
ar
X

iv
:1

50
4.

06
80

4v
9

 [c
s.

D
S

]
9

M
ay

 2
02

0

High Speed Hashing for Integers and Strings

Mikkel Thorup

May 12, 2020

Abstract

These notes describe the most efficient hash functions currently known for hashing integers

and strings. These modern hash functions are often an order of magnitude faster than those

presented in standard text books. They are also simpler to implement, and hence a clear win

in practice, but their analysis is harder. Some of the most practical hash functions have only

appeared in theory papers, and some of them require combining results from different theory

papers. The goal here is to combine the information in lecture-style notes that can be used by

theoreticians and practitioners alike, thus making these practical fruits of theory more widely

accessible.

1 Hash functions

The concept of truly independent hash functions is extremely useful in the design of randomized

algorithms. We have a large universe U of keys, e.g., 64-bit numbers, that we wish to map ran-

domly to a range [m] = {0, . . . , m−1} of hash values. A truly random hash function h : U → [m]
assigns an independent uniformly random variable h(x) to each key in x. The function h is thus a

|U |-dimensional random variable, picked uniformly at random among all functions from U to [m].
Unfortunately truly random hash functions are idealized objects that cannot be implemented.

More precisely, to represent a truly random hash function, we need to store at least |U | log2m bits,

and in most applications of hash functions, the whole point in hashing is that the universe is much

too large for such a representation (at least not in fast internal memory).

The idea is to let hash functions contain only a small element or seed of randomness so that

the hash function is sufficiently random for the desired application, yet so that the seed is small

enough that we can store it when first it is fixed. As an example, if p is prime, a random hash

function h : [p] → [p] = {0, . . . , p−1} could be h(x) = (ax+b) mod p where a and b are random

numbers that together form the random seed describing the function. In these notes we will discuss

some basic forms of random hashing that are very efficient to implement, and yet have sufficient

randomness for some important applications.

1

http://arxiv.org/abs/1504.06804v9

1.1 Definition and properties

Definition 1 A hash function h : U → [m] is a random variable in the class of all functions

U → [m], that is, it consists of a random variable h(x) for each x ∈ U .

For a hash function, we care about roughly three things:

Space The size of the random seed that is necessary to calculate h(x) given x,

Speed The time it takes to calculate h(x) given x,

Properties of the random variable.

In the next sections we will mention different desirable properties of the random hash functions,

and how to implement them them efficiently. First we introduce universal hashing in Section 2,

then we introduce strongly universal hashing in Section 3. In both cases, we present very efficient

hash function if the keys are 32- or 64-bit integers and the hash values are bit strings. In Section 4

we show how we can efficiently produce hash values in arbitrary integer ranges. In Section 5, we

show how to hash keys that are strings. Finally, in Section 6, we briefly mention hash functions

that have stronger properties than strong universality.

2 Universal hashing

The concept of universal hashing was introduced by Carter and Wegman in [2]. We wish to

generate a random hash function h : U → [m] from a key universe U to a set of hash values

[m] = {0, . . . , m− 1}. We think of h as a random variable following some distribution over func-

tions U → [m]. We want h to be universal which means that for any given distinct keys x, y ∈ U ,

when h is picked at random (independently of x and y), we have low collision probability:

Pr
h
[h(x) = h(y)] ≤ 1/m.

For many applications, it suffices if for some c = O(1), we have

Pr
h
[h(x) = h(y)] ≤ c/m.

Then h is called c-approximately universal.

In this chapter we will first give some concrete applications of universal hashing. Next we will

show how to implement universal hashing when the key universe is an integer domain U = [u] =
{0, . . . , u− 1} where the integers fit in a machine word, that is, u ≤ 2w where w = 64 is the word

length. In later chapters we will show how to make efficient universal hashing for large objects

such as vectors and variable length strings.

Exercise 2.1 Is the truly independent hash function h : U → [m] universal?

Exercise 2.2 If a hash function h : U → [m] has collision probability 0, how large must m be?

Exercise 2.3 Let u ≤ m. Is the identity function f(x) = x a universal hash function [u] → [m]?

2

2.1 Applications

One of the most classic applications of universal hashing is hash tables with chaining. We have a

set S ⊆ U of keys that we wish to store so that we can find any key from S in expected constant

time. Let n = |S| and m ≥ n. We now pick a universal hash function h : U → [m], and then

create an array L of m lists/chains so that for i ∈ [m], L[i] is the list of keys that hash to i. Now

to find out if a key x ∈ U is in S, we only have to check if x is in the list L[h(x)]. This takes time

proportional to 1 + |L[h(x)]| (we add 1 because it takes constant time to look up the list even if

turns out to be empty).

Assume that x 6∈ S and that h is universal. Let I(y) be an indicator variable which is 1 if

h(x) = h(y) and 0 otherwise. Then the expected number of elements in L[h(x)] is

Eh[|L[h(x)]|] = Eh

[

∑

y∈S

I(y)

]

=
∑

y∈S

Eh[I(y)] =
∑

y∈S

Pr
h
[h(y) = h(x)] ≤ n/m ≤ 1.

The second equality uses linearity of expectation.

Exercise 2.4 (a) What is the expected number of elements in L[h(x)] if x ∈ S?

(b) What bound do you get if h is only 2-approximately universal?

The idea of hash tables goes back to [8], and hash tables were the prime motivation for the intro-

duction of universal hashing in [2]. For a text book description, see, e.g., [3, §11.2].

A different application is that of assigning a unique signature s(x) to each key. Thus we

want s(x) 6= s(y) for all distinct keys x, y ∈ S. To get this, we pick a universal hash function

s : U → [n3]. The probability of an error (collision) is calculated as

Pr
s
[∃{x, y} ⊆ S : s(x) = s(y)] ≤

∑

{x,y}⊆S

Pr
s
[s(x) = s(y)] ≤

(

n

2

)

/n3 < 1/(2n).

The first inequality is a union bound: that the probability of that at least one of multiple events

happen is at most the sum of their probabilities.

The idea of signatures is particularly relevant when the keys are large, e.g., a key could be a

whole text document, which then becomes identified by the small signature. This idea could also

be used in connection with hash tables, letting the list L[i] store the signatures s(x) of the keys that

hash to i, that is, L[i] = {s(x)|x ∈ X, h(x) = i}. To check if x is in the table we check if s(x) is

in L[h(x)].

Exercise 2.5 With s : U → [n3] and h : U → [n] independent universal hash functions, for a

given x ∈ U \ S, what is the probability of a false positive when we search x, that is, what is the

probability that there is a key y ∈ S such that h(y) = h(x) and s(y) = s(x) ?

Below we study implementations of universal hashing.

3

2.2 Multiply-mod-prime

Note that if m ≥ u, we can just let h be the identity (no randomness needed) so we may assume

that m < u. We may also assume that m > 1; for if m = 1, then [m] = {0} and then we have the

trivial case where all keys hash to 0.

