Announcements

• Remaining lectures on Optimization
 • Combinatorial Optimization
 • Linear Programming

• Course Evaluation
 • You will have received a link

• Readings
 • Skim textbook chapters on Matching/Network Flow (CLRS or KT)
 • Skim textbook chapters on Linear Programming
 • DasGupta, Papadimitriou, and Vazarani

• Last homework is due Thursday, March 11
 • Notify instructor if any homework is going to be turned in after March 14
Optimization

• Solve a problem by expressing it as minimizing or maximizing a real valued function

• Examples:
 • Page layout
 • Allocation of industrial materials for a five year plan
 • Placement of on-line ads
 • Pricing of airline seats
Optimization

• Local improvement algorithms
 • Iteratively improve solution until a local maximum (or minimum) is reached
 • Prove that the maximum is a global maximum

• Duality
 • Pairs of problems that bound solutions
 • Finding the maximum for one problem finds the minimum for another problem

Bipartite Matching

Vertex Cover
Network Flow
Network Flow Definitions

• Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)

• Capacities on the edges, $c(e) \geq 0$

• Problem, assign flows $f(e)$ to the edges such that:
 • $0 \leq f(e) \leq c(e)$
 • Flow is conserved at vertices other than s and t
 • Flow conservation: flow going into a vertex equals the flow going out
 • The flow leaving the source is as large as possible
Residual Graph

- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity $c - f$
 - G_R: edge e'' from v to u with capacity f

- Find a path from s to t in G_R with minimum edge capacity (in G_R) of $b > 0$
- Add flow b to the path from s to t in G
while not done

 Construct residual graph G_R

 Find an s-t path P in G_R with capacity $b > 0$

 Add b units along P in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations
Flow Example

Diagram of a flow network with edges labeled with capacities.
Cuts in a graph

• Cut: Partition of V into disjoint sets S, T with s in S and t in T.

• $\text{Cap}(S,T)$: sum of the capacities of edges from S to T

• $\text{Flow}(S,T)$: net flow out of S
 • Sum of flows out of S minus sum of flows into S

• $\text{Flow}(S,T) \leq \text{Cap}(S,T)$
Cap(S,T) and Flow(S,T)

\[S = \{s, a, b, e, h\}, \quad T = \{c, f, i, d, g, t\} \]

\[\text{Cap}(S,T) = 95, \quad \text{Flow}(S,T) = 80 - 15 = 65 \]
Minimum value cut

![Graph with nodes s, v, u, and t with edge weights 40 and 10]
MaxFlow – MinCut Theorem

• There exists a flow which has the same value as the minimum cut

• This shows that both the flow is maximum and the cut is minimum since the flow is always less than or equal to the cut

• The proof is to run the Ford-Fulkerson algorithm until it completes and look at the residual graph

• This is a “duality theorem” as the MaxFlow and MinCut problems are duals
History

• Ford / Fulkerson studied network flow in the context of the Soviet Rail Network
Ford Fulkerson Runtime

- Cost per phase times number of phases

- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase

- Cost per phase
 - Build residual graph: $O(m)$
 - Find s-t path in residual: $O(m)$
Better methods of finding augmenting paths

• Find the maximum capacity augmenting path
 • $O(m^2 \log(C))$ time algorithm for network flow

• Find the shortest augmenting path
 • $O(m^2 n)$ time algorithm for network flow

• Find a blocking flow in the residual graph
 • $O(mn \log n)$ time algorithm for network flow
Network Flow Applications
Converting Matching to Network Flow
Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is qualified to review
Image Segmentation
• Separate foreground from background
MinCost Network Flow Problem

• Directed graph with source and sink
• Each edge has a capacity $c(e)$ and a cost $d(e)$
• A total flow value K is specified
• Find a flow function $f(e)$ on the edges such that
 • $0 \leq f(e) \leq c(e)$
 • Sum of the flows leaving the source is K
 • Flow is conserved at the vertices
• The cost of the flow, $\sum_e f(e)d(e)$, is minimized
Applications of min cost flow

• Transportation problems – taking cost into account
 • An oil company is charged for using pipeline

• Allocation problems
 • Account for costs and profits
 • Showing internet ads
 • Certain number of ads of different types are available to show
 • Ads are required to reach certain demographics
 • Different profits associated with different users
Mincost Flow

K = 7
Solving MinCost Flow

• Circulation – a flow problem with no source or sink
 • Add an edge from t to s with capacity K

• Find a flow of size K (K units leaving s)

• Build residual graph G_R (except for (t,s))
 • G: edge e from u to v with capacity c, cost d, and flow f
 • G_R: edge e' from u to v with capacity $c - f$, cost d
 • G_R: edge e'' from v to u with capacity f, cost $-d$
Mincost flow algorithm

while not done
 Construct residual graph G_R
 Find negative cost cycle C in G_R with capacity $b > 0$
 Add b units along C in G

- Adding flow along a cycle preserves the conservation of flow
- With negative cost cycles the cost keeps decreasing
- We could prove that when this stops, it has an optimal solution
- Basic algorithm needs serious engineering to make it practical