

Announcements

- Remaining lectures on Optimization
 - Combinatorial Optimization
 - Linear Programming

Readings

- Skim textbook chapters on Matching/Network Flow (CLRS or KT)
- Linear programming readings should be available Friday
- Last homework is due Thursday, March 11
- Notify instructor if any homework is going to be turned in after March 14

Algorithmic Ideas

- Randomized algorithms and expected case analysis
- Hashing techniques
- Sketches and ultra low-space algorithms
- · Geometry and high dimensional data

Optimization

- Express a problem as a mathematical function, and then find a solution that minimizes or maximizes the objective function
 - Domain
 Instance
 - Instance
 Solution
 - Optimization Function
- Vaccine allocation determine what order people get vaccines
 - Output: Partial order on the set of all people in Washington
 Objective function: Minimize the DALYs (Disability-adjusted life years) due to Covid

Bipartite Matching

- Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- Application: • U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v

Bipartite Matching

$$\begin{split} &\mathsf{M}=\varnothing;\\ &\mathsf{while}\left((\mathsf{P}=\mathsf{AugmentingPath}(\mathsf{G},\mathsf{M})\right) \mathrel{!=} \mathsf{null}\right)\\ &\mathsf{M}=\mathsf{M}\oplus\mathsf{P} \end{split}$$

- AugmentingPath[G=[U,V,E), M]{ Orient edges in M from V to V Orient edges not in M from V to U Find a path P from an unmatched vertex in U to an unmatched vertex in V return P
- Is the symmetric difference (XOR) operator
 on sets

Path can be found with a standard path finding algorithm

- Each time a path is found the number of edges in the matching increases
- Simple runtime is O(nm), can be improved to $O(n^{1/2}m)$

- Let G=(U,V,E) be a bipartite graph with weights assigned to the edges
- We want to find a complete matching (|M| = n) of minimum weight

Weighted Matching Algorithm

- Given a graph with a complete matching M, find a matching M' with w(M') < w(M)
- Iterate until you can no longer improve the solution
- · Show that when this process stops you are at a global minimum
- To establish runtime, derive a bound on the number of iterations

Augmenting cycles for matching M Construct a directed graph: If $(u,v) \in M$ $(u,v)\in E \text{ with } w'(u,v)=-w(u,v)$ lf (u,v) ∉ M $(v,u) \in E$ with w'(v,u) = w(u,v)Find a negative cost cycle C with the Bellman-Ford Algorithm

Update the matching to M' = M⊕C

Weighted Matching

- Also called the Assignment Problem
- Standard Algorithm is the Hungarian Algorithm Runtime is O(n³) or O(nm + n² log n)
- Implementation as an n×n matrix
- Same ideas work for finding maximum weight matching

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - · Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - + $G_{\mbox{\scriptsize R}}\!\!:$ edge e' from u to v with capacity c f
 - + ${\rm G}_{\rm R}\!\!:$ edge e'' from v to u with capacity f
- Find a path from s to t in $G_{_{\rm R}}\,$ with minimum edge capacity (in $G_{_{\rm R}})$ of b > 0
- Add flow b to the path from s to t in G

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S Sum of flows out of S minus sum of flows into S

Flow(S,T) <= Cap(S,T)

History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

Cost per phase times number of phases

100

(s

- Phases
- Capacity leaving source: C
 Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 O(mnlog n) time algorithm for network flow