The classic universal hash function from [2] is based on a prime number p ≥ u. We pick a

uniformly random a ∈ [p]+ = {1, . . . , p− 1} and b ∈ [p] = {0, . . . , p− 1}, and define ha,b : [u] →
[m] by

ha,b(x) = ((ax+ b) mod p) mod m (1)

Given any distinct x, y ∈ [u] ⊆ [p], we want to argue that for random a and b that

Pr
a∈[p]+, b∈[p]

[ha,b(x) = ha,b(y)] < 1/m. (2)

The strict inequality uses our assumption that m > 1. Note that with a truly random hash function

into [m], the collision probability is exactly 1/m, so we are claiming that ha,b has a strictly better

collision probability.

In most of our proof, we will consider all a ∈ [p], including a = 0. Ruling out a = 0, will only

be used in the end to get the tight bound from (2). Ruling out a = 0 makes sense because all keys

collide when a = 0.

We need only one basic fact about primes:

Fact 2.1 If p is prime and α, β ∈ [p]+ then αβ 6≡ 0 (mod p).

Let x, y ∈ [p], x 6= y be given. For given pair (a, b) ∈ [p]2, define (q, r) ∈ [p]2 by

(ax+ b) mod p = q (3)

(ay + b) mod p = r. (4)

Lemma 2.2 Equations (3) and (4) define a 1-1 correspondence between pairs (a, b) ∈ [p]2 and

pairs (q, r) ∈ [p]2.

Proof For a given pair (r, q) ∈ [p]2, we will show that there is at most one pair (a, b) ∈ [p]2

satisfying (3) and (4). Subtracting (3) from (4) modulo p, we get

(ay + b)− (ax+ b) ≡ a(y − x) ≡ r − q (mod p), (5)

We claim that there is at most one a satisfying (5). Suppose there is another a′ satisfying (5).

Subtracting the equations with a and a′, we get

(a− a′)(y − x) ≡ 0 (mod p),

but since a − a′ and y − x are both non-zero modulo p, this contradicts Fact 2.1. There is thus at

most one a satisfying (5) for given (q, r). With this a, we need b to satisfy (3), and this determines

b as

b = (q − ax) mod p. (6)

4

Thus, for each pair (q, r) ∈ [p]2, there is at most one pair (a, b) ∈ [p]2 satisfying (3) and (4). On

the other hand, (3) and (4) define a unique pair (q, r) ∈ [p]2 for each pair (a, b) ∈ [p]2. We have p2

pairs of each kind, so the correspondence must be 1-1.

Since x 6= y, by Fact 2.1,

r = q ⇐⇒ a = 0. (7)

Thus, when we pick (a, b) ∈ [p]+ × [p], we get r 6= q.

Returning to the proof of (2), we get a collision ha,b(x) = ha,b(y) if and only if q mod m =
r mod m. Let us fix q and set i = q mod m. There are at most ⌈p/m⌉ values r ∈ [p] with

r mod m = i and one of them is r = q. Therefore, the number of r ∈ [p] \ {q} with r mod m =
i = q mod m is at most ⌈p/m⌉ − 1 ≤ (p + m − 1)/m − 1 = (p − 1)/m. However, there are

values of i′ ∈ [m] with only ⌊p/m⌋ values of q′ ∈ [p] with q′ mod m = i′, and then the number

of r′ ∈ [p] \ {q′} with r′ mod m = i′ = q′ mod m is ⌊p/m⌋ − 1 < ⌈p/m⌉ − 1. Summing over

all p values of q ∈ [p], we get that the number of r ∈ [p] \ {q} with r mod m = i = q mod m is

strictly less than p(⌈p/m⌉− 1) ≤ p(p− 1)/m. Then our 1-1 correspondence implies that there are

strictly less than p(p − 1)/m collision pairs (a, b) ∈ [p]+ × [p]. Since each of the p(p − 1) pairs

from [p]+ × [p] are equally likely, we conclude that the collision probability is strictly below 1/m,

as claimed in (2).

Exercise 2.6 Suppose we for our hash function also consider a = 0, that is, for random (a, b) ∈
[p]2, we define the hash function ha,b : [p] → [m] by

ha,b(x) = ((ax+ b) mod p) mod m.

(a) Show that this function may not be universal.

(b) Prove that it is always 2-approximately universal, that is, for any distinct x, y ∈ [p],

Pr
(a,b)∈[p]2

[ha,b(x) = ha,b(y)] < 2/m.

2.2.1 Implementation for 64-bit keys

Let us now consider the implementation of our hashing scheme

h(x) = ((ax+ b) mod p) mod m

for the typical case of 64-bit keys in a standard imperative programming language such as C. Let’s

say the hash values are 20 bits, so we have u = 264 and m = 220.

Since p > u = 264, we generally need to reserve more than 64 bits for a ∈ [p]+, so the product

ax has more than 128 bits. To compute ax, we now have the issue that multiplication of w-bit

numbers automatically discards overflow, returning only the w least significant bits of the product.

However, we can get the product of 32-bit numbers, representing them as 64-bit numbers, and

getting the full 64-bit result. We need at least 6 such 64-bit multiplications to compute ax.

Next issue is, how do we compute ax mod p? For 64-bit numbers we have a general mod-

operation, though it is rather slow, and here we have more than 128 bits.

5

An idea from [2] is to let p be a Mersenne prime, that is, a prime of the form 2q − 1. Useful

examples of such Mersenne primes are 261 − 1 and 289 − 1. The point in using a Mersenne prime

p = 2q − 1 is that

x ≡ x mod 2q + ⌊x/2q⌋ (mod p). (8)

Exercise 2.7 Prove that (8) holds. Hint: Argue that x mod 2q + ⌊x/2q⌋ = x− ⌊x/2q⌋p.

Using (8) gives us the following C-code to compute y = x mod p:

y=(x&p)+(x>>q);

if (y>=p) y-=p;

Exercise 2.8 Argue that the above code sets y = x mod p assuming that x, y, p, and q are repre-

sented in the same unsigned integer type, and that x < 22q. In particular, argue we can apply the

above code if x = x1x2 where x1, x2 ∈ [p].

Exercise 2.9 Assuming a language like C supporting 64-bit multiplication (discarding overflow

beyond 64 bits), addition, shifts and bit-wise Boolean operations, but no general mod-operation,

sketch the code to compute ((ax + b) mod p) mod m with p = 289 − 1 and m = 220. You should

assume that both your input and your output is arrays of unsigned 32-bit numbers, most significant

number first.

