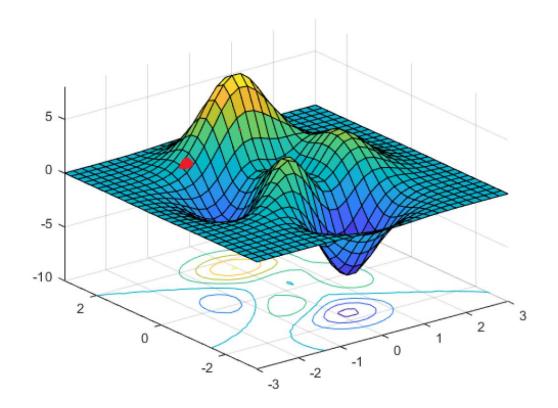
CSEP 521: Optimization

Richard Anderson, March 4, 2021



Announcements

- Remaining lectures on Optimization
 - Combinatorial Optimization
 - Linear Programming
- Readings
 - <u>Skim</u> textbook chapters on Matching/Network Flow (CLRS or KT)
 - Linear programming readings should be available Friday
- Last homework is due Thursday, March 11
 - Notify instructor if any homework is going to be turned in after March 14

Algorithmic Ideas

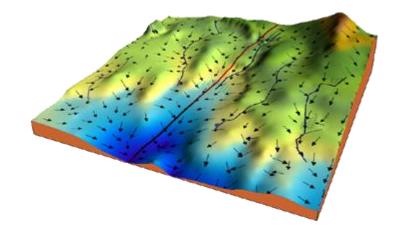
- Randomized algorithms and expected case analysis
- Hashing techniques
- Sketches and ultra low-space algorithms
- Geometry and high dimensional data

Optimization

- Express a problem as a mathematical function, and then find a solution that minimizes or maximizes the objective function
 - Domain
 - Instance
 - Solution
 - Optimization Function
- Vaccine allocation determine what order people get vaccines
 - Output: Partial order on the set of all people in Washington
 - Objective function: Minimize the DALYs (Disability-adjusted life years) due to Covid

One big, obvious idea

- Local improvement algorithms
 - Start with a valid solution
 - Keep modifying the solution as long as it improves
 - When done, hope you have a maximum
- Geometry of solution space
 - When is a local solution guaranteed to be a global solution?

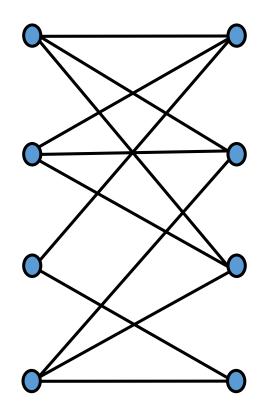


Another big, less obvious idea

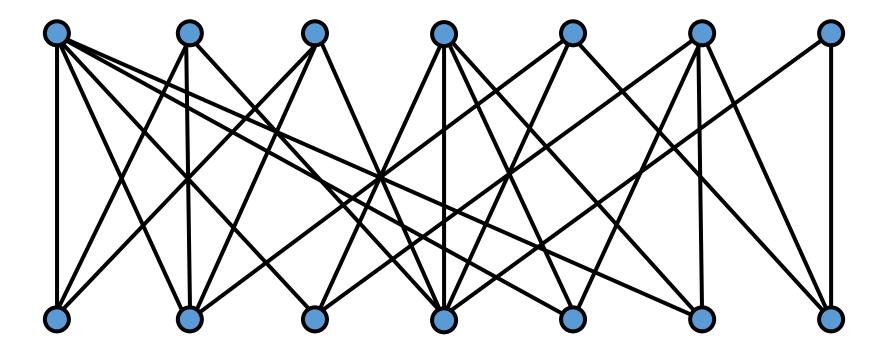
- Duality pairing a maximization problem with a corresponding minimization problem
- Pairs of problems over a domain D
 - P₁: Solution S₁, Optimization F₁
 - P₂: Solution S₂, Optimization F₂
 - $I \in D$, $s \in S_1(I)$, $t \in S_2(I)$, $F_1(s) \leq F_2(t)$
 - $I \in D$, Max { $x \in S_1(I) | F_1(x)$ } = Min { $y \in S_2(I) | F_2(y)$ }

