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Announcements

CSE P 5 2 1 . Dl me nS|On Red ] CtIO n » Homework 9 is available, Due March 11.
Richard Anderson, March 2, 2021  Course grade based on top 8 of 9 homeworks. All weighted equally.

* Remaining lectures
* Optimization to linear programming and beyond

Dimension Reduction Warmup for dimension reduction for R"
* A key problem in working with large scale data sets * Consider the distance function D(x,y) =0if x=y, D(x,y) =1ifx#y
* Can we reduce representation size at the expense of a small error * Suppose we have a domain U and want to answer distance queries

between a set of n elements
* Natural solution is to use log, U bits to describe the elements

« Can we use less space if we want to approximately answer distance
queries

Scenario: We have a database of objects (e.g. people), and a field with domain U (e.g.
favorite movie) — we are interested in reducing the space required to store the field info
and to answer the query of whether or not X and Y have the same favorite movie.

Of course this is going to be hashing Random Projections for L, Distance in RN

* Choose a good hash function h: U — 232 « Johnson-Lindenstrauss Transform
* Let f;(x) = h(x) mod 2 « Extensions of Lipschitz mappings into a Hilbert space, William Johnson and
Joram Lindenstrauss, 1984

* 1 bit representation
P * Pure mathematics result that crossed over to Computer Science

* Ifx=y, then f,(x) = f,(y)
« If x#y, then Pr[fy(x) = f,(y)] < %

* Property preserved with probability at least 50% * Project from RN to a random RX dimensional subspace where K is
* Repeat with k independent has functions hy, . .., h, O(e2 log N) and distances are preserved to a factor of 1+&
* Ifx=y, then f(x) =f(y) foralli=1,.. . k * In practice, K~100

* Ifx#y, then Prlf(x) = f(y) foralli=1,.. k] <2
 To achieve error of §, we need to use k = "Iogz 1/6]
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Projections ‘

* Projection onto a line

|A| cos6

* Inner Product

. If_b is a unit v_e_ctor thana b ab= t-n’n. Zanby b anby t e by
gives the position of a when g
projected onto b

* Project [4,-1,3]onto [2, 1, 1] a-b = |a| |b] cosh,

Gaussian Distribution

* N(p,02) = Normal distribution with
mean p and variance ¢?

1 Lresy’

* X, and X, are independent random flal = o5F =)

variables with distribution N(p,,5,2)
and N(p,,0,?) then X, + X, has

nd N{u, p=Dando =1
distribution N(p,+ p,,0,%+ 65?)

H . H H ‘.
Aside: Generating Gaussians .
* Box-Muller methods generates

a pair of independent Gaussian
RVs from two random points
from [0,1) Suppose Uy and Us are independent samples chosen from the

. Mapplng Df unit square to uniform distribution on (0, 1). Let
independent Gaussians By = T Imlc

* Many languages have a and
Gaussian generator (Matlab, 7= I sin(3alh).

Python, Java)
* Web sites will generate them

Then Zy and Z, are independent random variables with a

standard normal distribution.

for you

Random Projection

* Objects are points in n dimensional Euclidean space R"
* Choose random vector r = (ry, ..., r,) € R
* Real valued function f, : R" - R

felx) = (x.1) = Z"‘.ﬂ’)
=1

* Random linear combination of components of x

Unbiased Estimator of Squared L, Distance

« Forx, yinR", (f(x)—f,(y))?is an unbiased estimator of |x - y|?2
* Fixx, yinR" . . .
100 = 1) = Sy = S = 3 — )y
i=1 J=1 =1
* rjis a Gaussian with mean zero and variance 1, (x-y))r;is a Gaussian
with mean zero and variance (x; - y;)*
* Right-hand side is a Gaussian with mean zero and variance

n

Sl —w)? = lx—vl3

i=1

Cont.

