CSEP 521: Network Flow and Linear Programming

Richard Anderson, March 9, 2021

Announcements

- Remaining lectures on Optimization
 - Combinatorial Optimization
 - Linear Programming
- Course Evaluation
 - You will have received a link
- Readings
 - <u>Skim</u> textbook chapters on Matching/Network Flow (CLRS or KT)
 - <u>Skim</u> textbook chapters on Linear Programming
 - DasGupta, Papadimitriou, and Vazarani
- Last homework is due Thursday, March 11
 - Notify instructor if any homework is going to be turned in after March 14

Optimization

- Solve a problem by expressing it as minimizing or maximizing a real valued function
- Examples:
 - Page layout
 - Allocation of industrial materials for a five year plan
 - Placement of on-line ads
 - Pricing of airline seats

Optimization

- Local improvement algorithms
 - Iteratively improve solution until a local maximum (or minimum) is reached
 - Prove that the maximum is a global maximum
- Duality
 - Pairs of problems that bound solutions
 - Finding the maximum for one problem finds the minimum for another problem

Bipartite Matching

Vertex Cover

Network Flow

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R : edge e' from u to v with capacity c f
 - G_R : edge e'' from v to u with capacity f
- Find a path from s to t in G_R with minimum edge capacity (in G_R) of b > 0
- Add flow b to the path from s to t in G

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units along P in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Flow Example

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)

Cap(S,T) = 95, Flow(S,T) = 80 - 15 = 65

Minimum value cut

MaxFlow – MinCut Theorem

- There exists a flow which has the same value as the minimum cut
- This shows that both the flow is maximum and the cut is minimum since the flow is always less than or equal to the cut
- The proof is to run the Ford-Fulkerson algorithm until it completes and look at the residual graph
- This is a ``duality theorem" as the MaxFlow and MinCut problems are duals

History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

- Cost per phase times number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow

Network Flow Applications

Converting Matching to Network Flow

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of paper L_{j1}, . . ., L_{jk} that R_j is qualified to review

Image Segmentation

 Separate foreground from background

MinCost Network Flow Problem

- Directed graph with source and sink
- Each edge has a capacity c(e) and a cost d(e)
- A total flow value K is specified
- Find a flow function f(e) on the edges such that
 - $0 \le f(e) \le c(e)$
 - Sum of the flows leaving the source is K
 - Flow is conserved at the vertices
 - The cost of the flow, $\Sigma_{\rm e}$ f(e)d(e), is minimized

Applications of min cost flow

- Transportation problems taking cost into account
 - An oil company is charged for using pipeline
- Allocation problems
 - Account for costs and profits
 - Showing internet ads
 - Certain number of ads of different types are available to show
 - Ads are required to reach certain demographics
 - Different profits associated with different users

Mincost Flow K = 7

Solving MinCost Flow

- Circulation a flow problem with no source or sink
 - Add an edge from t to s with capacity K
- Find a flow of size K (K units leaving s)
- Build residual graph G_R (except for (t,s))
 - G: edge e from u to v with capacity c, cost d, and flow f
 - G_R : edge e' from u to v with capacity c f, cost d
 - G_R : edge e'' from v to u with capacity f, cost -d

Mincost flow algorithm

while not done

Construct residual graph G_R

Find negative cost cycle C in G_R with capacity b > 0

Add b units along C in G

- Adding flow along a cycle preserves the conservation of flow
- With negative cost cycles the cost keeps decreasing
- We could prove that when this stops, it has an optimal solution
- Basic algorithm needs serious engineering to make it practical