Bipartite Matching

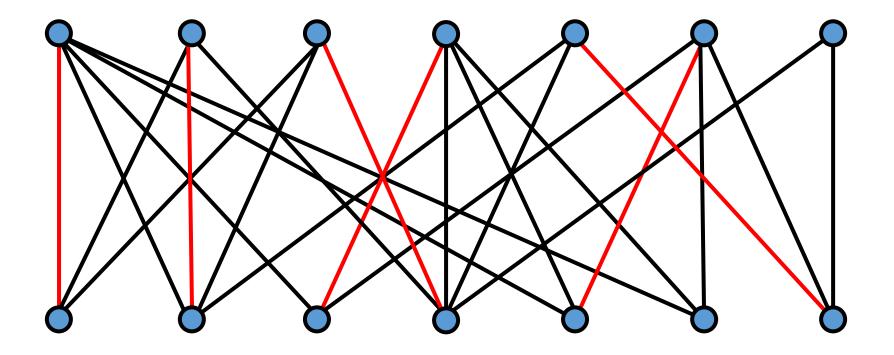
- Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v



Find a maximum matching



Augmenting Path Algorithm



Bipartite Matching

 $M = \emptyset$; while ((P = AugmentingPath(G, M)) != null) $M = M \oplus P$

AugmentingPath(G=(U,V,E), M){ Orient edges in M from U to V Orient edges not in M from V to U Find a path P from an unmatched vertex in U to an unmatched vertex in V return P ⊕ Is the symmetric difference (XOR) operator on sets

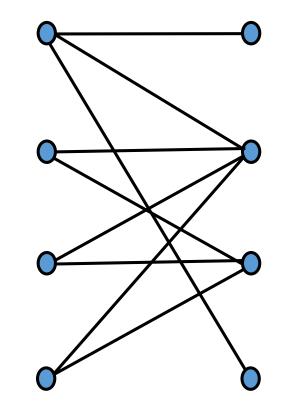
Path can be found with a standard path finding algorithm

Each time a path is found the number of edges in the matching increases

Simple runtime is O(nm), can be improved to $O(n^{1/2}m)$

Vertex Cover (for bipartite graphs)

- A vertex cover for a graph G=(V,E) is a set of vertices C, such that every edge has at least on endpoint in C
- If C is a vertex cover and M is a matching |C| ≥ |M|



Weighted Matching

- Let G=(U,V,E) be a bipartite graph with weights assigned to the edges
- For simplicity, we are going to assume
 - |U|=|V|=n
 - This is a complete graph
 - w(u,v) \geq 0 for u \in U and v \in V
- We want to find a complete matching (|M| = n) of minimum weight

Weighted Matching Algorithm

- Given a graph with a complete matching
 M, find a matching M' with w(M') < w(M)
- Iterate until you can no longer improve the solution
- Show that when this process stops you are at a global minimum
- To establish runtime, derive a bound on the number of iterations

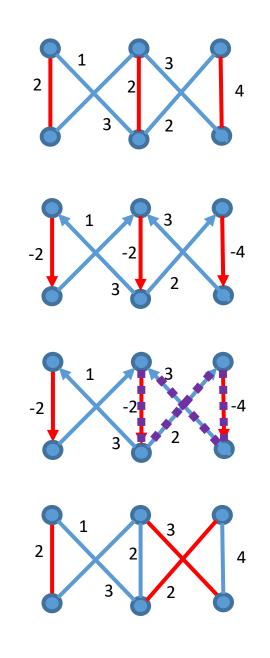
Augmenting cycles for matching M

Construct a directed graph:

$$\begin{split} & \text{If } (u,v) \in \mathsf{M} \\ & (u,v) \in \mathsf{E} \text{ with } w'(u,v) = - w(u,v) \\ & \text{If } (u,v) \not\in \mathsf{M} \\ & (v,u) \in \mathsf{E} \text{ with } w'(v,u) = w(u,v) \end{split}$$