2.3 Multiply-shift

We shall now turn to a truly practical universal hashing scheme proposed by Dietzfelbinger et

al. [6], yet ignored by most text books. It generally addresses hashing from w-bit integers to ℓ-bit

integers. We pick a uniformly random odd w-bit integer a, and then we compute ha : [2w] → [2ℓ],
as

ha(x) = ⌊(ax mod 2w)/2w−ℓ⌋ (9)

This scheme gains an order of magnitude in speed over the scheme from (1), exploiting operations

that are fast on standard computers. Numbers are stored as bit strings, with the least significant bit

to the right. Integer division by a power of two is thus accomplished by a right shift. For hashing

64-bit integers, we further exploit that 64-bit multiplication automatically discards overflow, which

is the same as multiplying modulo 264. Thus, with w = 64, we end up with the following C-code:

#include <stdint.h> //defines uint64_t as unsigned 64-bit integer.

uint64_t hash(uint64_t x, uint64_t l, uint64_t a) {

// hashes x universally into l<=64 bits using random odd seed a.

return (a*x) >> (64-l);

}

This scheme is many times faster and simpler to implement than the standard multiply-mod-prime

scheme, but the analysis is more subtle.

It is convenient to think of the bits of a number as indexed with bit 0 the least significant bit.

The scheme is simply extracting bits w − ℓ, . . . , w − 1 from the product ax, as illustrated below.

6

l

ax

0w−1

(a*x)>>(w−l)

w−

We will prove that multiply-shift is 2-approximately universal, that is, for x 6= y,

Pr
odd a∈[2w]

[ha(x) = ha(y)] ≤ 2/2ℓ = 2/m. (10)

We have ha(x) = ha(y) if and only if ax and ay = ax+ a(y − x) agree on bits w − ℓ, . . . , w − 1.

This match requires that bits w−ℓ, . . . , w−1 of a(y−x) are either all 0s or all 1s. More precisely,

if we get no carry from bits 0, . . . , w − ℓ when we add a(y − x) to ax, then ha(x) = ha(y)
exactly when bits w − ℓ, . . . , w − 1 of a(y − x) are all 0s. On the other hand, if we get a carry

1 from bits 0, . . . , w − ℓ when we add a(y − x) to ax, then ha(x) = ha(y) exactly when bits

w− ℓ, . . . , w− 1 of a(y− x) are all 1s. To prove (10), it thus suffices to prove that the probability

that bits w − ℓ, . . . , w − 1 of a(y − x) are all 0s or all 1s is at most 2/2ℓ.
We will exploit that any odd number z is relatively prime to any power of two:

Fact 2.3 If α is odd and β ∈ [2q]+ then αβ 6≡ 0 (mod 2q).

Define b such that a = 1 + 2b. Then b is uniformly distributed in [2w−1]. Moreover, define z to be

the odd number satisfying (y − x) = z2i. Then

a(y − x) = z2i + bz2i+1.

= a (y − x)

0w−1 i

100000000z

0w−1 i

100000000

i+w−1

uniform

0w−1 i

000000000bz

i+w−1

iy − x = z 2

+ b z 2i+1

Now, we prove that bz mod 2w−1 must be uniformly distributed in [2w−1]. First, note that there

is a 1-1 correspondence between the b ∈ [2w−1] and the products bz mod 2w−1; for if there were

another b′ ∈ [2w−1] with b′z ≡ bz (mod 2w−1) ⇐⇒ z(b′ − b) ≡ 0 (mod 2w−1), then this would

contradict Fact 2.3 since z is odd. But then the uniform distribution on b implies that bz mod 2w−1

is uniformly distributed. We conclude that a(y − x) = z2i + bz2i+1 has 0 in bits 0, . . . , i− 1, 1 in

bit i, and a uniform distribution on bits i+ 1, . . . , i+ w − 1.

We have a collision ha(x) = ha(y) if ax and ay = ax + a(y − x) are identical on bits

w − ℓ, . . . , w − 1. The two are always different in bit i, so if i ≥ w − ℓ, we have ha(x) 6= ha(y)
regardless of a. However, if i < w−ℓ, then because of carries, we could have ha(x) = ha(y) if bits

w− ℓ, . . . , w− 1 of a(y−x) are either all 0s, or all 1s. Because of the uniform distribution, either

event happens with probability 1/2ℓ, for a combined probability bounded by 2/2ℓ. This completes

the proof of (10).

7

Exercise 2.10 Why is it important that a is odd? Hint: consider the case where x and y differ only

in the most significant bit.

Exercise 2.11 Does there exist a key x such that ha(x) is the same regardless of the random odd

number a? If so, can you come up with a real-life application where this is a disadvantage?

3 Strong universality

We will now consider strong universality [11]. For h : [u] → [m], we consider pairwise events of

the form that for given distinct keys x, y ∈ [u] and possibly non-distinct hash values q, r ∈ [m], we

have h(x) = q and h(y) = r. We say a random hash function h : [u] → [m] is strongly universal

if the probability of every pairwise event is 1/m2. We note that if h is strongly universal, it is also

universal since

Pr[h(x) = h(y)] =
∑

q∈[m]

Pr[h(x) = q ∧ h(y) = q] = m/m2 = 1/m.

Observation 3.1 An equivalent definition of strong universality is that each key is hashed uni-

formly into [m], and that every two distinct keys are hashed independently.

Proof First assume strong universality and consider distinct keys x, y ∈ U . For any hash value

q ∈ [m], Pr[h(x) = q] =
∑

r∈[m] Pr[h(x) = q ∧ h(y) = r] = m/m2 = 1/m, so h(x) is uniform

in [m], and the same holds for h(y). Moreover, for any hash value r ∈ [m],

Pr[h(x) = q | h(y) = r] = Pr[h(x) = q ∧ h(y) = r]/Pr[h(y) = r]

= (1/m2)/(1/m) = 1/m = Pr[h(x) = q],

so h(x) is independent of h(y). For the converse direction, when h(x) and h(y) are independent,

Pr[h(x) = q ∧ h(y) = r] = Pr[h(x) = q] · Pr[h(y) = r], and when h(x) and h(y) are uniform,

Pr[h(x) = q] = Pr[h(y) = r] = 1/m, so Pr[h(x) = q] · Pr[h(y) = r] = 1/m2.

Emphasizing the independence, strong universality is also called 2-independence, as it concerns a

pair of two events.

Exercise 3.1 Generalize 2-independence. What is 3-independence? k-independence?

As for universality, we may accept some relaxed notion of strong universality.

Definition 2 We say a random hash function h : U → [m] is c-approximately strongly universal if

1. h is c-approximately uniform, meaning for every x ∈ U and for every hash value q ∈ [m],
we have Pr[h(x) = q] ≤ c/m and

2. every pair of distinct keys hash independently.

8

Exercise 3.2 If h is c-approximately strongly universal, what is an upper bound on the pairwise

event probability,

Pr[h(x) = q ∧ h(y) = r]?

Exercise 3.3 Argue that if h : U → [m] is c-approximately strongly universal, then h is also

c-approximately universal.

Exercise 3.4 Is Multiply-Shift c-approximately strongly universal for any constant c?

3.1 Applications

One very important application of strongly universal hashing is coordinated sampling, which is

crucial to the handling of Big Data and machine learning. The basic idea is that we based on small

samples can reason about the similarity of huge sets, e.g., how much they have in common, or how

different they are.

First we consider sampling from a single set A ⊆ U using a strongly universal hash function

h : U → [m] and a threshold t ∈ {0, . . . , m}. We now sample x if h(x) < t, which by uniformity

happens with probability t/m for any x. Let Sh,t(A) = {x ∈ A | h(x) < t} denote the resulting

sample from A. Then, by linearity of expectation, E[|Sh,t(A)|] = |A| ·t/m. Conversely, this means

that if we have Sh,t(A), then we can estimate |A| as |Sh,t(A)| ·m/t.
We note that the universality from Section 2 does not in general suffice for any kind of sam-

pling. If we, for example, take the multiplication-shift scheme from Section 2.3, then we always

have h(0) = 0, so 0 will always be sampled if we sample anything, that is, if t > 0.

The important application is, however, not the sampling from a single set, but rather the sam-

pling from different sets B and C so that we can later reason about the similarity, estimating the

sizes of their union B ∪ C and intersection B ∩ C.

Suppose we for two different sets B and C have found the samples Sh,t(B) and Sh,t(C). Based

on these we can compute the sample of the union as the union of the samples, that is, Sh,t(B∪C) =
Sh,t(B) ∪ Sh,t(C). Likewise, we can compute the sample of the intersection as Sh,t(B ∩ C) =
Sh,t(B) ∩ Sh,t(C). We can then estimate the size of the union and intersection multiplying the

corresponding sample sizes by m/t.
The crucial point here is that the sampling from different sets can be done in a distributed

fashion as long as a fixed h and t is shared, coordinating the sampling at all locations. This is used,

e.g., in machine learning, where we can store the samples of many different large sets. When a

new set comes, we sample it, and compare the sample with the stored samples to estimate which

other set it has most in common with. Another cool application of coordinated sampling is on

the Internet where all routers can store samples of the packets passing through [7]. If a packet is

sampled, it is sampled by all routers that it passes, and this means that we can follow the packets

route through the network. If the routers did not use coordinated sampling, the chance that the

same packet would be sampled at multiple routers would be very small.

Exercise 3.5 Given Sh,t(B) and Sh,t(C), how would you estimate the size of the symmetric differ-

ence (B \ C) ∪ (C \B)?

9

Below, in our mathematical reasoning, we only talk about the sample Sh,t(A) from a single set

A. However, as described above, in many applications, A represent a union B ∪ C or intersection

B ∩ C of different sets B and C.

To get a fixed sampling probability t/m for each x ∈ U , we only need that h : U → [m] is

uniform. This ensures that the estimate |Sh,t(A)|·m/t of |A| is unbiased, that is, E[|Sh,t(A)|·m/t] =
|A|. The reason that we also want the pairwise independence of strong universality is that we

want |Sh,t(A)| to be concentrated around its mean |A| · t/m so that we can trust the estimate

|Sh,t(A)| ·m/t of |A|.
For a ∈ A, let Xa = [h(a) < t], X =

∑

a∈A Xa, and µ = E[X]. Then X = |Sh,t(A)|, but

the reasoning below applies when Xa is any 0-1 indicator variable that depends only h(a) (in this

context, t is just a constant).

Because h is strongly universal, for any distinct a, b ∈ A, we have that h(a) and h(b) are

independent, and hence so are Xa and Xb. Therefore X =
∑

a∈A Xa is the sum of pairwise

independent 0-1 variables. Now the following concentration bound applies to X .

Lemma 3.2 Let X =
∑

a∈A Xa where the Xa are pairwise independent 0-1 variables. Let µ =
E[X]. Then Var(X) ≤ µ and for any q > 0,

Pr[|X − µ| ≥ q
√
µ] ≤ 1/q2. (11)

Proof For a ∈ A, let pa = Pr[Xa]. Then E[Xa] = pa and Var[Xa] = pa(1− pa) ≤ pa = E[Xa].
The variance of a sum of pairwise independent variables is the sum of their variances, so

Var[X] =
∑

a∈A

Var[Xa] ≤
∑

a∈A

E[Xa] = µ.

By definition, the standard deviation of X is σ =
√

Var[X], and by Chebyshev’s inequality (see,

e.g., [9, Theorem 3.3]), for any q > 0,

Pr[|X − µ| ≥ qσ] ≤ 1/q2. (12)

This implies (11) since σ ≤ √
µ.

Exercise 3.6 Suppose that |A| = 100,000,000 and p = t/m = 1/100. Then E[X] = µ =
1,000,000. Give an upper bound for the probability that |X − µ| ≥ 10,000. These numbers

correspond to a 1% sampling rate and a 1% error.

The bound from (11) is good for predicting range of outcomes, but often what we have is an ex-

periment giving us a concrete value for our random variable X , and now we want some confidence

interval for the unknown mean µ that we are trying to estimate.

Lemma 3.3 Let X be a random variable and µ = E[X]. Suppose (11) holds, that is, Pr[|X−µ| ≥
q
√
µ] ≤ 1/q2 for any given q. Then for any given error probability P , the following holds with

probability at least 1− P ,

X −
√

2X/P < µ < max{8/P, X +
√

4X/P}. (13)

10

Proof We will show that each of the two inequalities fail with probability at most P/2. First we

address the lower-bound, which is the simplest. From (11) with q =
√

2/P , we get that

Pr[X ≥ µ+
√

2µ/P] ≤ P/2.

However,

µ ≤ X −
√

2X/P =⇒ µ ≤ X −
√

2µ/P ⇐⇒ X ≥ µ+
√

2µ/P ,.

so we conclude that

Pr[µ ≤ X −
√

2X/P] ≤ Pr[X ≥ µ+
√

2µ/P] ≤ P/2.

We now address the upper-bound in (13). From (11) with q =
√

2/P , we get

Pr[X ≤ µ−
√

2µ/P] ≤ P/2.

Suppose µ ≥ 8/P . Then
√

2µ/P ≤ µ/2, so X ≤ µ/2 implies X ≤ µ −
√

2µ/P . However,

X > µ/2 and µ ≥ X + 2
√

X/P implies µ ≥ X + 2
√

µ/(2P) = X +
√

2µ/P , hence X ≤
µ−

√

2µ/P . Thus we conclude that µ ≥ max{8/P, X + 2
√

X/P} implies X ≤ µ−
√

2µ/P),
hence that

Pr[µ ≥ max{8/P, X + 2
√

X/P}] ≤ Pr[X ≤ µ−
√

2µ/P] ≤ P/2.

This completes the proof that (13) is satisfied with probability 1− P .

Exercise 3.7 In science we often want confidence 1 − P = 95%. Suppose we run an experiment

yielding X = 1000 in Lemma 3.3. What confidence interval do you get for the underlying mean?

3.2 Multiply-mod-prime

The classic strongly universal hashing scheme is a multiply-mod-prime scheme. For some prime

p, uniformly at random we pick (a, b) ∈ [p]2 and define ha,b : [p] → [p] by

ha,b(x) = (ax+ b) mod p. (14)

To see that this is strongly universal, consider distinct keys x, y ∈ [p] and possibly non-distinct

hash values q, r ∈ [p], ha,b(x) = q and ha,b(x) = r. This is exactly as in (3) and (4), and by

Lemma 2.2, we have a 1-1 correspondence between pairs (a, b) ∈ [p]× [p] and pairs (q, r) ∈ [p]2.
Since (a, b) is uniform in [p]2 it follows that (q, r) is uniform in [p]2, hence that the pairwise event

ha,b(x) = q and ha,b(x) = r happens with probability 1/p2.

Exercise 3.8 For prime p, let m, u ∈ [p]. For uniformly random (a, b) ∈ [p]2, define the hash

function ha,b : [u] → [m] by

ha,b(x) = ((ax+ b) mod p) mod m.

The modm operation preserves the pairwise independence of hash values.

11

(a) Argue for any x ∈ [p] and q ∈ [m] that

(1−m/p)/m < Pr[ha,b(x) = q] < (1 +m/p)/m. (15)

In particular, it follows that ha,b is 2-approximately strongly universal.

(b) In the universal multiply-mod-prime hashing from Section 2, we insisted on a 6= 0, but now

we consider all a ∈ [p]. Why this difference?

For a given u and m, it follows from (15) that we can get multiply-mod-prime ha,b : [u] → [m]
arbitrarily close to uniform by using a large enough prime p. In practice, we will therefore often

think of ha,b as strongly universal, ignoring the error m/p.

3.3 Multiply-shift

We now present a simple generalization from [4] of the universal multiply-shift scheme from Sec-

tion 2 that yields strong universality. As a convenient notation, for any bit-string z and integers

j > i ≥ 0, z[i, j) = z[i, j − 1] denotes the number represented by bits i, . . . , j − 1 (bit 0 is the

least significant bit, which confusingly, happens to be rightmost in the standard representation), so

z[i, j) = ⌊(z mod 2j)/2i⌋.

To get strongly universal hashing [2w] → [2ℓ], we may pick any w ≥ w + ℓ − 1. For any pair

(a, b) ∈ [w]2, we define ha,b : [2
w] → [2ℓ] by

ha,b(x) = (ax+ b)[w − ℓ, w). (16)

As for the universal multiply shift, we note that the scheme of (16) is easy to implement with

convenient parameter choices, e.g., with w = 64, w = 32 and ℓ = 20, we get the C-code:

#include <stdint.h>

// defines uint32/64_t as unsigned 32/64-bit integer.

uint32_t hash(uint32_t x, uint32_t l, uint64_t a, uint64_t b) {

// hashes 32-bit x strongly universally into l<=32 bits

// using the random seeds a and b.

return (a*x+b) >> (64-l);

}

The above code uses 64-bit multiplication like in Section 2.3. However, in Section 2.3, we got

universal hashing from 64-bit keys to up to 64-bit hash values. Here we get strongly universal

hashing from 32-bit keys to up to 32-bit hash values. For strongly universal hashing of 64-bit keys,

we can use the pair-multiply-shift that will be introduced in Section 3.5, and to get up to 64-bit

hash values, we can use the concatenation of hash values that will be introduced in Section 4.1.

Alternatively, if we have access to fast 128-bit multiplication, then we can use it to hash directly

from 64-bit keys to 64-bit hash values.

12

We will now prove that the scheme from (16) is strongly universal. In the proof we will reason

a lot about uniformly distributed variables, e.g., if X ∈ [m] is uniformly distributed and β is a

constant integer, then (X + β) mod m is also uniformly distributed in [m]. More interestingly, we

have

Fact 3.4 Consider two positive integers α and m that are relatively prime, that is, α and m have

no common prime factor. If X is uniform in [m], then (αX) mod m is also uniformly distributed

in [m]. Important cases are (a) if α < m and m is prime, and (b) if α is odd and m is a power of

two.

Proof We want to show that for every y ∈ [m] there is at most one x ∈ [m] such that (αx) mod
m = y, for then there must be exactly one x ∈ [m] for each y ∈ [m], and vice versa. Suppose we

had distinct x1, x2 ∈ [m] such that (αx1) mod m = y = (αx2) mod m. Then α(x2 − x1) mod
m = 0, so m is a divisor of α(x2 − x1). By the fundamental theorem of arithmetic, every positive

integer has a unique prime factorization, so all prime factors of m have to be factors of α(x2 − x1)
in same or higher powers. Since m and α are relatively prime, no prime factor of m is factor of α,

so the prime factors of m must all be factors of x2 − x1 in same or higher powers. Therefore m
must divide x2 − x1, contradicting the assumption x1 6≡ x2 (mod m). Thus, as desired, for any

y ∈ [m], there is at most one x ∈ [m] such that (αx) mod m = y.

Theorem 3.5 When a, b ∈ [2w] are uniform and independent, the multiply-shift scheme from (16)

is strongly universal.

Proof Consider any distinct keys x, y ∈ [2w]. We want to show that ha,b(x) and ha,b(y) are

independent uniformly distributed variables in [2ℓ].
Let s be the index of the least significant 1-bit in (y − x) and let z be the odd number such

that (y − x) = z2s. Since z is odd and a is uniform in [2w], by Fact 3.4 (b), we have that az is

uniform in [2w]. Now a(y − x) = az2s has all 0s in bits 0, .., s− 1 and a uniform distribution on

bits s, .., s+w− 1. The latter implies that a(y − x)[s, .., w− 1] is uniformly distributed in [2w−s].
Consider now any fixed value of a. Since b is still uniform in [2w], we get that (ax + b)[0, w)

is uniformly distributed, implying that (ax + b)[s, w) is uniformly distributed. This holds for any

fixed value of a, so we conclude that (ax + b)[s, w) and a(y − x)[s, w) are independent random

variables, each uniformly distributed in [2w−s].
Now, since a(y − x)[0, s) = 0, we get that

(ay + b)[s,∞) = ((ax+ b) + a(y − x))[s,∞) = (ax+ b)[s,∞) + a(y − x)[s,∞).

The fact that a(y−x)[s, w) is uniformly distributed independently of (ax+b)[s, w) now implies that

(ay+b)[s, w) is uniformly distributed independently of (ax+b)[s, w). However, w ≥ w+ℓ−1 and

s < w so s ≤ w−1 ≤ w−ℓ. Therefore ha,b(x) = (ax+b)[w−ℓ, w) and ha,b(y) = (ay+b)[w−ℓ, w)
are independent uniformly distributed variables in [2ℓ].

In order to reuse the above proof in more complicated settings, we crystallize a technical lemma

from the last part:

13

Lemma 3.6 Let w ≥ w + ℓ − 1. Consider a random function g : U → [2w] with the property

that there for any distinct x, y ∈ U exists a positive s < w, determined by x and y (and not by g),

such that (g(y)− g(x))[0, s) = 0 while (g(y)− g(x))[s, w) is uniformly distributed in [2w−s]. For

b uniform in [2w] and independent of g, define hg,b : U → [2ℓ] by

hg,b(x) = (g(x) + b)[w − ℓ, w).

Then hg,b(x) is strongly universal.

In the proof of Theorem 3.5, we would have U = [2w] and g(x) = ax[0, w), and s was the least

significant set bit in y − x.

3.4 Vector multiply-shift

Our strongly universal multiply shift scheme generalizes nicely to vector hashing. The goal is to

get strongly universal hashing from [2w]d to 2ℓ. With w ≥ w+ ℓ−1, we pick independent uniform

a0, . . . , ad−1, b ∈ [2w] and define ha0,...,ad−1,b : [2
w]d → [2ℓ] by

ha0,...,ad−1,b(x0, . . . , xd−1) =

∑

i∈[d]

aixi

+ b

 [w − ℓ, w). (17)

Theorem 3.7 The vector multiply-shift scheme from (17) is strongly universal.

Proof We will use Lemma 3.6 to prove that this scheme is strongly universal. We define g :
[2w]d → [2w] by

g(x0, . . . , xd−1) =

∑

i∈[d]

aixi

 [0, w).

Consider two distinct keys x = (x0, . . . , xd−1) and y = (y0, . . . , yd−1). Let j be an index such that

xj 6= yj and such that the index s of the least significant set bit is as small as possible. Thus yj−xj

has 1 in bit s, and all i ∈ [d] have (yj − xj)[0, s) = 0. As required by Lemma 3.6, s is determined

from the keys only, as required by Lemma 3.6. Then

(g(y)− g(x))[0, s) =

∑

i∈[d]

ai(yi − xi)

 [0, s) = 0

regardless of a0, . . . , ad−1. Next we need to show that (g(y)− g(x))[s, w) is uniformly distributed

in [2w−s]. The trick is to first fix all ai, i 6= j, arbitrarily, and then argue that (g(y)− g(x))[s, w) is

uniform when ai is uniform in [2w]. Let z be the odd number such that z2s = yj − xj . Also, let ∆
be the constant defined by

∆2s =
∑

i∈[d],i 6=j

ai(yi − xj).

14

Now

g(y)− g(x) = (ajz +∆)2s.

With z odd and ∆ a fixed constant, the uniform distribution on aj ∈ [2w] implies that (ajz +
∆) mod 2w is uniform in [2w] but then (ajz+∆) mod 2w−s = (g(y)− g(x))[s, w) is also uniform

in [2w−s]. Now Lemma 3.6 implies that the vector multiply-shift scheme from (17) is strongly

universal.

Exercise 3.9 Corresponding to the universal hashing from Section 2, suppose we tried with w = w
and just used random odd a0, . . . , ad−1 ∈ [2w] and a random b ∈ [2w], and defined

ha0,...,ad−1,b(x0, . . . , xd−1) =

∑

i∈[d]

aixi

+ b

 [w − ℓ, w).

Give an instance showing that this simplified vector hashing scheme is not remotely universal.

Our vector hashing can also be used for universality, where it gives collision probability 1/2ℓ. As

a small tuning, we could skip adding b, but then we would only get the same 2/2ℓ bound as we had

in Section 2.

3.5 Pair-multiply-shift

A cute trick from [1] allows us roughly double the speed of vector hashing, the point being that

multiplication is by far the slowest operation involved. We will use exactly the same parameters

and seeds as for (17). However, assuming that the dimension d is even, we replace (17) by

ha0,...,ad−1,b(x0, . . . , xd−1) =

∑

i∈[d/2]

(a2i + x2i+1)(a2i+1 + x2i)

+ b

 [w − ℓ, w). (18)

This scheme handles pairs of coordinates (2i, 2i + 1) with a single multiplication. Thus, with

w = 64 and w = 32, we handle each pair of 32-bit keys with a single 64-bit multiplication.

Exercise 3.10 (a bit more challenging) Prove that the scheme defined by (18) is strongly univer-

sal. One option is to prove a tricky generalization of Lemma 3.6 where (g(y) − g(x))[0, s) may

not be 0 but can be any deterministic function of x and y. With this generalization, you can make

a proof similar to that for Theorem 3.7 with the same definition of j and s.

Above we have assumed that d is even. In particular this is a case, if we want to hash an array of 64-

bit integers, but cast it as an array of 32-bit numbers. If d is odd, we can use the pair-multiplication

for the first ⌊d/2⌋ pairs, and then just add adxd to the sum.

15

Strongly universal hashing of 64-bit keys to 32 bits For the in practice quite important case

where we want strongly universal hashing of 64-bit keys to at most 32 bits, we can use the following

tuned code:

#include <stdint.h>

// defines uint32/64_t as unsigned 32/64-bit integer.

uint32_t hash(uint64_t x, uint32_t l,

uint64_t a1, uint64_t a2, uint64_t b) {

// hashes 64-bit x strongly universally into l<=32 bits

// using the random seeds a1, a2, and b.

return ((a1+x)*(a2+(x>>32))+b) >> (64-l);

}

The proof that this is indeed strongly universal is very similar to the one used for Exercise 3.10.

4 Fast hashing to arbitrary ranges

Using variants of multiply-shift, we have shown very efficient methods for hashing into ℓ-bit hash

values for ℓ ≤ 32, but what if we want hash values in [m] for any given m < 2ℓ.
The general problem is if we have a good hash function h : U → [M], and now we want hash

values in [m] where m < M . What we need is a function r : [M] → [m] that is most uniform in

the sense that for any z ∈ [m], the number of y ∈ [M] that map to z is either ⌊M/m⌋ or ⌈M/m⌉.

Exercise 4.1 Prove that if h is c-approximately strongly universal and r is most uniform, then r◦h,

mapping x to r(h(x)) is (1 +m/M)c-approximately strongly universal.

An example of a most uniform function r is y 7→ y mod m. We already used this r in Exercise

3.8 where we first had a [1-approximately] strongly universal hash function into [p] and then ap-

plied modm. However, computing modm is much more expensive than a multiplication on most

computers unless m is a power-of-two. An alternative way to get a most uniform hash function

r : [M] → [m] is to set

r(y) = ⌊ym/M⌋. (19)

Exercise 4.2 Prove that r defined in (19) is most uniform.

While (19) is not fast in general, it is very fast if M = 2ℓ is a power-of-two, for then the division

is just a right shift, and then (19) is computed by (y*m)>>l. One detail to note here is that

the product ym has to be computed in full with no discarded overflow, e.g., if y and m are 32-

bit integers, we need 64-bit multiplication. Combining this with the code for strongly universal

multiply-shift from Section 3.3, we hash a 32-bit integer x to a number in [m], m < 232, using the

C-code:

16

#include <stdint.h>

// defines uint32/64_t as unsigned 32/64-bit integer.

uint32_t hash(uint32_t x, uint32_t m, uint64_t a, uint64_t b) {

// hashes x strongly universally into the range [m]

// using the random seeds a and b.

return (((a*x+b)>>32)*m)>>32;

}

Above, x and m are 32-bit integers while a and b are uniformly random 64-bit integers. We note

that all the above calculations are done with 64-bit integers since they all involve 64-bit operands.

As required in Section 3.3, we automatically discard the overflow beyond 64 bits from a*x. How-

ever (a*x+b)>>32 only uses the 32 least significant bits, so multiplied with the 32-bit integer

m, we get the exact product in 64 bits with no overflow. From the above Exercises, it immediately

follows that he C-code function above is a 2-approximately strongly universal hash function from

32-bit integers to integers in [m].

4.1 Hashing to larger ranges

So far, we have been focused on hashing to 32-bit numbers or less. If we want larger hash values,

the most efficient method is often just to use multiple hash functions and concatenate the output.

The idea is captured by the following exercise.

Exercise 4.3 Let h0 be a c0-approximately strongly universal hash function from U to R0 and h1

be a c1-approximately strongly universal hash function from U to R1. Define the combined hash

function h : U → R0 ×R1 by

h(x) = (h0, h1).

Prove that h is (c0c1)-approximately strongly universal.

A simple application of Exercise 4.3 is if h0 and h1 are the strongly universal hash functions from

Section 3.5, generating 32-bit hash values from 64-bit keys. Then the combined hash function h
is a strongly universal function from 64-bit keys to 64-bit hash values. It is the fastest such hash

function known, and it uses only two 64-bit multiplications.

5 String hashing

5.1 Hashing vector prefixes

Sometimes what we really want is to hash vectors of length up to D but perhaps smaller. As in the

multiply-shift hashing schemes, we assume that each coordinate is from [2w]. The simple point is

that we only want to spend time proportional to the actual length d ≤ D. With w ≥ w+ ℓ− 1, we

pick independent uniform a0, . . . , aD−1 ∈ [2w]. For even d, we define h :
⋃

even d≤D[2
w]d → [2ℓ]

17

by

ha0,...,aD(x0, . . . , xd−1) =

∑

i∈[d/2]

(a2i + x2i+1)(a2i+1 + x2i)

 + ad

 [w − ℓ, w). (20)

Exercise 5.1 Prove that the above even prefix version of pair-multiply-shift is strongly universal.

In the proof you may assume that the original pair-multiply-shift from (18) is strongly universal,

as you may have proved in Exercise 3.10. Thus we are considering two vectors x = (x0, . . . , xd−1)
and y = (y0, . . . , yd′−1). You should consider both the case d′ = d and d′ 6= d.

5.2 Hashing bounded length strings

Suppose now that we want to hash strings of 8-bit characters, e.g., these could be the words in a

book. Then the nil-character is not used in any of the strings. Suppose that we only want to handle

strings up to some maximal length, say, 256.

With the prefix-pair-multiply-shift scheme from (20), we have a very fast way of hashing strings

of d 64-bit integers, casting them as 2d 32-bit integers. A simple trick now is to allocate a single

array x of 256/8 = 32 64-bit integers. When we want to hash a string s with c characters, we first

set d = ⌈c/8⌉ (done fast by d=(c+7)>>3). Next we set xd−1 = 0, and finally we do a memory

copy of s into x (using a statement like memcpy(x,s,c)). Finally, we apply (20) to x.

Note that we use the same variable array x every time we want to hash a string s. Let s∗ be the

image of s created as a c∗ = ⌈c/8⌉ length prefix of x.

Exercise 5.2 Prove that if s and t are two strings of length at most 256, neither containing the

nil-character, then their images s∗ and t∗ are different. Conclude that we now have a strongly

universal hash functions for such strings.

Exercise 5.3 Implement the above hash function for strings. Use it in a chaining based hash table,

and apply it to count the number of distinct words in a text (take any pdf-file and convert it to ASCII,

e.g., using pdf2txt).

To get the random numbers defining your hash functions, you can go to random.org.

One issue to consider when you implement a hash table is that you want the number m of

entries in the hash array to be as big as the number of elements (distinct words), which in our case

is not known in advance. Using a hash table of some start size m, you can maintain a count of the

distinct words seen so far, and then double the size when the count reaches, say, m/2.

Many ideas can be explored for optimization, e.g., if we are willing to accept a small false-

positive probability, we can replace each word with a 32- or 64-bit hash value, saying that a word

is new only if it has a new hash value.

Experiment with some different texts: different languages, and different lengths. What happens

with the vocabulary?

The idea now is to check how much time is spent on the actual hashing, as compared with the

real code that both does the hashing and follows the chains in the hash array. However, if we just

18

compute the hash values, and don’t use them, then some optimizing compilers, will notice, and just

do nothing. You should therefore add up all the hash values, and output the result, just to force the

compiler to do the computation.

5.3 Hashing variable length strings

We now consider the hashing of a variable length string x0x1 · · ·xd where all characters belong to

some domain [u].
We use the method from [5], which first picks a prime p ≥ u. The idea is to view x0, . . . , xd as

coefficients of a degree d polynomial

Px0,...,xd
(α) =

d
∑

i=0

xiα
i mod p

over Zp. As seed for our hash function, we pick an argument a ∈ [p], and compute the hash

function

ha(x0 · · ·xd) = Px0,...,xd
(a).

Consider some other string y = y0y1 · · · yd′ , d′ ≤ d. We claim that

Pr
a∈[p]

[ha(x0 · · ·xd) = ha(y0 · · · yd′)] ≤ d/p

The proof is very simple. By definition, the collision happens only if a is root in the polynomial

Py0,...,yd′
− Px0,...,xd

. Since the strings are different, this polynomial is not the constant zero. More-

over, its degree is at most d. Since the degree is at most d, the fundamental theorem of algebra

tells us that it has at most d distinct roots, and the probability that a random a ∈ [p] is among these

roots is at most d/p.

Now, for a fast implementation using Horner’s rule, it is better to reverse the order of the

coefficients, and instead use the polynomial

Px0,...,xd
(a) =

d
∑

i=0

xd−ia
i mod p

Then we compute Px0,...,xd
(a) using the recurrence

• H0
a = x0

• H i
a = (aH i−1

a + xi) mod p

• Px0,...,xd
(a) = Hd

a .

With this recurrence, we can easily update the hash value if new character xd+1 is added to the end

of the string xd+1. It only takes an addition and a multiplication modulo p. For speed, we would

let p be a Mersenne prime, e.g. 289 − 1.

19

The collision probability d/p may seem fairly large, but assume that we only want hash values

in the range m ≤ p/d, e.g, for m = 232 and p = 289−1, this would allow for strings of length up to

257, which is big enough for most practical purposes. Then it suffices to compose the string hashing

with a universal hash function from [p] to [m]. Composing with the previous multiply-mod-prime

scheme, we end up using three random seeds a, b, c ∈ [p], and then compute the hash function as

ha,b,c(x0, . . . , xd) =

((

a

(

d
∑

i=0

xd−ic
i

)

+ b

)

mod p

)

mod m.

Exercise 5.4 Consider two strings ~x and ~y, each of length at most p/m. Argue that the the collision

probability Pr[ha,b,c(~x) = h(~y)] ≤ 2/m. Thus conclude that ha,b,c is a 2-approximately universal

hash function mapping strings of length at most p/m to [m].

Above we can let u be any value bounded by p. With p = 289 − 1, we could use u = 264 thus

dividing the string into 64-bit characters.

Exercise 5.5 Implement the above scheme and run it to get a 32-bit signature of a book.

Major speed-up The above code is slow because of the multiplications modulo Mersenne primes,

one for every 64 bits in the string.

An idea for a major speed up is to divide you string into chunks X0, . . . , Xj of 32 integers

of 64 bits, the last chunk possibly being shorter. We want a single universal hash function r :
⋃

d≤32[2
64]d → [264]. A good choice would be to use our strongly universal pair-multiply-shift

scheme from (20). It only outputs 32-bit numbers, but if we use two different such functions, we

can concatenate their hash values in a single 64-bit number.

Exercise 5.6 Prove that if r has collision probability P , and if (X0, . . . , Xj) 6= (Y0, . . . , Yj′), then

Pr[(r(X0), . . . , r(Xj)) = (r(Y0), . . . , r(Yj′))] ≤ P.

The point above is that in the above is that r(X0), . . . , r(Xj) is 32 times shorter than X0, . . . , Xj .

We can now apply our slow variable length hashing based on Mersenne primes to the reduced

string r(X0), . . . , r(Xj). This only adds P to the overall collision probability.

Exercise 5.7 Implement the above tuning. How much faster is your hashing now?

Splitting between short and long strings When implementing a generic string hashing code,

we do not know in advance if it is going to be applied mostly to short or to long strings. Our

scheme for bounded length strings from Section 5.2 is faster then the generic scheme presented

above for variable length strings. In practice it is a good idea to implement both: have the scheme

from Section 5.2 implemented for strings of length up to some d, e.g., d could be 32 64-bit integers

as in the above blocks, and then only apply the generic scheme if the length is above d.

20

Major open problem Can we get something simple and fast like multiply-shift to work directly

for strings, so that we do not need to compute polynomials over prime fields?

6 Beyond strong universality

In this note, we have focused on universal and strongly universal hashing. However, there are more

advanced algorithmic applications that need more powerful hash functions. This lead Carter and

Wegman [11] to introduce k-independent hash functions. A hash random function H : U → [m] is

k-independent if for any distinct keys x1, . . . , xk ∈ [u], the hash values H(x1), . . . , H(xk) are inde-

pendent random variables, each uniformly distributed in [m]. In this terminology, 2-independence

is the same as strongly universal. For prime p, we can implement a k-independent H : [p] → [p]
using k random coefficients a0, . . . , ak−1 ∈ [p], defining

H(x) =

k−1
∑

i=0

aix
i mod p.

However, there is no efficient implementation of k-independent hashing on complex objects such

as variable length strings. What we can do instead is to use the signature idea from Section 2, and

first hash the complex keys to unique hash values from a limited integer domain [u].

Exercise 6.1 Let h : U → [m] map S ⊆ U collision free to [u] and let H : [u] → [m] be

k-independent. Argue that H ◦ h : U → [m], mapping x to H(h(x)), is k-independent when

restricted to keys in S.

Next we have to design the hash function h so that it is collision free with high enough probability.

Exercise 6.2 Suppose we know that we are only going to deal with a (yet unknown) set S of at

most n strings, each of length at most n, set the parameters p and m of ha,b,c in Exercise 5.4 so

that the probability that we get any collision between strings in S is at most 1/n2.

The idea of using hashing to map a complex domain down to a polynomially sized integer universe,

hoping that it is collision free, is referred to as universe reduction. This explains why we for more

complex hash function can often assume that the universe is polynomially bounded.

We note that k-independent hash functions become quite slow when k is large. Often a more

efficient alternative is the tabulation based method surveyed in [10].

Acknowledgment

I would like to thank Eva Rotenberg for coming with many good comments and proposals for the

text, including several exercises.

21

References

[1] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: fast and secure

message authentication. In Proc. 19th CRYPTO, pages 216–233, 1999.

[2] J. Carter and M. Wegman. Universal classes of hash functions. J. Comp. Syst. Sci., 18:143–

154, 1979. Announced at STOC’77.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT

Press, McGraw-Hill, 3 edition, 2009.

[4] M. Dietzfelbinger. Universal hashing and k-wise independent random variables via integer

arithmetic without primes. In Proc. 13th STACS, LNCS 1046, pages 569–580, 1996.

[5] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable

(extended abstract). In Proc. 19th ICALP, LNCS 623, pages 235–246, 1992.

[6] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized

algorithm for the closest-pair problem. J. Algorithms, 25:19–51, 1997.

[7] N. G. Duffield and M. Grossglauser. Trajectory sampling with unreliable reporting.

IEEE/ACM Trans. Netw., 16(1):37–50, 2008.

[8] A. I. Dumey. Indexing for rapid random access memory systems. Computers and Automation,

5(12):6–9, 1956.

[9] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[10] M. Thorup. Fast and powerful hashing using tabulation (research highlight). Comm. ACM,

60(7):94–101, 2017. See also http://arxiv.org/abs/1505.01523.

[11] M. Wegman and J. Carter. New hash functions and their use in authentication and set equality.

J. Comp. Syst. Sci., 22:265–279, 1981.

22

	1 Hash functions
	1.1 Definition and properties

	2 Universal hashing
	2.1 Applications
	2.2 Multiply-mod-prime
	2.2.1 Implementation for 64-bit keys

	2.3 Multiply-shift

	3 Strong universality
	3.1 Applications
	3.2 Multiply-mod-prime
	3.3 Multiply-shift
	3.4 Vector multiply-shift
	3.5 Pair-multiply-shift

	4 Fast hashing to arbitrary ranges
	4.1 Hashing to larger ranges

	5 String hashing
	5.1 Hashing vector prefixes
	5.2 Hashing bounded length strings
	5.3 Hashing variable length strings

	6 Beyond strong universality

