CSEP 521: Network Flow and Linear Programming
Richard Anderson, March 9, 2021

Announcements
- Remaining lectures on Optimization
- Combinatorial Optimization
- Linear Programming
- Course Evaluation
 - You will have received a link
- Readings
 - Skim textbook chapters on Matching/Network Flow (CLRS or KT)
 - Skim textbook chapters on Linear Programming
 - DasGupta, Papadimitriou, and Vazarani
- Last homework is due Thursday, March 11
 - Notify instructor if any homework is going to be turned in after March 14

Optimization
- Solve a problem by expressing it as minimizing or maximizing a real valued function
- Examples:
 - Page layout
 - Allocation of industrial materials for a five year plan
 - Placement of on-line ads
 - Pricing of airline seats

Optimization
- Local improvement algorithms
 - Iteratively improve solution until a local maximum (or minimum) is reached
 - Prove that the maximum is a global maximum
- Duality
 - Pairs of problems that bound solutions
 - Finding the maximum for one problem finds the minimum for another problem

Network Flow Definitions
- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \geq 0$
- Problem, assign flows $f(e)$ to the edges such that:
 - $0 \leq f(e) \leq c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible
Residual Graph

- Flow graph G, Residual Graph G_R
- G: edge e from u to v with capacity c and flow f
- G_R: edge e' from u to v with capacity $c - f$
- G_R: edge e'' from v to u with capacity f
- Find a path from s to t in G_R with minimum edge capacity (in G_R) of $b > 0$
- Add flow b to the path from s to t in G

Ford-Fulkerson Algorithm (1956)

```
while not done
    Construct residual graph $G_R$
    Find an $s$-$t$ path $P$ in $G_R$ with capacity $b > 0$
    Add $b$ units along $P$ in $G$
```

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Flow Example
Cuts in a graph

• Cut: Partition of V into disjoint sets S, T with s in S and t in T.
• Cap(S,T): sum of the capacities of edges from S to T
• Flow(S,T): net flow out of S
 • Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)

Cap(S,T) and Flow(S,T)

S={s, a, b, e, h}, T = {c, f, i, d, g, t}

Cap(S,T) = 95, Flow(S,T) = 80
– 15 = 65

Minimum value cut

MaxFlow – MinCut Theorem

• There exists a flow which has the same value as the minimum cut
• This shows that both the flow is maximum and the cut is minimum since the flow is always less than or equal to the cut
• The proof is to run the Ford-Fulkerson algorithm until it completes and look at the residual graph
• This is a "duality theorem" as the MaxFlow and MinCut problems are duals

History

• Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

• Cost per phase times number of phases
• Phases
 • Capacity leaving source: C
 • Add at least one unit per phase
• Cost per phase
 • Build residual graph: O(m)
 • Find s-t path in residual: O(m)
Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $O(m \log(C))$ time algorithm for network flow
- Find the shortest augmenting path
 - $O(m^2)$ time algorithm for network flow
- Find a blocking flow in the residual graph
 - $O(mn \log n)$ time algorithm for network flow

Network Flow Applications

Converting Matching to Network Flow

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is qualified to review

Image Segmentation

- Separate foreground from background

MinCost Network Flow Problem

- Directed graph with source and sink
- Each edge has a capacity $c(e)$ and a cost $d(e)$
- A total flow value K is specified
- Find a flow function $f(e)$ on the edges such that
 - $0 \leq f(e) \leq c(e)$
 - Sum of the flows leaving the source is K
 - Flow is conserved at the vertices
 - The cost of the flow, $\sum f(e)d(e)$, is minimized
Applications of min cost flow

- Transportation problems — taking cost into account
 - An oil company is charged for using pipeline
- Allocation problems
 - Account for costs and profits
 - Showing internet ads
 - Certain number of ads of different types are available to show
 - Ads are required to reach certain demographics
 - Different profits associated with different users

Mincost Flow

\[K = 7 \]

Solving MinCost Flow

- Circulation — a flow problem with no source or sink
 - Add an edge from \(t \) to \(s \) with capacity \(K \)
- Find a flow of size \(K \) (\(K \) units leaving \(s \))
- Build residual graph \(G_R \) (except for \((t,s) \))
 - \(G \): edge \(e \) from \(u \) to \(v \) with capacity \(c \), cost \(d \), and flow \(f \)
 - \(G_R \): edge \(e' \) from \(u \) to \(v \) with capacity \(c - f \), cost \(d \)
 - \(G_R \): edge \(e'' \) from \(v \) to \(u \) with capacity \(f \), cost \(-d \)

Mincost flow algorithm

- Adding flow along a cycle preserves the conservation of flow
- With negative cost cycles the cost keeps decreasing
- We could prove that when this stops, it has an optimal solution
- Basic algorithm needs serious engineering to make it practical