Find a negative cost cycle C with the Bellman-Ford Algorithm

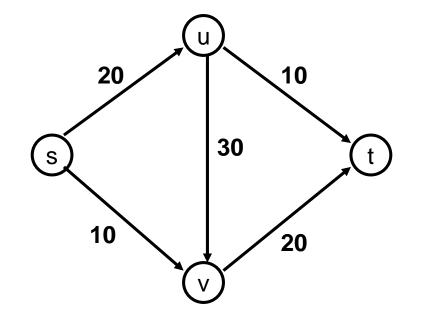
Update the matching to $M' = M \oplus C$



Weighted Matching

- Also called the Assignment Problem
- Standard Algorithm is the Hungarian Algorithm
 - Runtime is $O(n^3)$ or $O(nm + n^2 \log n)$
- Implementation as an n×n matrix
- Same ideas work for finding maximum weight matching

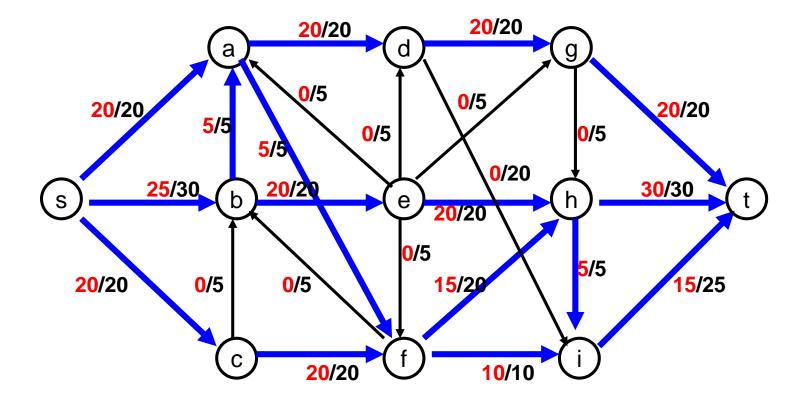
Network Flow



Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

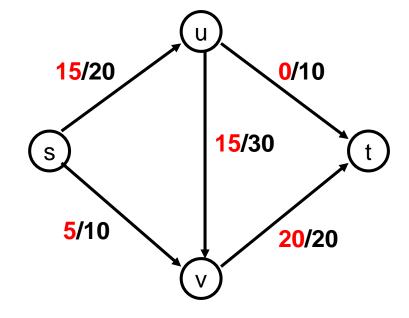
Maximum flow example

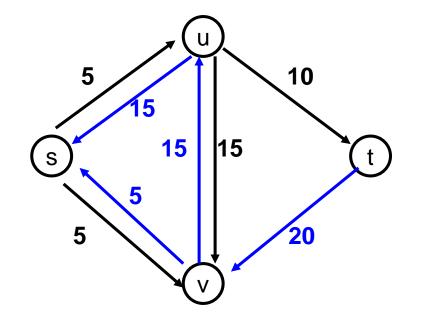


Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R : edge e' from u to v with capacity c f
 - G_R : edge e'' from v to u with capacity f
- Find a path from s to t in G_R with minimum edge capacity (in G_R) of b > 0
- Add flow b to the path from s to t in G

Flow assignment and the residual graph





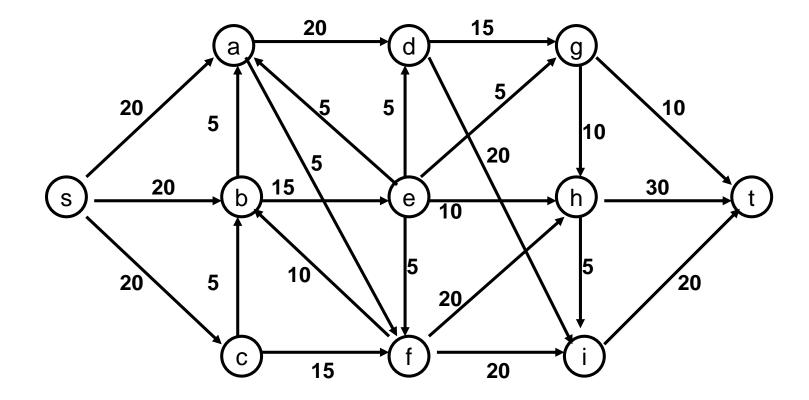
Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