* By definition Var(X) = E((X — E(X])?), so Var(X) = E(X?) when E(X) =0
* Taking X as the random variable f,(x) — f(y)

E[(fe(x) = )] =[x - ¥3

* Estimator of the squared L, distance betweenx and y
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Independent Trials

* Pick d vectorsry, ..., ry
* Each vector is drawn i.i.d. from a standard Gaussian
« Given points x, y, we get d independent estimates of |x-y|?

* “One can figure out exactly how large d needs to be to achieve a
target approximation”

For a set of k points in n dimensions, to preserve all
k(k-1)/2 interpoint Euclidean distances uptoal+te
factor, setd = 0O(e?log k)

Johnson-Lindenstrauss Transform

« JL transform maps from R to RY, where d is selected based on
desired accuracy

* The JL transform is represented as a dxn matrix A where each of the
dn entries is chosen i.i.d. from a standard Gaussian distribution

* Mapping from n vectors to d vectors is defined x — Ax / sqrt(d)
« 1/sqrt(d) factor scales to be an average over d estimates

Simplification

 D. Achlioptas (2003). Similar results hold if matrix entries are chosen uniformly
from {-1, 1} or from {-sqrt(3), 0, sqrt(3)} with probability 1/6, 2/3, 1/6 respectively

* Proof:

Applications

* High dimensional data sets
* Facebook
+ Friend neighborhood
+ Stories followed
* Biochemistry
+ Candidate compounds for pharmaceuticals
* Youtube
+ Videos watched
* Phone metadata
* Numbers called

Range queries L

* Queries such as “k-Nearest Neighbors”, all points within distance B, -
count points within distance B

« Standard approach — reduce dimension and search using k-D trees*
* Results subject to errors by factors of 1+e

* k-Nearest Neighbors
 Given query pointy, return k points within (1+€)B of y, where B is the k-NN
distance fromy
* Points with distance B

« Given query pointy, return a set of points which contains all points within
distance (1- €)B of y and no point of distance greater than (1+ €)B of y

* Differentk

k-means clustering

« Given S, a set of n points in R™, find k representative points in R™ that that
best partition the data into clusters

« Application — use these points for classification — a new point finds it
nearest neighbor among the k points. Rocchio Algorithm.

* Partition the space into Voronoi cells

« k-clustering of S is a partition into k subsets
* The cluster-variance is the sum of the squares of the distances of each point to the
respective center of its cluster
* The k-means clustering of a set S is the k-clustering that minimizes the
cluster-variance

* Finding the optimal k-means cluster is NP-Hard, but we will ignore that
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Higher dimensional clustering

« It gets harder to draw!
« Same idea works in high dimensions

* Results show that k-means clustering can be done after dimension
reduction, greatly improving performance of constructing and using
clustering (at the expense of 1+¢ error)

* Heuristic algorithms are used to construct a k-means clustering (with
common confusion between the algorithm and the definition of
clustering)

Lloyd’s Algorithm (Stuart Lloyd, Bell Labs, 1957)
« Iterative algorithm that (usually) converges to a good approximation.

* Pick an initial clustering

* Repeat until tired
« Compute centers of clusters
* Reassign points to closest center

for (int i =0; i <N; i+h){

)

CS.AddPoint(i, i % K)

Lloyd’s Algorithm

int count = 0;
while (count < TOO_LONG) {

}

Cs.SetCenters () 1

CSis a ClusterSet which associates points

bool moved = false; with clusters and maintains the centers of
for (int i =0; i < N; i+h)( the clusters.
int g = CS.Group (i) ;

)

double d_min = dist(P[i], CS.Center(g));

Methods
AddPoint(int i, int g);
MovePoint(inti, int g);

= dist(P[i], CS.Center(g)); SetCenters();
if (d < d_min){

g= 3 dmin = Groupl(int i);
) Center(intg);

if (g 1= CS.Group(i))(

)

CS.MovePoint (i, @) ;
moved = true

counti+;
if (1 moved)
break;




