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CSEP 521: Dimension Reduction
Richard Anderson,    March 2, 2021

Announcements

• Homework 9 is available,  Due March 11.

• Course grade based on top 8 of 9 homeworks.  All weighted equally.

• Remaining lectures 
• Optimization to linear programming and beyond

Dimension Reduction

• A key problem in working with large scale data sets
• Can we reduce representation size at the expense of a small error

Warmup for dimension reduction for Rn

• Consider the distance function D(x,y) = 0 if x = y,  D(x,y) = 1 if x  y

• Suppose we have a domain U and want to answer distance queries 
between a set of n elements

• Natural solution is to use log2 U bits to describe the elements

• Can we use less space if we want to approximately answer distance 
queries

Scenario:  We have a database of objects (e.g. people),  and a field with domain U (e.g. 
favorite movie) – we are interested in reducing the space required to store the field info 
and to answer the query of whether or not X and Y have the same favorite movie.

Of course this is going to be hashing

• Choose a good hash function h: U  232

• Let f1(x) = h(x) mod 2

• 1 bit representation
• If x = y,  then f1(x) = f1(y)
• If x  y, then Pr[f1(x) = f1(y)] ≤ ½
• Property preserved with probability at least 50%

• Repeat with k independent has functions h1, . . . , hk
• If x = y, then fi(x) = fi(y) for all i = 1, . . ., k
• If x  y, then Pr[fi(x) = fi(y) for all i = 1, . . ., k] ≤ 2-k

• To achieve error of δ, we need to use k = log2 1/δ

Random Projections for L2 Distance in RN

• Johnson-Lindenstrauss Transform
• Extensions of Lipschitz mappings into a Hilbert space, William Johnson and 

Joram Lindenstrauss, 1984

• Pure mathematics  result that crossed over to Computer Science

• Project from RN to a random RK dimensional subspace where K is   
O(ε-2 log N) and distances are preserved to a factor of 1+ε
• In practice, K100
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Projections

• Projection onto a line 

• Inner Product

• If b is a unit vector than a . b 
gives the position of a when 
projected onto b

• Project [4, -1, 3 ] onto [2, 1, 1]

Gaussian Distribution

• N(,2) – Normal distribution with 
mean  and variance 2

• X1 and X2 are independent random 
variables with distribution N(1,1

2) 
and N(2,2

2) then X1 + X2 has 
distribution N(1+ 2,1

2+ 2
2) 

Aside: Generating Gaussians

• Box-Muller methods generates 
a pair of independent Gaussian 
RVs from two random points 
from [0,1)

• Mapping of unit square to 
independent Gaussians

• Many languages have a 
Gaussian generator (Matlab, 
Python,  Java)

• Web sites will generate them 
for you

Random Projection

• Objects are points in n dimensional Euclidean space Rn

• Choose random vector r = (r1, . . ., rn)  Rn

• Real valued function fr : Rn  R

• Random linear combination of components of x

Unbiased Estimator of Squared L2 Distance

• For x, y in Rn,  (fr(x) – fr(y))2 is an unbiased estimator of |x - y|2

• Fix x, y in Rn

• rj is a Gaussian with mean zero and variance 1,  (xj-yj)rj is a Gaussian 
with mean zero and variance (xj – yj)

2

• Right-hand side is a Gaussian with mean zero and variance

Cont.

• By definition Var(X) = E((X – E(X])2), so Var(X) = E(X2) when E(X) = 0

• Taking X as the random variable fr(x) – fr(y)

• Estimator of the squared L2 distance between x and y
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Independent Trials

• Pick d vectors r1, . . ., rd

• Each vector is drawn i.i.d. from a standard Gaussian

• Given points x, y,  we get d independent  estimates of |x-y|2

• “One can figure out exactly how large d needs to be to achieve a 
target approximation’’

For a set of k points in n dimensions, to preserve all 
k(k-1)/2 interpoint Euclidean distances up to a 1  ε
factor,  set d = Θ(ε-2 log k)

Johnson-Lindenstrauss Transform

• JL transform maps from Rn to Rd,  where d is selected based on 
desired accuracy

• The JL transform is represented as a dn matrix A where each of the 
dn entries is chosen i.i.d. from a standard Gaussian distribution

• Mapping from n vectors to d vectors is defined x  Ax / sqrt(d)

• 1/sqrt(d) factor scales to be an average over d estimates

Simplification

• D. Achlioptas (2003).  Similar results hold if matrix entries are chosen uniformly 
from {-1, 1} or from {-sqrt(3), 0, sqrt(3)} with probability  1/6, 2/3, 1/6 respectively

• Proof:

Applications

• High dimensional data sets
• Facebook

• Friend neighborhood

• Stories followed

• Biochemistry
• Candidate compounds for pharmaceuticals

• Youtube
• Videos watched

• Phone metadata
• Numbers called

Range queries

• Queries such as “k-Nearest Neighbors”,  all points within distance B, 
count points within distance B

• Standard approach – reduce dimension and search using k-D trees*

• Results subject to errors by factors of 1ε

• k-Nearest Neighbors
• Given query point y,  return k points within (1+ε)B of y,  where B is the k-NN 

distance from y

• Points with distance B
• Given query point y,  return a set of points which contains all points within 

distance (1- ε)B of y and no point of distance greater than (1+ ε)B of y 

* Different k

k-means clustering

• Given S, a set of n points in Rm,  find k representative points in Rm that that 
best partition the data into clusters

• Application – use these points for classification – a new point finds it 
nearest neighbor among the k points.  Rocchio Algorithm.

• Partition the space into Voronoi cells

• k-clustering of S is a partition into k subsets
• The cluster-variance is the sum of the squares of the distances of each point to the 

respective center of its cluster

• The k-means clustering of a set S is the k-clustering that minimizes the 
cluster-variance

• Finding the optimal k-means cluster is NP-Hard, but we will ignore that
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Higher dimensional clustering

• It gets harder to draw!

• Same idea works in high dimensions

• Results show that k-means clustering can be done after dimension 
reduction,  greatly improving performance of constructing and using 
clustering (at the expense of 1+ε error)

• Heuristic algorithms are used to construct a k-means clustering (with 
common confusion between the algorithm and the definition of 
clustering)

Lloyd’s Algorithm  (Stuart Lloyd,  Bell Labs, 1957)

• Iterative algorithm that (usually) converges to a good approximation.

• Pick an initial clustering

• Repeat until tired
• Compute centers of clusters

• Reassign points to closest center

Lloyd’s Algorithm
for (int i = 0; i < N; i++){

CS.AddPoint(i, i % K);

}

int count = 0;

while (count < TOO_LONG){

CS.SetCenters();

bool moved = false;

for (int i = 0; i < N; i++){

int g = CS.Group(i);

double d_min = dist(P[i], CS.Center(g));

for (j = 0; j < K; j++){

if (j == CS.Group(i))

continue;

double d = dist(P[i], CS.Center(g));

if (d < d_min){

g = j;  d_min = d;

}

}

if (g != CS.Group(i)){

CS.MovePoint(i, g);

moved = true;

}

}

count++;

if (! moved)

break;

}

CS is a ClusterSet which associates points 
with clusters and maintains the centers of 
the clusters.

Methods
AddPoint(int i, int g);
MovePoint(int i, int g);
SetCenters();
Group(int i);
Center(int g);