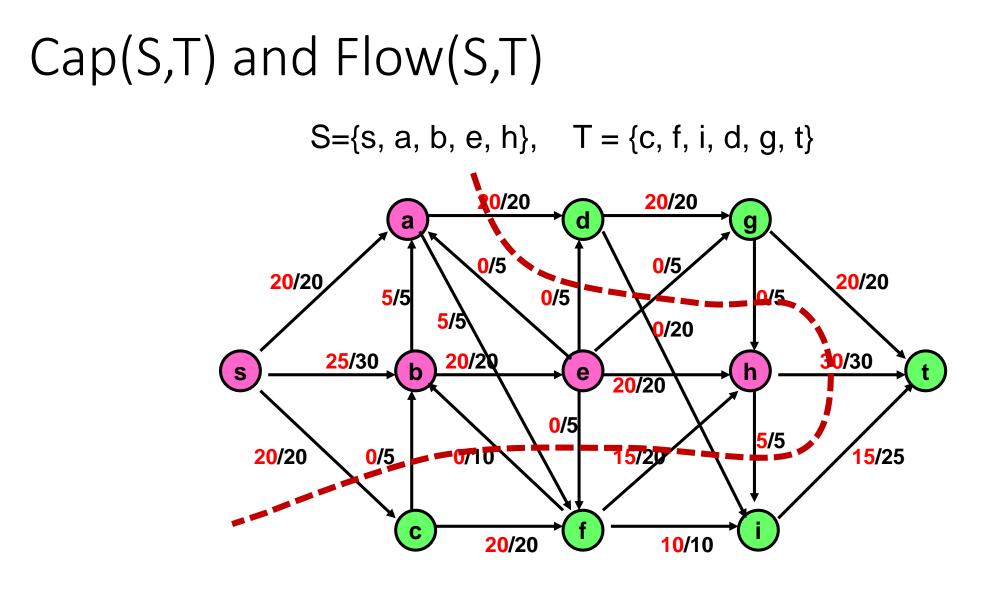
Flow Example



Cuts in a graph

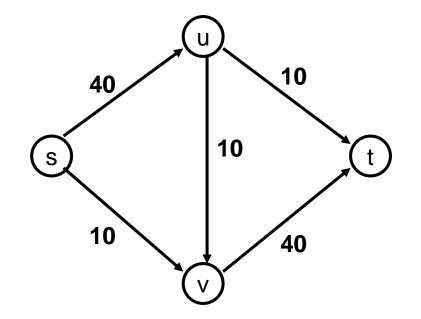
- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)



Cap(S,T) = 95, Flow(S,T) = 80 - 15 = 65

Minimum value cut

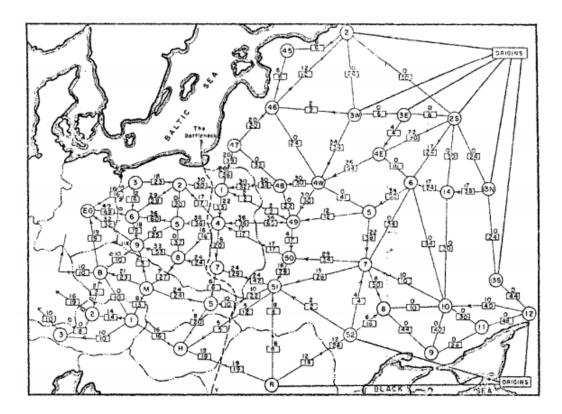


MaxFlow – MinCut Theorem

- There exists a flow which has the same value as the minimum cut
- This shows that both the flow is maximum and the cut is minimum since the flow is always less than or equal to the cut
- The proof is to run the Ford-Fulkerson algorithm until it completes and look at the residual graph
- This is a ``duality theorem" as the MaxFlow and MinCut problems are duals

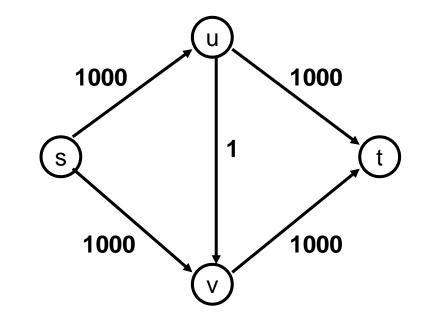
History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network



Ford Fulkerson Runtime

- Cost per phase times number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)



Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow