is approximately (1/b)1/r. If avoidance of false negatives is important,
you may wish to select b and r to produce a threshold lower than t; if
speed is important and you wish to limit false positives, select b and r to
produce a higher threshold.

5. Construct candidate pairs by applying the LSH technique of Section 3.4.1.

6. Examine each candidate pair’s signatures and determine whether the frac-
tion of components in which they agree is at least t.

7. Optionally, if the signatures are sufficiently similar, go to the documents
themselves and check that they are truly similar, rather than documents
that, by luck, had similar signatures.

3.4.4 Exercises for Section 3.4

Exercise 3.4.1 : Evaluate the S-curve 1− (1− sr)b for s = 0.1, 0.2, . . . , 0.9, for
the following values of r and b:

• r = 3 and b = 10.

92 CHAPTER 3. FINDING SIMILAR ITEMS

• r = 6 and b = 20.

• r = 5 and b = 50.

! Exercise 3.4.2 : For each of the (r, b) pairs in Exercise 3.4.1, compute the
threshold, that is, the value of s for which the value of 1−(1−sr)b is exactly 1/2.
How does this value compare with the estimate of (1/b)1/r that was suggested
in Section 3.4.2?

! Exercise 3.4.3 : Use the techniques explained in Section 1.3.5 to approximate
the S-curve 1− (1 − sr)b when sr is very small.

! Exercise 3.4.4 : Suppose we wish to implement LSH by MapReduce. Specifi-
cally, assume chunks of the signature matrix consist of columns, and elements
are key-value pairs where the key is the column number and the value is the
signature itself (i.e., a vector of values).

(a) Show how to produce the buckets for all the bands as output of a single
MapReduce process. Hint : Remember that a Map function can produce
several key-value pairs from a single element.

(b) Show how another MapReduce process can convert the output of (a) to
a list of pairs that need to be compared. Specifically, for each column i,
there should be a list of those columns j > i with which i needs to be
compared.

3.5 Distance Measures

We now take a short detour to study the general notion of distance measures.
The Jaccard similarity is a measure of how close sets are, although it is not
really a distance measure. That is, the closer sets are, the higher the Jaccard
similarity. Rather, 1 minus the Jaccard similarity is a distance measure, as we
shall see; it is called the Jaccard distance.

However, Jaccard distance is not the only measure of closeness that makes
sense. We shall examine in this section some other distance measures that have
applications. Then, in Section 3.6 we see how some of these distance measures
also have an LSH technique that allows us to focus on nearby points without
comparing all points. Other applications of distance measures will appear when
we study clustering in Chapter 7.

3.5.1 Definition of a Distance Measure

Suppose we have a set of points, called a space. A distance measure on this
space is a function d(x, y) that takes two points in the space as arguments and
produces a real number, and satisfies the following axioms:

1. d(x, y) ≥ 0 (no negative distances).

3.5. DISTANCE MEASURES 93

2. d(x, y) = 0 if and only if x = y (distances are positive, except for the
distance from a point to itself).

3. d(x, y) = d(y, x) (distance is symmetric).

4. d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

The triangle inequality is the most complex condition. It says, intuitively, that
to travel from x to y, we cannot obtain any benefit if we are forced to travel via
some particular third point z. The triangle-inequality axiom is what makes all
distance measures behave as if distance describes the length of a shortest path
from one point to another.

3.5.2 Euclidean Distances

The most familiar distance measure is the one we normally think of as “dis-
tance.” An n-dimensional Euclidean space is one where points are vectors of n
real numbers. The conventional distance measure in this space, which we shall
refer to as the L2-norm, is defined:

d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) =

√

√

√

√

n
∑

i=1

(xi − yi)2

That is, we square the distance in each dimension, sum the squares, and take
the positive square root.

It is easy to verify the first three requirements for a distance measure are
satisfied. The Euclidean distance between two points cannot be negative, be-
cause the positive square root is intended. Since all squares of real numbers are
nonnegative, any i such that xi 6= yi forces the distance to be strictly positive.
On the other hand, if xi = yi for all i, then the distance is clearly 0. Symmetry
follows because (xi − yi)

2 = (yi − xi)
2. The triangle inequality requires a good

deal of algebra to verify. However, it is well understood to be a property of
Euclidean space: the sum of the lengths of any two sides of a triangle is no less
than the length of the third side.

There are other distance measures that have been used for Euclidean spaces.
For any constant r, we can define the Lr-norm to be the distance measure d
defined by:

d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) = (

n
∑

i=1

|xi − yi|r)1/r

The case r = 2 is the usual L2-norm just mentioned. Another common distance
measure is the L1-norm, or Manhattan distance. There, the distance between
two points is the sum of the magnitudes of the differences in each dimension.
It is called “Manhattan distance” because it is the distance one would have to

94 CHAPTER 3. FINDING SIMILAR ITEMS

travel between points if one were constrained to travel along grid lines, as on
the streets of a city such as Manhattan.

Another interesting distance measure is the L∞-norm, which is the limit
as r approaches infinity of the Lr-norm. As r gets larger, only the dimension
with the largest difference matters, so formally, the L∞-norm is defined as the
maximum of |xi − yi| over all dimensions i.

Example 3.12 : Consider the two-dimensional Euclidean space (the custom-
ary plane) and the points (2, 7) and (6, 4). The L2-norm gives a distance
of

√

(2− 6)2 + (7− 4)2 =
√
42 + 32 = 5. The L1-norm gives a distance of

|2− 6|+ |7− 4| = 4 + 3 = 7. The L∞-norm gives a distance of

max(|2− 6|, |7− 4|) = max(4, 3) = 4

✷

3.5.3 Jaccard Distance

As mentioned at the beginning of the section, we define the Jaccard distance

of sets by d(x, y) = 1− SIM(x, y). That is, the Jaccard distance is 1 minus the
ratio of the sizes of the intersection and union of sets x and y. We must verify
that this function is a distance measure.

1. d(x, y) is nonnegative because the size of the intersection cannot exceed
the size of the union.

2. d(x, y) = 0 if x = y, because x ∪ x = x ∩ x = x. However, if x 6= y, then
the size of x ∩ y is strictly less than the size of x ∪ y, so d(x, y) is strictly
positive.

3. d(x, y) = d(y, x) because both union and intersection are symmetric; i.e.,
x ∪ y = y ∪ x and x ∩ y = y ∩ x.

4. For the triangle inequality, recall from Section 3.3.3 that SIM(x, y) is the
probability a random minhash function maps x and y to the same value.
Thus, the Jaccard distance d(x, y) is the probability that a random min-
hash function does not send x and y to the same value. We can therefore
translate the condition d(x, y) ≤ d(x, z) + d(z, y) to the statement that if
h is a random minhash function, then the probability that h(x) 6= h(y)
is no greater than the sum of the probability that h(x) 6= h(z) and the
probability that h(z) 6= h(y). However, this statement is true because
whenever h(x) 6= h(y), at least one of h(x) and h(y) must be different
from h(z). They could not both be h(z), because then h(x) and h(y)
would be the same.

.

3.5. DISTANCE MEASURES 95

3.5.4 Cosine Distance

The cosine distance makes sense in spaces that have dimensions, including Eu-
clidean spaces and discrete versions of Euclidean spaces, such as spaces where
points are vectors with integer components or Boolean (0 or 1) components. In
such a space, points may be thought of as directions. We do not distinguish be-
tween a vector and a multiple of that vector. Then the cosine distance between
two points is the angle that the vectors to those points make. This angle will
be in the range 0 to 180 degrees, regardless of how many dimensions the space
has.

We can calculate the cosine distance by first computing the cosine of the
angle, and then applying the arc-cosine function to translate to an angle in the
0-180 degree range. Given two vectors x and y, the cosine of the angle between
them is the dot product x.y divided by the L2-norms of x and y (i.e., their
Euclidean distances from the origin). Recall that the dot product of vectors
[x1, x2, . . . , xn].[y1, y2, . . . , yn] is

∑n
i=1

xiyi.

Example 3.13 : Let our two vectors be x = [1, 2,−1] and = [2, 1, 1]. The dot
product x.y is 1 × 2 + 2 × 1 + (−1) × 1 = 3. The L2-norm of both vectors is√
6. For example, x has L2-norm

√

12 + 22 + (−1)2 =
√
6. Thus, the cosine of

the angle between x and y is 3/(
√
6
√
6) or 1/2. The angle whose cosine is 1/2

is 60 degrees, so that is the cosine distance between x and y. ✷

We must show that the cosine distance is indeed a distance measure. We
have defined it so the values are in the range 0 to 180, so no negative distances
are possible. Two vectors have angle 0 if and only if they are the same direction.4

Symmetry is obvious: the angle between x and y is the same as the angle
between y and x. The triangle inequality is best argued by physical reasoning.
One way to rotate from x to y is to rotate to z and thence to y. The sum of
those two rotations cannot be less than the rotation directly from x to y.

3.5.5 Edit Distance

This distance makes sense when points are strings. The distance between two
strings x = x1x2 · · ·xn and y = y1y2 · · · ym is the smallest number of insertions
and deletions of single characters that will convert x to y.

Example 3.14 : The edit distance between the strings x = abcde and y =
acfdeg is 3. To convert x to y:

1. Delete b.

2. Insert f after c.

4Notice that to satisfy the second axiom, we have to treat vectors that are multiples of
one another, e.g. [1, 2] and [3, 6], as the same direction, which they are. If we regarded these
as different vectors, we would give them distance 0 and thus violate the condition that only
d(x, x) is 0.

96 CHAPTER 3. FINDING SIMILAR ITEMS

3. Insert g after e.

No sequence of fewer than three insertions and/or deletions will convert x to y.
Thus, d(x, y) = 3. ✷

Another way to define and calculate the edit distance d(x, y) is to compute
a longest common subsequence (LCS) of x and y. An LCS of x and y is a
string that is constructed by deleting positions from x and y, and that is as
long as any string that can be constructed that way. The edit distance d(x, y)
can be calculated as the length of x plus the length of y minus twice the length
of their LCS.

Example 3.15 : The strings x = abcde and y = acfdeg from Example 3.14
have a unique LCS, which is acde. We can be sure it is the longest possible,
because it contains every symbol appearing in both x and y. Fortunately, these
common symbols appear in the same order in both strings, so we are able to
use them all in an LCS. Note that the length of x is 5, the length of y is 6, and
the length of their LCS is 4. The edit distance is thus 5 + 6− 2× 4 = 3, which
agrees with the direct calculation in Example 3.14.

For another example, consider x = aba and y = bab. Their edit distance is
2. For example, we can convert x to y by deleting the first a and then inserting
b at the end. There are two LCS’s: ab and ba. Each can be obtained by
deleting one symbol from each string. As must be the case for multiple LCS’s
of the same pair of strings, both LCS’s have the same length. Therefore, we
may compute the edit distance as 3 + 3− 2× 2 = 2. ✷

Edit distance is a distance measure. Surely no edit distance can be negative,
and only two identical strings have an edit distance of 0. To see that edit
distance is symmetric, note that a sequence of insertions and deletions can be
reversed, with each insertion becoming a deletion, and vice versa. The triangle
inequality is also straightforward. One way to turn a string s into a string t
is to turn s into some string u and then turn u into t. Thus, the number of
edits made going from s to u, plus the number of edits made going from u to t
cannot be less than the smallest number of edits that will turn s into t.

3.5.6 Hamming Distance

Given a space of vectors, we define the Hamming distance between two vectors
to be the number of components in which they differ. It should be obvious
that Hamming distance is a distance measure. Clearly the Hamming distance
cannot be negative, and if it is zero, then the vectors are identical. The dis-
tance does not depend on which of two vectors we consider first. The triangle
inequality should also be evident. If x and z differ in m components, and z
and y differ in n components, then x and y cannot differ in more than m + n
components. Most commonly, Hamming distance is used when the vectors are
Boolean; they consist of 0’s and 1’s only. However, in principle, the vectors can
have components from any set.

3.5. DISTANCE MEASURES 97

Non-Euclidean Spaces

Notice that several of the distance measures introduced in this section are
not Euclidean spaces. A property of Euclidean spaces that we shall find
important when we take up clustering in Chapter 7 is that the average
of points in a Euclidean space always exists and is a point in the space.
However, consider the space of sets for which we defined the Jaccard dis-
tance. The notion of the “average” of two sets makes no sense. Likewise,
the space of strings, where we can use the edit distance, does not let us
take the “average” of strings.

Vector spaces, for which we suggested the cosine distance, may or may
not be Euclidean. If the components of the vectors can be any real num-
bers, then the space is Euclidean. However, if we restrict components to
be integers, then the space is not Euclidean. Notice that, for instance, we
cannot find an average of the vectors [1, 2] and [3, 1] in the space of vectors
with two integer components, although if we treated them as members of
the two-dimensional Euclidean space, then we could say that their average
was [2.0, 1.5].

Example 3.16 : The Hamming distance between the vectors 10101 and 11110
is 3. That is, these vectors differ in the second, fourth, and fifth components,
while they agree in the first and third components. ✷

3.5.7 Exercises for Section 3.5

! Exercise 3.5.1 : On the space of nonnegative integers, which of the following
functions are distance measures? If so, prove it; if not, prove that it fails to
satisfy one or more of the axioms.

(a) max(x, y) = the larger of x and y.

(b) diff(x, y) = |x − y| (the absolute magnitude of the difference between x
and y).

(c) sum(x, y) = x+ y.

Exercise 3.5.2 : Find the L1 and L2 distances between the points (5, 6, 7) and
(8, 2, 4).

!! Exercise 3.5.3 : Prove that if i and j are any positive integers, and i < j,
then the Li norm between any two points is greater than the Lj norm between
those same two points.

Exercise 3.5.4 : Find the Jaccard distances between the following pairs of
sets:

98 CHAPTER 3. FINDING SIMILAR ITEMS

(a) {1, 2, 3, 4} and {2, 3, 4, 5}.

(b) {1, 2, 3} and {4, 5, 6}.

Exercise 3.5.5 : Compute the cosines of the angles between each of the fol-
lowing pairs of vectors.5

(a) (3,−1, 2) and (−2, 3, 1).

(b) (1, 2, 3) and (2, 4, 6).

(c) (5, 0,−4) and (−1,−6, 2).

(d) (0, 1, 1, 0, 1, 1) and (0, 0, 1, 0, 0, 0).

! Exercise 3.5.6 : Prove that the cosine distance between any two vectors of 0’s
and 1’s, of the same length, is at most 90 degrees.

Exercise 3.5.7 : Find the edit distances (using only insertions and deletions)
between the following pairs of strings.

(a) abcdef and bdaefc.

(b) abccdabc and acbdcab.

(c) abcdef and baedfc.

! Exercise 3.5.8 : There are a number of other notions of edit distance available.
For instance, we can allow, in addition to insertions and deletions, the following
operations:

i. Mutation, where one symbol is replaced by another symbol. Note that a
mutation can always be performed by an insertion followed by a deletion,
but if we allow mutations, then this change counts for only 1, not 2, when
computing the edit distance.

ii. Transposition, where two adjacent symbols have their positions swapped.
Like a mutation, we can simulate a transposition by one insertion followed
by one deletion, but here we count only 1 for these two steps.

Repeat Exercise 3.5.7 if edit distance is defined to be the number of insertions,
deletions, mutations, and transpositions needed to transform one string into
another.

! Exercise 3.5.9 : Prove that the edit distance discussed in Exercise 3.5.8 is
indeed a distance measure.

Exercise 3.5.10 : Find the Hamming distances between each pair of the fol-
lowing vectors: 000000, 110011, 010101, and 011100.

5Note that what we are asking for is not precisely the cosine distance, but from the cosine
of an angle, you can compute the angle itself, perhaps with the aid of a table or library
function.

3.6. THE THEORY OF LOCALITY-SENSITIVE FUNCTIONS 99

3.6 The Theory of Locality-Sensitive Functions

The LSH technique developed in Section 3.4 is one example of a family of func-
tions (the minhash functions) that can be combined (by the banding technique)
to distinguish strongly between pairs at a low distance from pairs at a high dis-
tance. The steepness of the S-curve in Fig. 3.7 reflects how effectively we can
avoid false positives and false negatives among the candidate pairs.

Now, we shall explore other families of functions, besides the minhash func-
tions, that can serve to produce candidate pairs efficiently. These functions can
apply to the space of sets and the Jaccard distance, or to another space and/or
another distance measure. There are three conditions that we need for a family
of functions:

1. They must be more likely to make close pairs be candidate pairs than
distant pairs. We make this notion precise in Section 3.6.1.

2. They must be statistically independent, in the sense that it is possible to
estimate the probability that two or more functions will all give a certain
response by the product rule for independent events.

3. They must be efficient, in two ways:

(a) They must be able to identify candidate pairs in time much less
than the time it takes to look at all pairs. For example, minhash
functions have this capability, since we can hash sets to minhash
values in time proportional to the size of the data, rather than the
square of the number of sets in the data. Since sets with common
values are colocated in a bucket, we have implicitly produced the
candidate pairs for a single minhash function in time much less than
the number of pairs of sets.

(b) They must be combinable to build functions that are better at avoid-
ing false positives and negatives, and the combined functions must
also take time that is much less than the number of pairs. For ex-
ample, the banding technique of Section 3.4.1 takes single minhash
functions, which satisfy condition 3a but do not, by themselves have
the S-curve behavior we want, and produces from a number of min-
hash functions a combined function that has the S-curve shape.

Our first step is to define “locality-sensitive functions” generally. We then
see how the idea can be applied in several applications. Finally, we discuss
how to apply the theory to arbitrary data with either a cosine distance or a
Euclidean distance measure.

3.6.1 Locality-Sensitive Functions

For the purposes of this section, we shall consider functions that take two items
and render a decision about whether these items should be a candidate pair.

100 CHAPTER 3. FINDING SIMILAR ITEMS

In many cases, the function f will “hash” items, and the decision will be based
on whether or not the result is equal. Because it is convenient to use the
notation f(x) = f(y) to mean that f(x, y) is “yes; make x and y a candidate
pair,” we shall use f(x) = f(y) as a shorthand with this meaning. We also use
f(x) 6= f(y) to mean “do not make x and y a candidate pair unless some other
function concludes we should do so.”

A collection of functions of this form will be called a family of functions.
For example, the family of minhash functions, each based on one of the possible
permutations of rows of a characteristic matrix, form a family.

Let d1 < d2 be two distances according to some distance measure d. A
family F of functions is said to be (d1, d2, p1, p2)-sensitive if for every f in F:

1. If d(x, y) ≤ d1, then the probability that f(x) = f(y) is at least p1.

2. If d(x, y) ≥ d2, then the probability that f(x) = f(y) is at most p2.

Probabilty
of being
declared a
candidate

d

p

d

p

1 2

1

2

Distance

Figure 3.9: Behavior of a (d1, d2, p1, p2)-sensitive function

Figure 3.9 illustrates what we expect about the probability that a given
function in a (d1, d2, p1, p2)-sensitive family will declare two items to be a can-
didate pair. Notice that we say nothing about what happens when the distance
between the items is strictly between d1 and d2, but we can make d1 and d2 as
close as we wish. The penalty is that typically p1 and p2 are then close as well.
As we shall see, it is possible to drive p1 and p2 apart while keeping d1 and d2
fixed.

3.6.2 Locality-Sensitive Families for Jaccard Distance

For the moment, we have only one way to find a family of locality-sensitive
functions: use the family of minhash functions, and assume that the distance

3.6. THE THEORY OF LOCALITY-SENSITIVE FUNCTIONS 101

measure is the Jaccard distance. As before, we interpret a minhash function h
to make x and y a candidate pair if and only if h(x) = h(y).

• The family of minhash functions is a (d1, d2, 1−d1, 1−d2)-sensitive family
for any d1 and d2, where 0 ≤ d1 < d2 ≤ 1.

The reason is that if d(x, y) ≤ d1, where d is the Jaccard distance, then
SIM(x, y) = 1 − d(x, y) ≥ 1 − d1. But we know that the Jaccard similarity
of x and y is equal to the probability that a minhash function will hash x and
y to the same value. A similar argument applies to d2 or any distance.

Example 3.17 : We could let d1 = 0.3 and d2 = 0.6. Then we can assert that
the family of minhash functions is a (0.3, 0.6, 0.7, 0.4)-sensitive family. That is,
if the Jaccard distance between x and y is at most 0.3 (i.e., SIM(x, y) ≥ 0.7)
then there is at least a 0.7 chance that a minhash function will send x and y to
the same value, and if the Jaccard distance between x and y is at least 0.6 (i.e.,
SIM(x, y) ≤ 0.4), then there is at most a 0.4 chance that x and y will be sent
to the same value. Note that we could make the same assertion with another
choice of d1 and d2; only d1 < d2 is required. ✷

3.6.3 Amplifying a Locality-Sensitive Family

Suppose we are given a (d1, d2, p1, p2)-sensitive family F. We can construct a
new family F′ by the AND-construction on F, which is defined as follows. Each
member of F′ consists of r members of F for some fixed r. If f is in F′, and f is
constructed from the set {f1, f2, . . . , fr} of members of F, we say f(x) = f(y)
if and only if fi(x) = fi(y) for all i = 1, 2, . . . , r. Notice that this construction
mirrors the effect of the r rows in a single band: the band makes x and y a
candidate pair if every one of the r rows in the band say that x and y are equal
(and therefore a candidate pair according to that row).

Since the members of F are independently chosen to make a member of F′,
we can assert that F′ is a

(

d1, d2, (p1)
r, (p2)

r
)

-sensitive family. That is, for any
p, if p is the probability that a member of F will declare (x, y) to be a candidate
pair, then the probability that a member of F′ will so declare is pr.

There is another construction, which we call the OR-construction, that turns
a (d1, d2, p1, p2)-sensitive family F into a

(

d1, d2, 1 − (1 − p1)
b, 1 − (1 − p2)

b
)

-
sensitive family F′. Each member f of F′ is constructed from b members of F,
say f1, f2, . . . , fb. We define f(x) = f(y) if and only if fi(x) = fi(y) for one or
more values of i. The OR-construction mirrors the effect of combining several
bands: x and y become a candidate pair if any band makes them a candidate
pair.

If p is the probability that a member of F will declare (x, y) to be a candidate
pair, then 1−p is the probability it will not so declare. (1−p)b is the probability
that none of f1, f2, . . . , fb will declare (x, y) a candidate pair, and 1 − (1 − p)b

is the probability that at least one fi will declare (x, y) a candidate pair, and
therefore that f will declare (x, y) to be a candidate pair.

102 CHAPTER 3. FINDING SIMILAR ITEMS

Notice that the AND-construction lowers all probabilities, but if we choose F
and r judiciously, we can make the small probability p2 get very close to 0, while
the higher probability p1 stays significantly away from 0. Similarly, the OR-
construction makes all probabilities rise, but by choosing F and b judiciously,
we can make the larger probability approach 1 while the smaller probability
remains bounded away from 1. We can cascade AND- and OR-constructions in
any order to make the low probability close to 0 and the high probability close
to 1. Of course the more constructions we use, and the higher the values of r
and b that we pick, the larger the number of functions from the original family
that we are forced to use. Thus, the better the final family of functions is, the
longer it takes to apply the functions from this family.

Example 3.18 : Suppose we start with a family F. We use the AND-construc-
tion with r = 4 to produce a family F1. We then apply the OR-construction
to F1 with b = 4 to produce a third family F2. Note that the members of F2

each are built from 16 members of F, and the situation is analogous to starting
with 16 minhash functions and treating them as four bands of four rows each.

p 1− (1 − p4)4

0.2 0.0064
0.3 0.0320
0.4 0.0985
0.5 0.2275
0.6 0.4260
0.7 0.6666
0.8 0.8785
0.9 0.9860

Figure 3.10: Effect of the 4-way AND-construction followed by the 4-way OR-
construction

The 4-way AND-function converts any probability p into p4. When we
follow it by the 4-way OR-construction, that probability is further converted
into 1− (1−p4)4. Some values of this transformation are indicated in Fig. 3.10.
This function is an S-curve, staying low for a while, then rising steeply (although
not too steeply; the slope never gets much higher than 2), and then leveling
off at high values. Like any S-curve, it has a fixedpoint, the value of p that is
left unchanged when we apply the function of the S-curve. In this case, the
fixedpoint is the value of p for which p = 1 − (1 − p4)4. We can see that the
fixedpoint is somewhere between 0.7 and 0.8. Below that value, probabilities are
decreased, and above it they are increased. Thus, if we pick a high probability
above the fixedpoint and a low probability below it, we shall have the desired
effect that the low probability is decreased and the high probability is increased.

Suppose F is the minhash functions, regarded as a (0.2, 0.6, 0.8, 0.4)-sens-
itive family. Then F2, the family constructed by a 4-way AND followed by a

3.6. THE THEORY OF LOCALITY-SENSITIVE FUNCTIONS 103

4-way OR, is a (0.2, 0.6, 0.8785, 0.0985)-sensitive family, as we can read from the
rows for 0.8 and 0.4 in Fig. 3.10. By replacing F by F2, we have reduced both
the false-negative and false-positive rates, at the cost of making application of
the functions take 16 times as long. ✷

p
(

1− (1 − p)4
)4

0.1 0.0140
0.2 0.1215
0.3 0.3334
0.4 0.5740
0.5 0.7725
0.6 0.9015
0.7 0.9680
0.8 0.9936

Figure 3.11: Effect of the 4-way OR-construction followed by the 4-way AND-
construction

Example 3.19 : For the same cost, we can apply a 4-way OR-construction
followed by a 4-way AND-construction. Figure 3.11 gives the transformation
on probabilities implied by this construction. For instance, suppose that F is a
(0.2, 0.6, 0.8, 0.4)-sensitive family. Then the constructed family is a

(0.2, 0.6, 0.9936, 0.5740)-sensitive

family. This choice is not necessarily the best. Although the higher probability
has moved much closer to 1, the lower probability has also raised, increasing
the number of false positives. ✷

Example 3.20 : We can cascade constructions as much as we like. For exam-
ple, we could use the construction of Example 3.18 on the family of minhash
functions and then use the construction of Example 3.19 on the resulting family.
The constructed family would then have functions each built from 256 minhash
functions. It would, for instance transform a (0.2, 0.8, 0.8, 0.2)-sensitive family
into a (0.2, 0.8, 0.9991285, 0.0000004)-sensitive family. ✷

3.6.4 Exercises for Section 3.6

Exercise 3.6.1 : What is the effect on probability of starting with the family
of minhash functions and applying:

(a) A 2-way AND construction followed by a 3-way OR construction.

(b) A 3-way OR construction followed by a 2-way AND construction.

104 CHAPTER 3. FINDING SIMILAR ITEMS

(c) A 2-way AND construction followed by a 2-way OR construction, followed
by a 2-way AND construction.

(d) A 2-way OR construction followed by a 2-way AND construction, followed
by a 2-way OR construction followed by a 2-way AND construction.

Exercise 3.6.2 : Find the fixedpoints for each of the functions constructed in
Exercise 3.6.1.

! Exercise 3.6.3 : Any function of probability p, such as that of Fig. 3.10, has
a slope given by the derivative of the function. The maximum slope is where
that derivative is a maximum. Find the value of p that gives a maximum slope
for the S-curves given by Fig. 3.10 and Fig. 3.11. What are the values of these
maximum slopes?

!! Exercise 3.6.4 : Generalize Exercise 3.6.3 to give, as a function of r and b, the
point of maximum slope and the value of that slope, for families of functions
defined from the minhash functions by:

(a) An r-way AND construction followed by a b-way OR construction.

(b) A b-way OR construction followed by an r-way AND construction.

3.7 LSH Families for Other Distance Measures

There is no guarantee that a distance measure has a locality-sensitive family of
hash functions. So far, we have only seen such families for the Jaccard distance.
In this section, we shall show how to construct locality-sensitive families for
Hamming distance, the cosine distance and for the normal Euclidean distance.

3.7.1 LSH Families for Hamming Distance

It is quite simple to build a locality-sensitive family of functions for the Ham-
ming distance. Suppose we have a space of d-dimensional vectors, and h(x, y)
denotes the Hamming distance between vectors x and y. If we take any one
position of the vectors, say the ith position, we can define the function fi(x)
to be the ith bit of vector x. Then fi(x) = fi(y) if and only if vectors x and
y agree in the ith position. Then the probability that fi(x) = fi(y) for a ran-
domly chosen i is exactly 1 − h(x, y)/d; i.e., it is the fraction of positions in
which x and y agree.

This situation is almost exactly like the one we encountered for minhashing.
Thus, the family F consisting of the functions {f1, f2, . . . , fd} is a

(d1, d2, 1− d1/d, 1− d2/d)-sensitive

family of hash functions, for any d1 < d2. There are only two differences
between this family and the family of minhash functions.

3.7. LSH FAMILIES FOR OTHER DISTANCE MEASURES 105

1. While Jaccard distance runs from 0 to 1, the Hamming distance on a
vector space of dimension d runs from 0 to d. It is therefore necessary to
scale the distances by dividing by d, to turn them into probabilities.

2. While there is essentially an unlimited supply of minhash functions, the
size of the family F for Hamming distance is only d.

The first point is of no consequence; it only requires that we divide by d at
appropriate times. The second point is more serious. If d is relatively small,
then we are limited in the number of functions that can be composed using
the AND and OR constructions, thereby limiting how steep we can make the
S-curve be.

3.7.2 Random Hyperplanes and the Cosine Distance

Recall from Section 3.5.4 that the cosine distance between two vectors is the
angle between the vectors. For instance, we see in Fig. 3.12 two vectors x
and y that make an angle θ between them. Note that these vectors may be
in a space of many dimensions, but they always define a plane, and the angle
between them is measured in this plane. Figure 3.12 is a “top-view” of the
plane containing x and y.

θ

x

y

Figure 3.12: Two vectors make an angle θ

Suppose we pick a hyperplane through the origin. This hyperplane intersects
the plane of x and y in a line. Figure 3.12 suggests two possible hyperplanes,
one whose intersection is the dashed line and the other’s intersection is the
dotted line. To pick a random hyperplane, we actually pick the normal vector
to the hyperplane, say v. The hyperplane is then the set of points whose dot
product with v is 0.

106 CHAPTER 3. FINDING SIMILAR ITEMS

First, consider a vector v that is normal to the hyperplane whose projection
is represented by the dashed line in Fig. 3.12; that is, x and y are on different
sides of the hyperplane. Then the dot products v.x and v.y will have different
signs. If we assume, for instance, that v is a vector whose projection onto the
plane of x and y is above the dashed line in Fig. 3.12, then v.x is positive,
while v.y is negative. The normal vector v instead might extend in the opposite
direction, below the dashed line. In that case v.x is negative and v.y is positive,
but the signs are still different.

On the other hand, the randomly chosen vector v could be normal to a
hyperplane like the dotted line in Fig. 3.12. In that case, both v.x and v.y
have the same sign. If the projection of v extends to the right, then both dot
products are positive, while if v extends to the left, then both are negative.

What is the probability that the randomly chosen vector is normal to a
hyperplane that looks like the dashed line rather than the dotted line? All
angles for the line that is the intersection of the random hyperplane and the
plane of x and y are equally likely. Thus, the hyperplane will look like the
dashed line with probability θ/180 and will look like the dotted line otherwise.

Thus, each hash function f in our locality-sensitive family F is built from
a randomly chosen vector vf . Given two vectors x and y, say f(x) = f(y) if
and only if the dot products vf .x and vf .y have the same sign. Then F is a
locality-sensitive family for the cosine distance. The parameters are essentially
the same as for the Jaccard-distance family described in Section 3.6.2, except
the scale of distances is 0–180 rather than 0–1. That is, F is a

(d1, d2, (180− d1)/180, (180− d2)/180)-sensitive

family of hash functions. From this basis, we can amplify the family as we wish,
just as for the minhash-based family.

3.7.3 Sketches

Instead of chosing a random vector from all possible vectors, it turns out to be
sufficiently random if we restrict our choice to vectors whose components are
+1 and −1. The dot product of any vector x with a vector v of +1’s and −1’s
is formed by adding the components of x where v is +1 and then subtracting
the other components of x – those where v is −1.

If we pick a collection of random vectors, say v1, v2, . . . , vn, then we can
apply them to an arbitrary vector x by computing v1.x, v2.x, . . . , vn.x and then
replacing any positive value by +1 and any negative value by −1. The result is
called the sketch of x. You can handle 0’s arbitrarily, e.g., by chosing a result +1
or −1 at random. Since there is only a tiny probability of a zero dot product,
the choice has essentially no effect.

Example 3.21 : Suppose our space consists of 4-dimensional vectors, and we
pick three random vectors: v1 = [+1,−1,+1,+1], v2 = [−1,+1,−1,+1], and
v3 = [+1,+1,−1,−1]. For the vector x = [3, 4, 5, 6], the sketch is [+1,+1,−1].

3.7. LSH FAMILIES FOR OTHER DISTANCE MEASURES 107

That is, v1.x = 3−4+5+6 = 10. Since the result is positive, the first component
of the sketch is +1. Similarly, v2.x = 2 and v3.x = −4, so the second component
of the sketch is +1 and the third component is −1.

Consider the vector y = [4, 3, 2, 1]. We can similarly compute its sketch to
be [+1,−1,+1]. Since the sketches for x and y agree in 1/3 of the positions,
we estimate that the angle between them is 120 degrees. That is, a randomly
chosen hyperplane is twice as likely to look like the dashed line in Fig. 3.12 than
like the dotted line.

The above conclusion turns out to be quite wrong. We can calculate the
cosine of the angle between x and y to be x.y, which is

6× 1 + 5× 2 + 4× 3 + 3× 4 = 40

divided by the magnitudes of the two vectors. These magnitudes are

√

62 + 52 + 42 + 32 = 9.274

and
√
12 + 22 + 32 + 42 = 5.477. Thus, the cosine of the angle between x and

y is 0.7875, and this angle is about 38 degrees. However, if you look at all
16 different vectors v of length 4 that have +1 and −1 as components, you
find that there are only four of these whose dot products with x and y have
a different sign, namely v2, v3, and their complements [+1,−1,+1,−1] and
[−1,−1,+1,+1]. Thus, had we picked all sixteen of these vectors to form a
sketch, the estimate of the angle would have been 180/4 = 45 degrees. ✷

3.7.4 LSH Families for Euclidean Distance

Now, let us turn to the Euclidean distance (Section 3.5.2), and see if we can
develop a locality-sensitive family of hash functions for this distance. We shall
start with a 2-dimensional Euclidean space. Each hash function f in our family
F will be associated with a randomly chosen line in this space. Pick a constant
a and divide the line into segments of length a, as suggested by Fig. 3.13, where
the “random” line has been oriented to be horizontal.

The segments of the line are the buckets into which function f hashes points.
A point is hashed to the bucket in which its projection onto the line lies. If the
distance d between two points is small compared with a, then there is a good
chance the two points hash to the same bucket, and thus the hash function f
will declare the two points equal. For example, if d = a/2, then there is at least
a 50% chance the two points will fall in the same bucket. In fact, if the angle
θ between the randomly chosen line and the line connecting the points is large,
then there is an even greater chance that the two points will fall in the same
bucket. For instance, if θ is 90 degrees, then the two points are certain to fall
in the same bucket.

However, suppose d is larger than a. In order for there to be any chance of
the two points falling in the same bucket, we need d cos θ ≤ a. The diagram of
Fig. 3.13 suggests why this requirement holds. Note that even if d cos θ ≪ a it

108 CHAPTER 3. FINDING SIMILAR ITEMS

θ

Points at
distance

Bucket
width a

d

Figure 3.13: Two points at distance d ≫ a have a small chance of being hashed
to the same bucket

is still not certain that the two points will fall in the same bucket. However,
we can guarantee the following. If d ≥ 2a, then there is no more than a 1/3
chance the two points fall in the same bucket. The reason is that for cos θ to
be less than 1/2, we need to have θ in the range 60 to 90 degrees. If θ is in the
range 0 to 60 degrees, then cos θ is more than 1/2. But since θ is the smaller
angle between two randomly chosen lines in the plane, θ is twice as likely to be
between 0 and 60 as it is to be between 60 and 90.

We conclude that the family F just described forms a (a/2, 2a, 1/2, 1/3)-
sensitive family of hash functions. That is, for distances up to a/2 the proba-
bility is at least 1/2 that two points at that distance will fall in the same bucket,
while for distances at least 2a the probability points at that distance will fall in
the same bucket is at most 1/3. We can amplify this family as we like, just as
for the other examples of locality-sensitive hash functions we have discussed.

3.7.5 More LSH Families for Euclidean Spaces

There is something unsatisfying about the family of hash functions developed
in Section 3.7.4. First, the technique was only described for two-dimensional
Euclidean spaces. What happens if our data is points in a space with many
dimensions? Second, for Jaccard and cosine distances, we were able to develop
locality-sensitive families for any pair of distances d1 and d2 as long as d1 < d2.
In Section 3.7.4 we appear to need the stronger condition d1 < 4d2.

However, we claim that there is a locality-sensitive family of hash func-
tions for any d1 < d2 and for any number of dimensions. The family’s hash
functions still derive from random lines through the space and a bucket size
a that partitions the line. We still hash points by projecting them onto the
line. Given that d1 < d2, we may not know what the probability p1 is that two

3.7. LSH FAMILIES FOR OTHER DISTANCE MEASURES 109

points at distance d1 hash to the same bucket, but we can be certain that it
is greater than p2, the probability that two points at distance d2 hash to the
same bucket. The reason is that this probability surely grows as the distance
shrinks. Thus, even if we cannot calculate p1 and p2 easily, we know that there
is a (d1, d2, p1, p2)-sensitive family of hash functions for any d1 < d2 and any
given number of dimensions.

Using the amplification techniques of Section 3.6.3, we can then adjust the
two probabilities to surround any particular value we like, and to be as far apart
as we like. Of course, the further apart we want the probabilities to be, the
larger the number of basic hash functions in F we must use.

3.7.6 Exercises for Section 3.7

Exercise 3.7.1 : Suppose we construct the basic family of six locality-sensitive
functions for vectors of length six. For each pair of the vectors 000000, 110011,
010101, and 011100, which of the six functions makes them candidates?

Exercise 3.7.2 : Let us compute sketches using the following four “random”
vectors:

v1 = [+1,+1,+1,−1] v2 = [+1,+1,−1,+1]
v3 = [+1,−1,+1,+1] v4 = [−1,+1,+1,+1]

Compute the sketches of the following vectors.

(a) [2, 3, 4, 5].

(b) [−2, 3,−4, 5].

(c) [2,−3, 4,−5].

For each pair, what is the estimated angle between them, according to the
sketches? What are the true angles?

Exercise 3.7.3 : Suppose we form sketches by using all sixteen of the vectors
of length 4, whose components are each +1 or −1. Compute the sketches of
the three vectors in Exercise 3.7.2. How do the estimates of the angles between
each pair compare with the true angles?

Exercise 3.7.4 : Suppose we form sketches using the four vectors from Exer-
cise 3.7.2.

! (a) What are the constraints on a, b, c, and d that will cause the sketch of
the vector [a, b, c, d] to be [+1,+1,+1,+1]?

!! (b) Consider two vectors [a, b, c, d] and [e, f, g, h]. What are the conditions on
a, b, . . . , h that will make the sketches of these two vectors be the same?

110 CHAPTER 3. FINDING SIMILAR ITEMS

Exercise 3.7.5 : Suppose we have points in a 3-dimensional Euclidean space:
p1 = (1, 2, 3), p2 = (0, 2, 4), and p3 = (4, 3, 2). Consider the three hash functions
defined by the three axes (to make our calculations very easy). Let buckets be
of length a, with one bucket the interval [0, a) (i.e., the set of points x such that
0 ≤ x < a), the next [a, 2a), the previous one [−a, 0), and so on.

(a) For each of the three lines, assign each of the points to buckets, assuming
a = 1.

(b) Repeat part (a), assuming a = 2.

(c) What are the candidate pairs for the cases a = 1 and a = 2?

! (d) For each pair of points, for what values of a will that pair be a candidate
pair?

3.8 Applications of Locality-Sensitive Hashing

In this section, we shall explore three examples of how LSH is used in practice.
In each case, the techniques we have learned must be modified to meet certain
constraints of the problem. The three subjects we cover are:

1. Entity Resolution: This term refers to matching data records that refer to
the same real-world entity, e.g., the same person. The principal problem
addressed here is that the similarity of records does not match exactly
either the similar-sets or similar-vectors models of similarity on which the
theory is built.

2. Matching Fingerprints : It is possible to represent fingerprints as sets.
However, we shall explore a different family of locality-sensitive hash func-
tions from the one we get by minhashing.

3. Matching Newspaper Articles : Here, we consider a different notion of
shingling that focuses attention on the core article in an on-line news-
paper’s Web page, ignoring all the extraneous material such as ads and
newspaper-specific material.

3.8.1 Entity Resolution

It is common to have several data sets available, and to know that they refer to
some of the same entities. For example, several different bibliographic sources
provide information about many of the same books or papers. In the general
case, we have records describing entities of some type, such as people or books.
The records may all have the same format, or they may have different formats,
with different kinds of information.

There are many reasons why information about an entity may vary, even if
the field in question is supposed to be the same. For example, names may be

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 111

expressed differently in different records because of misspellings, absence of a
middle initial, use of a nickname, and many other reasons. For example, “Bob
S. Jomes” and “Robert Jones Jr.” may or may not be the same person. If
records come from different sources, the fields may differ as well. One source’s
records may have an “age” field, while another does not. The second source
might have a “date of birth” field, or it may have no information at all about
when a person was born.

3.8.2 An Entity-Resolution Example

We shall examine a real example of how LSH was used to deal with an entity-
resolution problem. Company A was engaged by Company B to solicit cus-
tomers for B. Company B would pay A a yearly fee, as long as the customer
maintained their subscription. They later quarreled and disagreed over how
many customers A had provided to B. Each had about 1,000,000 records, some
of which described the same people; those were the customers A had provided
to B. The records had different data fields, but unfortunately none of those
fields was “this is a customer that A had provided to B.” Thus, the problem
was to match records from the two sets to see if a pair represented the same
person.

Each record had fields for the name, address, and phone number of the
person. However, the values in these fields could differ for many reasons. Not
only were there the misspellings and other naming differences mentioned in
Section 3.8.1, but there were other opportunities to disagree as well. A customer
might give their home phone to A and their cell phone to B. Or they might
move, and tell B but not A (because they no longer had need for a relationship
with A). Area codes of phones sometimes change.

The strategy for identifying records involved scoring the differences in three
fields: name, address, and phone. To create a score describing the likelihood
that two records, one from A and the other from B, described the same per-
son, 100 points was assigned to each of the three fields, so records with exact
matches in all three fields got a score of 300. However, there were deductions for
mismatches in each of the three fields. As a first approximation, edit-distance
(Section 3.5.5) was used, but the penalty grew quadratically with the distance.
Then, certain publicly available tables were used to reduce the penalty in ap-
propriate situations. For example, “Bill” and “William” were treated as if they
differed in only one letter, even though their edit-distance is 5.

However, it is not feasible to score all one trillion pairs of records. Thus,
a simple LSH was used to focus on likely candidates. Three “hash functions”
were used. The first sent records to the same bucket only if they had identical
names; the second did the same but for identical addresses, and the third did
the same for phone numbers. In practice, there was no hashing; rather the
records were sorted by name, so records with identical names would appear
consecutively and get scored for overall similarity of the name, address, and
phone. Then the records were sorted by address, and those with the same

112 CHAPTER 3. FINDING SIMILAR ITEMS

When Are Record Matches Good Enough?

While every case will be different, it may be of interest to know how the
experiment of Section 3.8.3 turned out on the data of Section 3.8.2. For
scores down to 185, the value of x was very close to 10; i.e., these scores
indicated that the likelihood of the records representing the same person
was essentially 1. Note that a score of 185 in this example represents a
situation where one field is the same (as would have to be the case, or the
records would never even be scored), one field was completely different,
and the third field had a small discrepancy. Moreover, for scores as low as
115, the value of x was noticeably less than 45, meaning that some of these
pairs did represent the same person. Note that a score of 115 represents
a case where one field is the same, but there is only a slight similarity in
the other two fields.

address were scored. Finally, the records were sorted a third time by phone,
and records with identical phones were scored.

This approach missed a record pair that truly represented the same person
but none of the three fields matched exactly. Since the goal was to prove in
a court of law that the persons were the same, it is unlikely that such a pair
would have been accepted by a judge as sufficiently similar anyway.

3.8.3 Validating Record Matches

What remains is to determine how high a score indicates that two records truly
represent the same individual. In the example at hand, there was an easy
way to make that decision, and the technique can be applied in many similar
situations. It was decided to look at the creation-dates for the records at hand,
and to assume that 90 days was an absolute maximum delay between the time
the service was bought at Company A and registered at B. Thus, a proposed
match between two records that were chosen at random, subject only to the
constraint that the date on the B-record was between 0 and 90 days after the
date on the A-record, would have an average delay of 45 days.

It was found that of the pairs with a perfect 300 score, the average delay was
10 days. If you assume that 300-score pairs are surely correct matches, then you
can look at the pool of pairs with any given score s, and compute the average
delay of those pairs. Suppose that the average delay is x, and the fraction of
true matches among those pairs with score s is f . Then x = 10f + 45(1 − f),
or x = 45− 35f . Solving for f , we find that the fraction of the pairs with score
s that are truly matches is (45− x)/35.

The same trick can be used whenever:

1. There is a scoring system used to evaluate the likelihood that two records

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 113

represent the same entity, and

2. There is some field, not used in the scoring, from which we can derive a
measure that differs, on average, for true pairs and false pairs.

For instance, suppose there were a “height” field recorded by both companies
A and B in our running example. We can compute the average difference in
height for pairs of random records, and we can compute the average difference in
height for records that have a perfect score (and thus surely represent the same
entities). For a given score s, we can evaluate the average height difference of the
pairs with that score and estimate the probability of the records representing
the same entity. That is, if h0 is the average height difference for the perfect
matches, h1 is the average height difference for random pairs, and h is the
average height difference for pairs of score s, then the fraction of good pairs
with score s is (h1 − h)/(h1 − h0).

3.8.4 Matching Fingerprints

When fingerprints are matched by computer, the usual representation is not
an image, but a set of locations in which minutiae are located. A minutia,
in the context of fingerprint descriptions, is a place where something unusual
happens, such as two ridges merging or a ridge ending. If we place a grid over a
fingerprint, we can represent the fingerprint by the set of grid squares in which
minutiae are located.

Ideally, before overlaying the grid, fingerprints are normalized for size and
orientation, so that if we took two images of the same finger, we would find
minutiae lying in exactly the same grid squares. We shall not consider here
the best ways to normalize images. Let us assume that some combination of
techniques, including choice of grid size and placing a minutia in several adjacent
grid squares if it lies close to the border of the squares enables us to assume
that grid squares from two images have a significantly higher probability of
agreeing in the presence or absence of a minutia than if they were from images
of different fingers.

Thus, fingerprints can be represented by sets of grid squares – those where
their minutiae are located – and compared like any sets, using the Jaccard sim-
ilarity or distance. There are two versions of fingerprint comparison, however.

• The many-one problem is the one we typically expect. A fingerprint has
been found on a gun, and we want to compare it with all the fingerprints
in a large database, to see which one matches.

• The many-many version of the problem is to take the entire database, and
see if there are any pairs that represent the same individual.

While the many-many version matches the model that we have been following
for finding similar items, the same technology can be used to speed up the
many-one problem.

114 CHAPTER 3. FINDING SIMILAR ITEMS

3.8.5 A LSH Family for Fingerprint Matching

We could minhash the sets that represent a fingerprint, and use the standard
LSH technique from Section 3.4. However, since the sets are chosen from a
relatively small set of grid points (perhaps 1000), the need to minhash them
into more succinct signatures is not clear. We shall study here another form of
locality-sensitive hashing that works well for data of the type we are discussing.

Suppose for an example that the probability of finding a minutia in a random
grid square of a random fingerprint is 20%. Also, assume that if two fingerprints
come from the same finger, and one has a minutia in a given grid square, then
the probability that the other does too is 80%. We can define a locality-sensitive
family of hash functions as follows. Each function f in this family F is defined
by three grid squares. Function f says “yes” for two fingerprints if both have
minutiae in all three grid squares, and otherwise f says “no.” Put another
way, we may imagine that f sends to a single bucket all fingerprints that have
minutiae in all three of f ’s grid points, and sends each other fingerprint to a
bucket of its own. In what follows, we shall refer to the first of these buckets as
“the” bucket for f and ignore the buckets that are required to be singletons.

If we want to solve the many-one problem, we can use many functions from
the family F and precompute their buckets of fingerprints to which they answer
“yes.” Then, given a new fingerprint that we want to match, we determine
which of these buckets it belongs to and compare it with all the fingerprints
found in any of those buckets. To solve the many-many problem, we compute
the buckets for each of the functions and compare all fingerprints in each of the
buckets.

Let us consider how many functions we need to get a reasonable probability
of catching a match, without having to compare the fingerprint on the gun with
each of the millions of fingerprints in the database. First, the probability that
two fingerprints from different fingers would be in the bucket for a function f
in F is (0.2)6 = 0.000064. The reason is that they will both go into the bucket
only if they each have a minutia in each of the three grid points associated with
f , and the probability of each of those six independent events is 0.2.

Now, consider the probability that two fingerprints from the same finger
wind up in the bucket for f . The probability that the first fingerprint has
minutiae in each of the three squares belonging to f is (0.2)3 = 0.008. However,
if it does, then the probability is (0.8)3 = 0.512 that the other fingerprint
will as well. Thus, if the fingerprints are from the same finger, there is a
0.008× 0.512 = 0.004096 probability that they will both be in the bucket of f .
That is not much; it is about one in 200. However, if we use many functions
from F, but not too many, then we can get a good probability of matching
fingerprints from the same finger while not having too many false positives –
fingerprints that must be considered but do not match.

Example 3.22 : For a specific example, let us suppose that we use 1024
functions chosen randomly from F. Next, we shall construct a new fam-
ily F1 by performing a 1024-way OR on F. Then the probability that F1

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 115

will put fingerprints from the same finger together in at least one bucket is
1 − (1 − 0.004096)1024 = 0.985. On the other hand, the probability that
two fingerprints from different fingers will be placed in the same bucket is
(1 − (1 − 0.000064)1024 = 0.063. That is, we get about 1.5% false negatives
and about 6.3% false positives. ✷

The result of Example 3.22 is not the best we can do. While it offers only a
1.5% chance that we shall fail to identify the fingerprint on the gun, it does force
us to look at 6.3% of the entire database. Increasing the number of functions
from F will increase the number of false positives, with only a small benefit
of reducing the number of false negatives below 1.5%. On the other hand, we
can also use the AND construction, and in so doing, we can greatly reduce
the probability of a false positive, while making only a small increase in the
false-negative rate. For instance, we could take 2048 functions from F in two
groups of 1024. Construct the buckets for each of the functions. However, given
a fingerprint P on the gun:

1. Find the buckets from the first group in which P belongs, and take the
union of these buckets.

2. Do the same for the second group.

3. Take the intersection of the two unions.

4. Compare P only with those fingerprints in the intersection.

Note that we still have to take unions and intersections of large sets of finger-
prints, but we compare only a small fraction of those. It is the comparison of
fingerprints that takes the bulk of the time; in steps (1) and (2) fingerprints
can be represented by their integer indices in the database.

If we use this scheme, the probability of detecting a matching fingerprint
is (0.985)2 = 0.970; that is, we get about 3% false negatives. However, the
probability of a false positive is (0.063)2 = 0.00397. That is, we only have to
examine about 1/250th of the database.

3.8.6 Similar News Articles

Our last case study concerns the problem of organizing a large repository of
on-line news articles by grouping together Web pages that were derived from
the same basic text. It is common for organizations like The Associated Press
to produce a news item and distribute it to many newspapers. Each newspaper
puts the story in its on-line edition, but surrounds it by information that is
special to that newspaper, such as the name and address of the newspaper,
links to related articles, and links to ads. In addition, it is common for the
newspaper to modify the article, perhaps by leaving off the last few paragraphs
or even deleting text from the middle. As a result, the same news article can
appear quite different at the Web sites of different newspapers.

116 CHAPTER 3. FINDING SIMILAR ITEMS

The problem looks very much like the one that was suggested in Section 3.4:
find documents whose shingles have a high Jaccard similarity. Note that this
problem is different from the problem of finding news articles that tell about the
same events. The latter problem requires other techniques, typically examining
the set of important words in the documents (a concept we discussed briefly
in Section 1.3.1) and clustering them to group together different articles about
the same topic.

However, an interesting variation on the theme of shingling was found to be
more effective for data of the type described. The problem is that shingling as
we described it in Section 3.2 treats all parts of a document equally. However,
we wish to ignore parts of the document, such as ads or the headlines of other
articles to which the newspaper added a link, that are not part of the news
article. It turns out that there is a noticeable difference between text that
appears in prose and text that appears in ads or headlines. Prose has a much
greater frequency of stop words, the very frequent words such as “the” or “and.”
The total number of words that are considered stop words varies with the
application, but it is common to use a list of several hundred of the most
frequent words.

Example 3.23 : A typical ad might say simply “Buy Sudzo.” On the other
hand, a prose version of the same thought that might appear in an article is
“I recommend that you buy Sudzo for your laundry.” In the latter sentence, it
would be normal to treat “I,” “that,” “you,” “for,” and “your” as stop words.
✷

Suppose we define a shingle to be a stop word followed by the next two
words. Then the ad “Buy Sudzo” from Example 3.23 has no shingles and
would not be reflected in the representation of the Web page containing that
ad. On the other hand, the sentence from Example 3.23 would be represented
by five shingles: “I recommend that,” “that you buy,” “you buy Sudzo,” “for
your laundry,” and “your laundry x,” where x is whatever word follows that
sentence.

Suppose we have two Web pages, each of which consists of half news text
and half ads or other material that has a low density of stop words. If the news
text is the same but the surrounding material is different, then we would expect
that a large fraction of the shingles of the two pages would be the same. They
might have a Jaccard similarity of 75%. However, if the surrounding material
is the same but the news content is different, then the number of common
shingles would be small, perhaps 25%. If we were to use the conventional
shingling, where shingles are (say) sequences of 10 consecutive characters, we
would expect the two documents to share half their shingles (i.e., a Jaccard
similarity of 1/3), regardless of whether it was the news or the surrounding
material that they shared.

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 117

3.8.7 Exercises for Section 3.8

Exercise 3.8.1 : Suppose we are trying to perform entity resolution among
bibliographic references, and we score pairs of references based on the similar-
ities of their titles, list of authors, and place of publication. Suppose also that
all references include a year of publication, and this year is equally likely to be
any of the ten most recent years. Further, suppose that we discover that among
the pairs of references with a perfect score, there is an average difference in the
publication year of 0.1.6 Suppose that the pairs of references with a certain
score s are found to have an average difference in their publication dates of 2.
What is the fraction of pairs with score s that truly represent the same pub-
lication? Note: Do not make the mistake of assuming the average difference
in publication date between random pairs is 5 or 5.5. You need to calculate it
exactly, and you have enough information to do so.

Exercise 3.8.2 : Suppose we use the family F of functions described in Sec-
tion 3.8.5, where there is a 20% chance of a minutia in an grid square, an 80%
chance of a second copy of a fingerprint having a minutia in a grid square where
the first copy does, and each function in F being formed from three grid squares.
In Example 3.22, we constructed family F1 by using the OR construction on
1024 members of F. Suppose we instead used family F2 that is a 2048-way OR
of members of F.

(a) Compute the rates of false positives and false negatives for F2.

(b) How do these rates compare with what we get if we organize the same
2048 functions into a 2-way AND of members of F1, as was discussed at
the end of Section 3.8.5?

Exercise 3.8.3 : Suppose fingerprints have the same statistics outlined in Ex-
ercise 3.8.2, but we use a base family of functions F′ defined like F, but using
only two randomly chosen grid squares. Construct another set of functions F′

1

from F′ by taking the n-way OR of functions from F′. What, as a function of
n, are the false positive and false negative rates for F′

1?

Exercise 3.8.4 : Suppose we use the functions F1 from Example 3.22, but we
want to solve the many-many problem.

(a) If two fingerprints are from the same finger, what is the probability that
they will not be compared (i.e., what is the false negative rate)?

(b) What fraction of the fingerprints from different fingers will be compared
(i.e., what is the false positive rate)?

! Exercise 3.8.5 : Assume we have the set of functions F as in Exercise 3.8.2,
and we construct a new set of functions F3 by an n-way OR of functions in
F. For what value of n is the sum of the false positive and false negative rates
minimized?

6We might expect the average to be 0, but in practice, errors in publication year do occur.

118 CHAPTER 3. FINDING SIMILAR ITEMS

3.9 Methods for High Degrees of Similarity

LSH-based methods appear most effective when the degree of similarity we
accept is relatively low. When we want to find sets that are almost identical,
there are other methods that can be faster. Moreover, these methods are exact,
in that they find every pair of items with the desired degree of similarity. There
are no false negatives, as there can be with LSH.

3.9.1 Finding Identical Items

The extreme case is finding identical items, for example, Web pages that are
identical, character-for-character. It is straightforward to compare two docu-
ments and tell whether they are identical, but we still must avoid having to
compare every pair of documents. Our first thought would be to hash docu-
ments based on their first few characters, and compare only those documents
that fell into the same bucket. That scheme should work well, unless all the
documents begin with the same characters, such as an HTML header.

Our second thought would be to use a hash function that examines the
entire document. That would work, and if we use enough buckets, it would be
very rare that two documents went into the same bucket, yet were not identical.
The downside of this approach is that we must examine every character of every
document. If we limit our examination to a small number of characters, then
we never have to examine a document that is unique and falls into a bucket of
its own.

A better approach is to pick some fixed random positions for all documents,
and make the hash function depend only on these. This way, we can avoid
a problem where there is a common prefix for all or most documents, yet we
need not examine entire documents unless they fall into a bucket with another
document. One problem with selecting fixed positions is that if some documents
are short, they may not have some of the selected positions. However, if we are
looking for highly similar documents, we never need to compare two documents
that differ significantly in their length. We exploit this idea in Section 3.9.3.

3.9.2 Representing Sets as Strings

Now, let us focus on the harder problem of finding, in a large collection of sets,
all pairs that have a high Jaccard similarity, say at least 0.9. We can represent
a set by sorting the elements of the universal set in some fixed order, and
representing any set by listing its elements in this order. The list is essentially
a string of “characters,” where the characters are the elements of the universal
set. These strings are unusual, however, in that:

1. No character appears more than once in a string, and

2. If two characters appear in two different strings, then they appear in the
same order in both strings.

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 119

Example 3.24 : Suppose the universal set consists of the 26 lower-case letters,
and we use the normal alphabetical order. Then the set {d, a, b} is represented
by the string abd. ✷

In what follows, we shall assume all strings represent sets in the manner just
described. Thus, we shall talk about the Jaccard similarity of strings, when
strictly speaking we mean the similarity of the sets that the strings represent.
Also, we shall talk of the length of a string, as a surrogate for the number of
elements in the set that the string represents.

Note that the documents discussed in Section 3.9.1 do not exactly match
this model, even though we can see documents as strings. To fit the model,
we would shingle the documents, assign an order to the shingles, and represent
each document by its list of shingles in the selected order.

3.9.3 Length-Based Filtering

The simplest way to exploit the string representation of Section 3.9.2 is to sort
the strings by length. Then, each string s is compared with those strings t that
follow s in the list, but are not too long. Suppose the lower bound on Jaccard
similarity between two strings is J . For any string x, denote its length by Lx.
Note that Ls ≤ Lt. The intersection of the sets represented by s and t cannot
have more than Ls members, while their union has at least Lt members. Thus,
the Jaccard similarity of s and t, which we denote SIM(s, t), is at most Ls/Lt.
That is, in order for s and t to require comparison, it must be that J ≤ Ls/Lt,
or equivalently, Lt ≤ Ls/J .

Example 3.25 : Suppose that s is a string of length 9, and we are looking for
strings with at least 0.9 Jaccard similarity. Then we have only to compare s
with strings following it in the length-based sorted order that have length at
most 9/0.9 = 10. That is, we compare s with those strings of length 9 that
follow it in order, and all strings of length 10. We have no need to compare s
with any other string.

Suppose the length of s were 8 instead. Then s would be compared with
following strings of length up to 8/0.9 = 8.89. That is, a string of length 9
would be too long to have a Jaccard similarity of 0.9 with s, so we only have to
compare s with the strings that have length 8 but follow it in the sorted order.
✷

3.9.4 Prefix Indexing

In addition to length, there are several other features of strings that can be
exploited to limit the number of comparisons that must be made to identify
all pairs of similar strings. The simplest of these options is to create an index
for each symbol; recall a symbol of a string is any one of the elements of the
universal set. For each string s, we select a prefix of s consisting of the first p

120 CHAPTER 3. FINDING SIMILAR ITEMS

A Better Ordering for Symbols

Instead of using the obvious order for elements of the universal set, e.g.,
lexicographic order for shingles, we can order symbols rarest first. That
is, determine how many times each element appears in the collection of
sets, and order them by this count, lowest first. The advantage of doing
so is that the symbols in prefixes will tend to be rare. Thus, they will
cause that string to be placed in index buckets that have relatively few
members. Then, when we need to examine a string for possible matches,
we shall find few other strings that are candidates for comparison.

symbols of s. How large p must be depends on Ls and J , the lower bound on
Jaccard similarity. We add string s to the index for each of its first p symbols.

In effect, the index for each symbol becomes a bucket of strings that must be
compared. We must be certain that any other string t such that SIM(s, t) ≥ J
will have at least one symbol in its prefix that also appears in the prefix of s.

Suppose not; rather SIM(s, t) ≥ J , but t has none of the first p symbols of
s. Then the highest Jaccard similarity that s and t can have occurs when t is
a suffix of s, consisting of everything but the first p symbols of s. The Jaccard
similarity of s and t would then be (Ls − p)/Ls. To be sure that we do not
have to compare s with t, we must be certain that J > (Ls − p)/Ls. That
is, p must be at least ⌊(1 − J)Ls⌋ + 1. Of course we want p to be as small as
possible, so we do not index string s in more buckets than we need to. Thus,
we shall hereafter take p = ⌊(1 − J)Ls⌋+ 1 to be the length of the prefix that
gets indexed.

Example 3.26 : Suppose J = 0.9. If Ls = 9, then p = ⌊0.1 × 9⌋ + 1 =
⌊0.9⌋ + 1 = 1. That is, we need to index s under only its first symbol. Any
string t that does not have the first symbol of s in a position such that t is
indexed by that symbol will have Jaccard similarity with s that is less than 0.9.
Suppose s is bcdefghij. Then s is indexed under b only. Suppose t does not
begin with b. There are two cases to consider.

1. If t begins with a, and SIM(s, t) ≥ 0.9, then it can only be that t is
abcdefghij. But if that is the case, t will be indexed under both a and
b. The reason is that Lt = 10, so t will be indexed under the symbols of
its prefix of length ⌊0.1× 10⌋+ 1 = 2.

2. If t begins with c or a later letter, then the maximum value of SIM(s, t)
occurs when t is cdefghij. But then SIM(s, t) = 8/9 < 0.9.

In general, with J = 0.9, strings of length up to 9 are indexed by their first
symbol, strings of lengths 10–19 are indexed under their first two symbols,

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 121

strings of length 20–29 are indexed under their first three symbols, and so on.
✷

We can use the indexing scheme in two ways, depending on whether we
are trying to solve the many-many problem or a many-one problem; recall the
distinction was introduced in Section 3.8.4. For the many-one problem, we
create the index for the entire database. To query for matches to a new set
S, we convert that set to a string s, which we call the probe string. Determine
the length of the prefix that must be considered, that is, ⌊(1 − J)Ls⌋+ 1. For
each symbol appearing in one of the prefix positions of s, we look in the index
bucket for that symbol, and we compare s with all the strings appearing in that
bucket.

If we want to solve the many-many problem, start with an empty database
of strings and indexes. For each set S, we treat S as a new set for the many-one
problem. We convert S to a string s, which we treat as a probe string in the
many-one problem. However, after we examine an index bucket, we also add s
to that bucket, so s will be compared with later strings that could be matches.

3.9.5 Using Position Information

Consider the strings s = acdefghijk and t = bcdefghijk, and assume J = 0.9.
Since both strings are of length 10, they are indexed under their first two
symbols. Thus, s is indexed under a and c, while t is indexed under b and c.
Whichever is added last will find the other in the bucket for c, and they will be
compared. However, since c is the second symbol of both, we know there will
be two symbols, a and b in this case, that are in the union of the two sets but
not in the intersection. Indeed, even though s and t are identical from c to the
end, their intersection is 9 symbols and their union is 11; thus SIM(s, t) = 9/11,
which is less than 0.9.

If we build our index based not only on the symbol, but on the position of
the symbol within the string, we could avoid comparing s and t above. That
is, let our index have a bucket for each pair (x, i), containing the strings that
have symbol x in position i of their prefix. Given a string s, and assuming J is
the minimum desired Jaccard similarity, we look at the prefix of s, that is, the
positions 1 through ⌊(1− J)Ls⌋+ 1. If the symbol in position i of the prefix is
x, add s to the index bucket for (x, i).

Now consider s as a probe string. With what buckets must it be compared?
We shall visit the symbols of the prefix of s from the left, and we shall take
advantage of the fact that we only need to find a possible matching string t if
none of the previous buckets we have examined for matches held t. That is, we
only need to find a candidate match once. Thus, if we find that the ith symbol
of s is x, then we need look in the bucket (x, j) for certain small values of j.

To compute the upper bound on j, suppose t is a string none of whose first
j−1 symbols matched anything in s, but the ith symbol of s is the same as the
jth symbol of t. The highest value of SIM(s, t) occurs if s and t are identical

122 CHAPTER 3. FINDING SIMILAR ITEMS

j

s

t

Symbols definitely
appearing in

only one string

i

Figure 3.14: Strings s and t begin with i− 1 and j − 1 unique symbols, respec-
tively, and then agree beyond that

beyond their ith and jth symbols, respectively, as suggested by Fig. 3.14. If
that is the case, the size of their intersection is Ls − i + 1, since that is the
number of symbols of s that could possibly be in t. The size of their union is
at least Ls + j − 1. That is, s surely contributes Ls symbols to the union, and
there are also at least j− 1 symbols of t that are not in s. The ratio of the sizes
of the intersection and union must be at least J , so we must have:

Ls − i+ 1

Ls + j − 1
≥ J

If we isolate j in this inequality, we have j ≤
(

Ls(1− J)− i+ 1 + J
)

/J .

Example 3.27 : Consider the string s = acdefghijk with J = 0.9 discussed
at the beginning of this section. Suppose s is now a probe string. We already
established that we need to consider the first two positions; that is, i can be 1
or 2. Suppose i = 1. Then j ≤ (10 × 0.1 − 1 + 1 + 0.9)/0.9. That is, we only
have to compare the symbol a with strings in the bucket for (a, j) if j ≤ 2.11.
Thus, j can be 1 or 2, but nothing higher.

Now suppose i = 2. Then we require j ≤ (10 × 0.1 − 2 + 1 + 0.9)/0.9, Or
j ≤ 1. We conclude that we must look in the buckets for (a, 1), (a, 2), and (c, 1),
but in no other bucket. In comparison, using the buckets of Section 3.9.4, we
would look into the buckets for a and c, which is equivalent to looking to all
buckets (a, j) and (c, j) for any j. ✷

3.9.6 Using Position and Length in Indexes

When we considered the upper limit on j in the previous section, we assumed
that what follows positions i and j were as in Fig. 3.14, where what followed
these positions in strings s and t matched exactly. We do not want to build an
index that involves every symbol in the strings, because that makes the total
work excessive. However, we can add to our index a summary of what follows
the positions being indexed. Doing so expands the number of buckets, but not
beyond reasonable bounds, and yet enables us to eliminate many candidate

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 123

matches without comparing entire strings. The idea is to use index buckets
corresponding to a symbol, a position, and the suffix length, that is, the number
of symbols following the position in question.

Example 3.28 : The string s = acdefghijk, with J = 0.9, would be indexed
in the buckets for (a, 1, 9) and (c, 2, 8). That is, the first position of s has symbol
a, and its suffix is of length 9. The second position has symbol c and its suffix
is of length 8. ✷

Figure 3.14 assumes that the suffixes for position i of s and position j of t
have the same length. If not, then we can either get a smaller upper bound on
the size of the intersection of s and t (if t is shorter) or a larger lower bound
on the size of the union (if t is longer). Suppose s has suffix length p and t has
suffix length q.

Case 1: p ≥ q. Here, the maximum size of the intersection is

Ls − i+ 1− (p− q)

Since Ls = i+ p, we can write the above expression for the intersection size as
q + 1. The minimum size of the union is Ls + j − 1, as it was when we did not
take suffix length into account. Thus, we require

q + 1

Ls + j − 1
≥ J

whenever p ≥ q.

Case 2: p < q. Here, the maximum size of the intersection is Ls − i + 1, as
when suffix length was not considered. However, the minimum size of the union
is now Ls + j − 1 + q − p. If we again use the relationship Ls = i + p, we can
replace Ls − p by i and get the formula i + j − 1 + q for the size of the union.
If the Jaccard similarity is at least J , then

Ls − i+ 1

i+ j − 1 + q
≥ J

whenever p < q.

Example 3.29 : Let us again consider the string s = acdefghijk, but to make
the example show some details, let us choose J = 0.8 instead of 0.9. We know
that Ls = 10. Since ⌊(1 − J)Ls⌋ + 1 = 3, we must consider prefix positions
i = 1, 2, and 3 in what follows. As before, let p be the suffix length of s and q
the suffix length of t.

First, consider the case p ≥ q. The additional constraint we have on q and
j is (q + 1)/(9 + j) ≥ 0.8. We can enumerate the pairs of values of j and q for
each i between 1 and 3, as follows.

124 CHAPTER 3. FINDING SIMILAR ITEMS

i = 1: Here, p = 9, so q ≤ 9. Let us consider the possible values of q:

q = 9: We must have 10/(9 + j) ≥ 0.8. Thus, we can have j = 1, j = 2,
or j = 3. Note that for j = 4, 10/13 > 0.8.

q = 8: We must have 9/(9 + j) ≥ 0.8. Thus, we can have j = 1 or j = 2.
For j = 3, 9/12 > 0.8.

q = 7: We must have 8/(9+ j) ≥ 0.8. Only j = 1 satisfies this inequality.

q = 6: There are no possible values of j, since 7/(9 + j) > 0.8 for every
positive integer j. The same holds for every smaller value of q.

i = 2: Here, p = 8, so we require q ≤ 8. Since the constraint (q+1)/(9+j) ≥ 0.8
does not depend on i,7 we can use the analysis from the above case, but
exclude the case q = 9. Thus, the only possible values of j and q when
i = 2 are

1. q = 8; j = 1.

2. q = 8; j = 2.

3. q = 7; j = 1.

i = 3: Now, p = 7 and the constraints are q ≤ 7 and (q+1)/(9+ j) ≥ 0.8. The
only option is q = 7 and j = 1.

Next, we must consider the case p < q. The additional constraint is

11− i

i+ j + q − 1
≥ 0.8

Again, consider each possible value of i.

i = 1: Then p = 9, so we require q ≥ 10 and 10/(q + j) ≥ 0.8. The possible
values of q and j are

1. q = 10; j = 1.

2. q = 10; j = 2.

3. q = 11; j = 1.

i = 2: Now, p = 8, so we require q ≥ 9 and 9/(q + j + 1) ≥ 0.8. Since j must
be a positive integer, the only solution is q = 9 and j = 1, a possibility
that we already knew about.

i = 3: Here, p = 7, so we require q ≥ 8 and 8/(q + j + 2) ≥ 0.8. There are no
solutions.

When we accumulate the possible combinations of i, j, and q, we see that
the set of index buckets in which we must look forms a pyramid. Figure 3.15
shows the buckets in which we must search. That is, we must look in those
buckets (x, j, q) such that the ith symbol of the string s is x, j is the position
associated with the bucket and q the suffix length. ✷

7Note that i does influence the value of p, and through p, puts a limit on q.

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 125

q j = 1 j = 2 j = 3
7 x
8 x x

i = 1 9 x x x
10 x x
11 x
7 x

i = 2 8 x x
9 x

i = 3 7 x

Figure 3.15: The buckets that must be examined to find possible matches for
the string s = acdefghijk with J = 0.8 are marked with an x

3.9.7 Exercises for Section 3.9

Exercise 3.9.1 : Suppose our universal set is the lower-case letters, and the
order of elements is taken to be the vowels, in alphabetic order, followed by the
consonants in reverse alphabetic order. Represent the following sets as strings.

a {q, w, e, r, t, y}.

(b) {a, s, d, f, g, h, j, u, i}.

Exercise 3.9.2 : Suppose we filter candidate pairs based only on length, as in
Section 3.9.3. If s is a string of length 20, with what strings is s compared when
J , the lower bound on Jaccard similarity has the following values: (a) J = 0.85
(b) J = 0.95 (c) J = 0.98?

Exercise 3.9.3 : Suppose we have a string s of length 15, and we wish to index
its prefix as in Section 3.9.4.

(a) How many positions are in the prefix if J = 0.85?

(b) How many positions are in the prefix if J = 0.95?

! (c) For what range of values of J will s be indexed under its first four symbols,
but no more?

Exercise 3.9.4 : Suppose s is a string of length 12. With what symbol-position
pairs will s be compared with if we use the indexing approach of Section 3.9.5,
and (a) J = 0.75 (b) J = 0.95?

! Exercise 3.9.5 : Suppose we use position information in our index, as in Sec-
tion 3.9.5. Strings s and t are both chosen at random from a universal set of
100 elements. Assume J = 0.9. What is the probability that s and t will be
compared if

126 CHAPTER 3. FINDING SIMILAR ITEMS

(a) s and t are both of length 9.

(b) s and t are both of length 10.

Exercise 3.9.6 : Suppose we use indexes based on both position and suffix
length, as in Section 3.9.6. If s is a string of length 20, with what symbol-
position-length triples will s be compared with, if (a) J = 0.8 (b) J = 0.9?

3.10 Summary of Chapter 3

✦ Jaccard Similarity: The Jaccard similarity of sets is the ratio of the size
of the intersection of the sets to the size of the union. This measure of
similarity is suitable for many applications, including textual similarity of
documents and similarity of buying habits of customers.

✦ Shingling: A k-shingle is any k characters that appear consecutively in
a document. If we represent a document by its set of k-shingles, then
the Jaccard similarity of the shingle sets measures the textual similarity
of documents. Sometimes, it is useful to hash shingles to bit strings of
shorter length, and use sets of hash values to represent documents.

✦ Minhashing: A minhash function on sets is based on a permutation of the
universal set. Given any such permutation, the minhash value for a set is
that element of the set that appears first in the permuted order.

✦ Minhash Signatures : We may represent sets by picking some list of per-
mutations and computing for each set its minhash signature, which is the
sequence of minhash values obtained by applying each permutation on the
list to that set. Given two sets, the expected fraction of the permutations
that will yield the same minhash value is exactly the Jaccard similarity
of the sets.

✦ Efficient Minhashing: Since it is not really possible to generate random
permutations, it is normal to simulate a permutation by picking a random
hash function and taking the minhash value for a set to be the least hash
value of any of the set’s members.

✦ Locality-Sensitive Hashing for Signatures : This technique allows us to
avoid computing the similarity of every pair of sets or their minhash sig-
natures. If we are given signatures for the sets, we may divide them into
bands, and only measure the similarity of a pair of sets if they are identi-
cal in at least one band. By choosing the size of bands appropriately, we
can eliminate from consideration most of the pairs that do not meet our
threshold of similarity.

✦ Distance Measures : A distance measure is a function on pairs of points in
a space that satisfy certain axioms. The distance between two points is 0 if

3.10. SUMMARY OF CHAPTER 3 127

the points are the same, but greater than 0 if the points are different. The
distance is symmetric; it does not matter in which order we consider the
two points. A distance measure must satisfy the triangle inequality: the
distance between two points is never more than the sum of the distances
between those points and some third point.

✦ Euclidean Distance: The most common notion of distance is the Euclidean
distance in an n-dimensional space. This distance, sometimes called the
L2-norm, is the square root of the sum of the squares of the differences
between the points in each dimension. Another distance suitable for Eu-
clidean spaces, called Manhattan distance or the L1-norm is the sum of
the magnitudes of the differences between the points in each dimension.

✦ Jaccard Distance: One minus the Jaccard similarity is a distance measure,
called the Jaccard distance.

✦ Cosine Distance: The angle between vectors in a vector space is the cosine
distance measure. We can compute the cosine of that angle by taking the
dot product of the vectors and dividing by the lengths of the vectors.

✦ Edit Distance: This distance measure applies to a space of strings, and
is the number of insertions and/or deletions needed to convert one string
into the other. The edit distance can also be computed as the sum of
the lengths of the strings minus twice the length of the longest common
subsequence of the strings.

✦ Hamming Distance: This distance measure applies to a space of vectors.
The Hamming distance between two vectors is the number of positions in
which the vectors differ.

✦ Generalized Locality-Sensitive Hashing: We may start with any collection
of functions, such as the minhash functions, that can render a decision
as to whether or not a pair of items should be candidates for similarity
checking. The only constraint on these functions is that they provide a
lower bound on the probability of saying “yes” if the distance (according
to some distance measure) is below a given limit, and an upper bound on
the probability of saying “yes” if the distance is above another given limit.
We can then increase the probability of saying “yes” for nearby items and
at the same time decrease the probability of saying “yes” for distant items
to as great an extent as we wish, by applying an AND construction and
an OR construction.

✦ Random Hyperplanes and LSH for Cosine Distance: We can get a set of
basis functions to start a generalized LSH for the cosine distance measure
by identifying each function with a list of randomly chosen vectors. We
apply a function to a given vector v by taking the dot product of v with
each vector on the list. The result is a sketch consisting of the signs (+1 or
−1) of the dot products. The fraction of positions in which the sketches of

128 CHAPTER 3. FINDING SIMILAR ITEMS

two vectors agree, multiplied by 180, is an estimate of the angle between
the two vectors.

✦ LSH For Euclidean Distance: A set of basis functions to start LSH for
Euclidean distance can be obtained by choosing random lines and project-
ing points onto those lines. Each line is broken into fixed-length intervals,
and the function answers “yes” to a pair of points that fall into the same
interval.

✦ High-Similarity Detection by String Comparison: An alternative approach
to finding similar items, when the threshold of Jaccard similarity is close to
1, avoids using minhashing and LSH. Rather, the universal set is ordered,
and sets are represented by strings, consisting their elements in order.
The simplest way to avoid comparing all pairs of sets or their strings is to
note that highly similar sets will have strings of approximately the same
length. If we sort the strings, we can compare each string with only a
small number of the immediately following strings.

✦ Character Indexes : If we represent sets by strings, and the similarity
threshold is close to 1, we can index all strings by their first few characters.
The prefix whose characters must be indexed is approximately the length
of the string times the maximum Jaccard distance (1 minus the minimum
Jaccard similarity).

✦ Position Indexes : We can index strings not only on the characters in
their prefixes, but on the position of that character within the prefix. We
reduce the number of pairs of strings that must be compared, because
if two strings share a character that is not in the first position in both
strings, then we know that either there are some preceding characters that
are in the union but not the intersection, or there is an earlier symbol that
appears in both strings.

✦ Suffix Indexes : We can also index strings based not only on the characters
in their prefixes and the positions of those characters, but on the length
of the character’s suffix – the number of positions that follow it in the
string. This structure further reduces the number of pairs that must be
compared, because a common symbol with different suffix lengths implies
additional characters that must be in the union but not in the intersection.

3.11 References for Chapter 3

The technique we called shingling is attributed to [10]. The use in the manner
we discussed here is from [2]. Minhashing comes from [3]. The original works
on locality-sensitive hashing were [9] and [7]. [1] is a useful summary of ideas
in this field.

3.11. REFERENCES FOR CHAPTER 3 129

[4] introduces the idea of using random-hyperplanes to summarize items in
a way that respects the cosine distance. [8] suggests that random hyperplanes
plus LSH can be more accurate at detecting similar documents than minhashing
plus LSH.

Techniques for summarizing points in a Euclidean space are covered in [6].
[11] presented the shingling technique based on stop words.

The length and prefix-based indexing schemes for high-similarity matching
comes from [5]. The technique involving suffix length is from [12].

1. A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” Comm. ACM 51:1, pp. 117–
122, 2008.

2. A.Z. Broder, “On the resemblance and containment of documents,” Proc.

Compression and Complexity of Sequences, pp. 21–29, Positano Italy,
1997.

3. A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher, “Min-wise
independent permutations,” ACM Symposium on Theory of Computing,
pp. 327–336, 1998.

4. M.S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” ACM Symposium on Theory of Computing, pp. 380–388, 2002.

5. S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for sim-
ilarity joins in data cleaning,” Proc. Intl. Conf. on Data Engineering,
2006.

6. M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” Symposium on Compu-

tational Geometry pp. 253–262, 2004.

7. A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” Proc. Intl. Conf. on Very Large Databases, pp. 518–
529, 1999.

8. M. Henzinger, “Finding near-duplicate web pages: a large-scale evaluation
of algorithms,” Proc. 29th SIGIR Conf., pp. 284–291, 2006.

9. P. Indyk and R. Motwani. “Approximate nearest neighbor: towards re-
moving the curse of dimensionality,” ACM Symposium on Theory of Com-

puting, pp. 604–613, 1998.

10. U. Manber, “Finding similar files in a large file system,” Proc. USENIX

Conference, pp. 1–10, 1994.

11. M. Theobald, J. Siddharth, and A. Paepcke, “SpotSigs: robust and effi-
cient near duplicate detection in large web collections,” 31st Annual ACM

SIGIR Conference, July, 2008, Singapore.

130 CHAPTER 3. FINDING SIMILAR ITEMS

12. C. Xiao, W. Wang, X. Lin, and J.X. Yu, “Efficient similarity joins for
near duplicate detection,” Proc. WWW Conference, pp. 131-140, 2008.

