
3/4/2021

1

CSEP 521: Optimization
Richard Anderson, March 4, 2021

Announcements

• Remaining lectures on Optimization
• Combinatorial Optimization

• Linear Programming

• Readings
• Skim textbook chapters on Matching/Network Flow (CLRS or KT)

• Linear programming readings should be available Friday

• Last homework is due Thursday, March 11
• Notify instructor if any homework is going to be turned in after March 14

Algorithmic Ideas

• Randomized algorithms and expected case analysis

• Hashing techniques

• Sketches and ultra low-space algorithms

• Geometry and high dimensional data

Optimization

• Express a problem as a mathematical function, and then find a
solution that minimizes or maximizes the objective function
• Domain
• Instance
• Solution
• Optimization Function

• Vaccine allocation – determine what order people get vaccines
• Output: Partial order on the set of all people in Washington
• Objective function: Minimize the DALYs (Disability-adjusted life years) due to

Covid

One big, obvious idea

• Local improvement algorithms
• Start with a valid solution

• Keep modifying the solution as long as it improves

• When done, hope you have a maximum

• Geometry of solution space
• When is a local solution guaranteed to be a global

solution?

Another big, less obvious idea

• Duality – pairing a maximization problem with a corresponding
minimization problem

• Pairs of problems over a domain D
• P1: Solution S1, Optimization F1

• P2: Solution S2, Optimization F2

• I  D, s  S1(I), t  S2(I), F1(s) ≤ F2(t)

• I  D, Max { x  S1(I) | F1(x) } = Min { y  S2(I) | F2(y) }

3/4/2021

2

Bipartite Matching

• Given a bipartite graph G=(U,V,E),
find a subset of the edges M of
maximum size with no common
endpoints.

• Application:
• U: Professors

• V: Courses

• (u,v) in E if Prof. u can teach course v

Find a maximum matching

Augmenting Path Algorithm Bipartite Matching

M = ;
while ((P = AugmentingPath(G, M)) != null)

M = M  P

AugmentingPath(G=(U,V,E), M){
Orient edges in M from U to V
Orient edges not in M from V to U
Find a path P from an unmatched vertex in U to

an unmatched vertex in V
return P

 Is the symmetric difference (XOR) operator
on sets

Path can be found with a standard path finding
algorithm

Each time a path is found the number of edges
in the matching increases

Simple runtime is O(nm), can be improved to
O(n1/2m)

Vertex Cover (for bipartite graphs)

• A vertex cover for a graph
G=(V,E) is a set of vertices C,
such that every edge has at least
on endpoint in C

• If C is a vertex cover and M is a
matching |C|  |M|

Weighted Matching

• Let G=(U,V,E) be a bipartite graph with weights assigned to the edges

• For simplicity, we are going to assume
• |U|=|V|=n

• This is a complete graph

• w(u,v)  0 for u  U and v  V

• We want to find a complete matching (|M| = n) of minimum weight

3/4/2021

3

Weighted Matching Algorithm

• Given a graph with a complete matching
M, find a matching M’ with w(M’) < w(M)

• Iterate until you can no longer improve the
solution

• Show that when this process stops you are
at a global minimum

• To establish runtime, derive a bound on
the number of iterations

Augmenting cycles for matching M
Construct a directed graph:

If (u,v)  M

(u,v)  E with w’(u,v) = - w(u,v)

If (u,v)  M

(v,u)  E with w’(v,u) = w(u,v)

Find a negative cost cycle C with the Bellman-Ford
Algorithm

Update the matching to M’ = MC

4

3

23

2

1

2

-4-2-2

2

31

3

-4-2-2

2

31

3

4

3

23

2

1

2

Weighted Matching

• Also called the Assignment Problem

• Standard Algorithm is the Hungarian Algorithm
• Runtime is O(n3) or O(nm + n2 log n)

• Implementation as an nn matrix

• Same ideas work for finding maximum weight matching

Network Flow

u

s t

v

20

20

30

10

10

Network Flow Definitions

• Flowgraph: Directed graph with distinguished vertices s (source) and
t (sink)

• Capacities on the edges, c(e) >= 0

• Problem, assign flows f(e) to the edges such that:
• 0 <= f(e) <= c(e)

• Flow is conserved at vertices other than s and t
• Flow conservation: flow going into a vertex equals the flow going out

• The flow leaving the source is a large as possible

Maximum flow example

a

s

d

b

c f

e

g

h

i

t

15/25

5/5

20/20 20/20

20/20

25/30

20/20

5/5

20/20

0/5

20/20

15/20

10/10

20/20

5/5

20/20

30/30

0/5

0/5

0/5

0/5

0/5

0/5

0/20

3/4/2021

4

Residual Graph

• Flow graph showing the remaining capacity

• Flow graph G, Residual Graph GR

• G: edge e from u to v with capacity c and flow f

• GR: edge e’ from u to v with capacity c – f

• GR: edge e’’ from v to u with capacity f

• Find a path from s to t in GR with minimum edge
capacity (in GR) of b > 0

• Add flow b to the path from s to t in G

Flow assignment and the residual graph

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

10

5 20

15

15

5

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph GR

Find an s-t path P in GR with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at

most C, then the algorithm takes at most C iterations

Flow Example

a

s

d

b

c f

e

g

h

i

t

20

5

20 15

20

20

20

55

5
15

5 10

15

5

20

20

5

20

10

10

5

10

30

Cuts in a graph

• Cut: Partition of V into disjoint sets S, T with s in S and t in T.

• Cap(S,T): sum of the capacities of edges from S to T

• Flow(S,T): net flow out of S
• Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)

Cap(S,T) and Flow(S,T)

a

s

d

b

c f

e

g

h

i

t

15/25

5/5

20/20 20/20

20/20

25/30

20/20

5/5

20/20

0/5

20/20

15/20

10/10

20/20

5/5

20/20

30/30

S={s, a, b, e, h}, T = {c, f, i, d, g, t}

0/5

0/20

0/5

0/5

0/5

0/5

0/10

Cap(S,T) = 95, Flow(S,T) = 80 – 15 = 65

3/4/2021

5

Minimum value cut

u

s t

v

40

40

10

10

10

MaxFlow – MinCut Theorem
• There exists a flow which has the same value as the minimum cut

• This shows that both the flow is maximum and the cut is minimum since
the flow is always less than or equal to the cut

• The proof is to run the Ford-Fulkerson algorithm until it completes and
look at the residual graph

• This is a ``duality theorem’’ as the MaxFlow and MinCut problems are
duals

History

• Ford / Fulkerson studied network flow in the context of the Soviet Rail
Network

Ford Fulkerson Runtime

• Cost per phase times number of phases

• Phases
• Capacity leaving source: C

• Add at least one unit per phase

• Cost per phase
• Build residual graph: O(m)

• Find s-t path in residual: O(m)

u

s t

v

1000

1000

1

1000

1000

Better methods of finding augmenting paths

• Find the maximum capacity augmenting path
• O(m2log(C)) time algorithm for network flow

• Find the shortest augmenting path
• O(m2n) time algorithm for network flow

• Find a blocking flow in the residual graph
• O(mnlog n) time algorithm for network flow

