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CSEP 521: Optimization
Richard Anderson,    March 4, 2021

Announcements

• Remaining lectures on Optimization
• Combinatorial Optimization

• Linear Programming

• Readings
• Skim textbook chapters on Matching/Network Flow  (CLRS or KT)

• Linear programming readings should be available Friday

• Last homework is due Thursday, March 11
• Notify instructor if any homework is going to be turned in after March 14

Algorithmic Ideas

• Randomized algorithms and expected case analysis

• Hashing techniques

• Sketches and ultra low-space algorithms

• Geometry and high dimensional data

Optimization

• Express a problem as a mathematical function, and then find a 
solution that minimizes or maximizes the objective function
• Domain
• Instance
• Solution
• Optimization Function

• Vaccine allocation – determine what order people get vaccines
• Output:  Partial order on the set of all people in Washington
• Objective function:  Minimize the DALYs (Disability-adjusted life years) due to 

Covid

One big, obvious idea

• Local improvement algorithms
• Start with a valid solution

• Keep modifying the solution as long as it improves

• When done,  hope you have a maximum

• Geometry of solution space
• When is a local solution guaranteed to be a global 

solution?

Another big, less obvious idea

• Duality – pairing a maximization problem with a corresponding 
minimization problem

• Pairs of problems over a domain D
• P1: Solution S1,  Optimization F1

• P2: Solution S2,  Optimization F2

• I  D, s  S1(I), t  S2(I),  F1(s) ≤ F2(t)

• I  D, Max { x  S1(I) | F1(x) } = Min { y  S2(I) | F2(y) }
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Bipartite Matching

• Given a bipartite graph G=(U,V,E), 
find a subset of the edges M of 
maximum size with no common 
endpoints.

• Application: 
• U:  Professors

• V:  Courses

• (u,v) in E if Prof. u can teach course v

Find a maximum matching

Augmenting Path Algorithm Bipartite Matching  

M = ;
while ((P = AugmentingPath(G, M)) != null)

M = M  P

AugmentingPath(G=(U,V,E), M){
Orient edges in M from U to V
Orient edges not in M from V to U
Find a path P from an unmatched vertex in U to

an unmatched vertex in V 
return P

 Is the symmetric difference (XOR) operator 
on sets

Path can be found with a standard path finding 
algorithm

Each time a path is found the number of edges 
in the matching increases

Simple runtime is O(nm),  can be improved to 
O(n1/2m) 

Vertex Cover (for bipartite graphs)

• A vertex cover for a graph 
G=(V,E) is a set of vertices C, 
such that every edge has at least 
on endpoint in C

• If C is a vertex cover and M is a 
matching |C|  |M|

Weighted Matching

• Let G=(U,V,E) be a bipartite graph with weights assigned to the edges

• For simplicity,  we are going to assume 
• |U|=|V|=n

• This is a complete graph

• w(u,v)  0 for u  U and v  V

• We want to find a complete matching (|M| = n) of minimum weight
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Weighted Matching Algorithm

• Given a graph with a complete matching 
M,  find a matching M’ with w(M’) < w(M)

• Iterate until you can no longer improve the 
solution

• Show that when this process stops you are 
at a global minimum

• To establish runtime, derive a bound on 
the number of iterations

Augmenting cycles for matching M
Construct a directed graph:

If (u,v)  M

(u,v)  E with w’(u,v) = - w(u,v)

If (u,v)  M

(v,u)  E with w’(v,u) = w(u,v)

Find a negative cost cycle C with the Bellman-Ford 
Algorithm

Update the matching to M’ = MC
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Weighted Matching

• Also called the Assignment Problem

• Standard Algorithm is the Hungarian Algorithm
• Runtime is O(n3) or O(nm + n2 log n)

• Implementation as an nn matrix

• Same ideas work for finding maximum weight matching

Network Flow
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Network Flow Definitions

• Flowgraph:  Directed graph with distinguished vertices s (source) and 
t (sink)

• Capacities on the edges,  c(e) >= 0

• Problem,  assign flows f(e) to the edges such that:
• 0 <= f(e) <= c(e)

• Flow is conserved at vertices other than s and t
• Flow conservation: flow going into a vertex equals the flow going out

• The flow leaving the source is a large as possible

Maximum flow example
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Residual Graph

• Flow graph showing the remaining capacity

• Flow graph G,  Residual Graph GR

• G: edge e from u to v with capacity c and flow f

• GR: edge e’ from u to v with capacity c – f

• GR: edge e’’ from v to u with capacity f

• Find a path from s to t in GR  with minimum edge 
capacity (in GR) of b > 0

• Add flow b to the path from s to t in G

Flow assignment and the residual graph
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Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph GR

Find an s-t path P in GR with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at 

most C, then the algorithm takes at most C iterations

Flow Example
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Cuts in a graph

• Cut:  Partition of V into disjoint sets S, T with s in S and t in T.

• Cap(S,T): sum of the capacities of edges from   S to T

• Flow(S,T): net flow out of S
• Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)

Cap(S,T) and Flow(S,T)
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Minimum value cut
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MaxFlow – MinCut Theorem
• There exists a flow which has the same value as the minimum cut

• This shows that both the flow is maximum and the cut is minimum since 
the flow is always less than or equal to the cut

• The proof is to run the Ford-Fulkerson algorithm until it completes and 
look at the residual graph

• This is a ``duality theorem’’ as the MaxFlow and MinCut problems are 
duals

History 

• Ford / Fulkerson studied network flow in the context of the Soviet Rail 
Network

Ford Fulkerson Runtime

• Cost per phase times  number of phases

• Phases
• Capacity leaving source: C

• Add at least one unit per phase

• Cost per phase
• Build residual graph:  O(m)

• Find s-t path in residual:  O(m)
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Better methods of finding augmenting paths

• Find the maximum capacity augmenting path
• O(m2log(C)) time algorithm for network flow

• Find the shortest augmenting path
• O(m2n) time algorithm for network flow

• Find a blocking flow in the residual graph
• O(mnlog n) time algorithm for network flow


